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Abstract

CRISPR interference (CRISPRi) using dCas9-sgRNA is a powerful tool for the exploration

and manipulation of gene functions. Here we quantify the reversible switching of a central

process of the bacterial cell cycle by CRISPRi and an antisense RNA mechanism. Revers-

ible induction of filamentous growth in E. coli has been recently demonstrated by controlling

the expression levels of the bacterial cell division proteins FtsZ/FtsA via CRISPRi. If FtsZ

falls below a critical level, cells cannot divide. However, the cells remain metabolically active

and continue with DNA replication. We surmised that this makes them amenable to an

inducible antisense RNA strategy to counteract FtsZ inhibition. We show that both static and

inducible thresholds can adjust the characteristics of the switching process. Combining bulk

data with single cell measurements, we characterize the efficiency of the switching process.

Successful restoration of division is found to occur faster in the presence of antisense

sgRNAs than upon simple termination of CRISPRi induction.

Introduction

Before an E. coli cell divides into two identical daughter cells, proteins of the cell division

machinery accumulate at its center with an accuracy of about 2% and form the so-called ‘Z

ring’ [1].The Z ring serves as a scaffold at the future division site for the other over 20 known

proteins that constitute the divisome [2]. The Z ring itself is assembled from at least six pro-

teins, including the filament forming protein FtsZ and its membrane anchoring proteins FtsA

and ZipA.[3–6]. The cellular content of FtsZ needs to be regulated, as under- or over-expres-

sion leads to filamentous bacteria or minicells without a genome [7, 8]. Moreover, an imbal-

ance between FtsZ and FtsA results in cell division arrest and bacterial filaments that contain

multiple copies of the bacterial chromosome [9, 10]. Since FtsZ is one of the earliest proteins

to initiate the assembly of the division machinery, mutations or knock-downs of FtsZ result in

filaments with stalled constriction sites or partially divided regions [11]. One of the earliest

studied strains with a mutation in ftsZ84, displays filamentous growth at 42˚C and can be

switched back to normal growth at 30˚C [12, 13]. Aborted constriction sites do not seem to be
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continued after temporary upshifts from 30˚C to 42˚C for 2 minutes, but newly formed divi-

sion sites are used [14]. However, the ftsZ84 mutant lyses or loses its viability after about 3

hours after the temperature shift.

Recently, Sánchez-Gorostiaga et al. studied the response of E. coli when FtsZ falls below a

critical level, followed by its restoration using an IPTG inducible promoter in front of the ftsZ
gene [15]. They show that besides forming filaments, FtsZ deprived cells are more prone to

improper chromosome segregation, show global changes in transcription levels and lose integ-

rity of their membrane.

A convenient technique for the regulation of chromosomal gene expression has been

recently provided through CRISPR interference (CRISPRi) using dCas9, a non-cleaving

mutant of the CRISPR associated nuclease Cas9 [16]. The protein can be directed to any posi-

tion on the chromosome by a single guide RNA (sgRNA) molecule, provided that the target

sequence neighbors a protospacer adjacent motif (PAM) with the canonical sequence NGG.

Depending on the binding site, the dCas9-sgRNA complex can repress transcription by either

preventing transcription initiation by RNA polymerase or by acting as a roadblock for tran-

scriptional elongation.

Elhadi et al. have recently used the CRISPRi mechanism to change the morphology of E.

coli by targeting the ftsZ gene and the mreB gene, a gene found to control the width of the cells

[17, 18]. Focusing on microbial bioproduction of plastics, they found that the morphologically

altered cells provide a larger volume for the accumulation of intracellular polyhydroxybutyrate

(PHB) inclusion bodies. However, the CRISPRi mediated gene knockdown had a negative

impact on bacterial growth rate.

In order establish a reversible knockdown system based on CRISPRi, Lee et al. utilized anti-

sense RNA to target the sgRNA [19]. They were able to show that the expression of fluorescent

proteins could be successfully suppressed and reactivated in bacterial cells, with each step hav-

ing a response time of� 3 hours. Using RNA instead of proteins to regulate gene expression

can have several advantages. They are straightforward to design since RNA-RNA interactions

can often be reduced to base-pair interactions and their secondary structure can be predicted

with software tools [20, 21]. Moreover, RNA is expressed faster than proteins and requires less

of the cell’s resources [22].

In the present work, we reversibly induce filamentation in E. coli by targeting FtsZ

using the CRISPR/dCas9 interference mechanism combined with an antisense RNA strat-

egy. We first switch bacteria into the filamentous cell growth mode and subsequently

reverse this process, such that the cells return into a normal growth phenotype. We quan-

tify the switching process and dynamically control the system by the inducible expression

of antisense RNAs that are complementary to the sgRNAs engaged in ftsZ knockdown.

We use single-cell fluorescence microscopy experiments from which we derive bacterial

length distributions [23], growth and division rates, as well as reporter gene expression

levels. This allows us to identify factors that affect the switching process. In particular, we

find that bacteria strongly respond to the CRISPRi knockdown of ftsZ, but only few bacte-

ria revert to normal cell division several hours after termination of CRISPRi induction.

Antisense-sgRNA expression supported the recovery process and facilitated considerably

faster switching than in the absence of the antisense RNAs. Antisense-sgRNA thus pro-

vides a relatively straightforward means to control and adjust the kinetics of CRISPRi de-

repression, which is of great interest for the realization of gene circuitry, in which cellular

processes have to be dynamically switched on or off in response to endogenous signals or

external cues.

Reversible bacterial filamentation using CRISPRi
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Results

Experimental design with decoy-binding sites

In order to reversibly switch bacteria to filamentous growth, we disturbed the FtsZ/FtsA ratio

through CRISPR interference using appropriate sgRNAs (Fig 1A). Three of at least six known

promoters for ftsZ (ftsZ2p, ftsZ3p, ftsZ4p) lie within the ftsA coding region [24]. We targeted

the template strand of these three promoters for ftsZ transcriptional initiation blockage (Fig 1B

and S1 Table). In contrast to tunable CRISPRi (tCRISPRi) with an inducible chromosome-

integrated dCas9 [25], we here use plasmid-encoded inducible dCas9 and sgRNA. The sgRNAs

are induced by IPTG (Isopropyl-β-D-thiogalactopyranoside) via T7 RNA polymerase and

were encoded on the ‘CRISPRi plasmid’ together with TetR-controlled dCas9 and mVenus

reporter protein.

We then restored cell division using different strategies: i) first, by removing CRISPRi

inducers aTc and IPTG and thus turning off dCas9 and sgRNA expression, or ii) by inducing

anti-sgRNAs, which counteract the CRISPRi mechanism (the ‘antisense’ strategy), or iii) by

removing CRISPRi inducers and adding anti-sgRNA inducer (the ‘active’ approach). The anti-
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Fig 1. CRISPRi-based growth control. (A) Schematic representation of E. coli switching into filamentous growth after

induction of single guide RNA (sgRNA) via IPTG and dCas9 via aTc. The dCas9-sgRNA complex blocks the

expression of FtsZ, stopping the formation of the septal ring that is essential for cell division in E. coli. Cell division can

be rescued by inducing appropriate antisense sgRNAs (‘anti-sgRNA’) with AHL and by removing the inducers for the

dCas9 and sgRNA. (B) Scheme of sgRNA forming a complex with dCas9. The anti-sgRNA can inhibit formation of the

complex by binding to the sgRNA. (C) Details of the genetic constructs involved: the CRISPRi plasmid codes for dCas9

under aTc-inducible promoters and three different sgRNAs under T7 promoters which target three different

promoters of the ftsZ gene on the genome of the E. coli. T7 RNA polymerase is inducible with IPTG. The ‘anti-sgRNA

plasmid’ codes for anti-sgRNAs under the control of an AHL-inducible promoter. The sponge elements on the

plasmids act as decoy binding sites for the corresponding dCas9-sgRNA complexes.

https://doi.org/10.1371/journal.pone.0198058.g001
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sgRNAs were designed to absorb the sgRNAs via duplex formation (Fig 1B) in a similar man-

ner as previously demonstrated [19]. In our approach, the anti-sgRNAs are transcribed from

the ‘anti-sgRNA plasmid’ and induced by AHL (acyl homoserine lactone (HSL) 3-oxo-

C6-HSL) from pLux promoters (S2 Table).

Transformation of bacteria with the CRISPRi plasmid resulted in filamentous cells even

without induction of the expression of dCas9 and sgRNA. In order to create a threshold for

dCas9-sgRNA below which ftsZ is not regulated down, we introduced decoy-binding sites

(‘sponges’) for the dCas9-sgRNA complex. However, the addition of sponges to the CRISPRi

plasmid did not stop filamentation in the absence of inducers (Panel A in S1 Fig). Only after

the introduction of additional sponge elements on the high copy number plasmid (*500–700

per cell [26]) that encodes the anti-sgRNA, the bacteria exhibited the intended normal growth

morphology (Panel B in S1 Fig and S1 Movie).

Expression of dCas9 in the absence of sgRNA or with sgRNAs of different sequence does

not lead to filamentous growth under our experimental conditions (Panel C in S1 Fig). We can

therefore rule out that dCas9 alone was responsible for the observed changes in cell morphol-

ogy, as was reported previously for high level expression of the protein [27].

Reversal of CRISPR interference using antisense sgRNA

In order to test the effect of anti-sgRNA on CRISPRi, we initially performed a series of in vitro
experiments in homemade bacterial cell extract [28] and in a commercial gene expression sys-

tem (S2 Fig). First, we tested two different designs for the anti-sgRNAs, which differed in their

lengths and bound to different complementary regions of the sgRNA, one creating a 42 bp and

the other a 56 bp duplex with the sgRNA (Fig 2A). We regulated the expression of mVenus

using purified dCas9 together with sgRNA and anti-sgRNA. As shown in Fig 2B (and S2 Fig),

mVenus expression is efficiently suppressed in the presence of dCas9 and sgRNA, while the

addition of the anti-sgRNA variants recover the production of mVenus (cf. S3 Table for the
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Fig 2. Experimental validation of the anti-sgRNA strategy. (A) Secondary structures of free and complexed sgRNA and anti-sgRNA variants. The dCas9 handle is

destroyed by duplex formation, which prevents dCas9 from binding. (B) Prototyping of the CRISPRi knockdown and rescue system in a cell-free gene expression

system using mVenus as a fluorescent reporter protein. The restoration of mVenus expression is shown with truncated anti-sgRNA versions (the number indicates the

number of base pairs in the resulting sgRNA:anti-sgRNA duplex). The expression of mVenus ([template DNA] = 5 nM) is blocked by the supplementation of purified

dCas9 (70 nM) and sgRNA (100 nM) and is re-activated upon addition of anti-sgRNA (0.5 μM). Fluorescence levels for three different samples are taken at t = 15.5

hours or t = 11 h. Error bars are plotted as SD from 3 individual replicates. (C) Delaying the time of anti-sgRNA addition relative to dCas9-sgRNA results in lower

mVenus fluorescence intensities. (taken at t = 12 hours). Error bars are plotted as SD from 3 individual replicates (c(sgRNA) = 250 nM, c(anti-sgRNA) = 1 μM). (D) Bar

plot of RT-qPCR data, showing ftsZ RNA levels of normal, filamentous (107 nM, 1 mM IPTG) and switched back (107 nM, 1 mM IPTG, 100 nM AHL) cells from three

technical replicates. The asterisk marks indicate the significance levels between the samples.

https://doi.org/10.1371/journal.pone.0198058.g002
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corresponding sequences). Our experiments confirmed that sequestration of the spacer region

and only part of the dCas9 handle by the short anti-sgRNA is sufficient to de-activate the

CRISPRi mechanism (Fig 2B). Thus, in our in vivo experiments also the short anti-sgRNA

design was applied. In a second experiment, we delayed the addition of anti-sgRNA relative to

dCas9-sgRNA. We found that mVenus fluorescence is recovered compared to the knockdown

case, with intensities decreasing for longer delay times (Fig 2C).

We next characterized ftsZ gene expression levels in normal, filamentous and switched-

back cells using RT-qPCR. Upon induction of the CRISPRi mechanism the ftsZ mRNA level

was strongly reduced relative to non-induced normal growing cells. Induction of anti-sgRNA

transcription (while maintaining the CRISPRi induction) recovered the mRNA level again

(Fig 2D and Panel A in S3 Fig). A western blot test conducted analogously confirmed the vary-

ing amounts of FtsZ at the protein level (Panel B in S3 Fig).

Single-cell analysis of filamentation

After induction of the CRISPRi mechanism with aTc and IPTG, bacterial cells rapidly stopped

division and started the expression of mVenus (which also was under the control of a pLTetO

promoter). The cell length distribution of ftsZ-knockdown bacteria broadens and shifts

towards greater lengths (Fig 3A). The mean cell length increases from <L> = 3 μm to<L> =

21 μm in three hours with 500 μM IPTG and 107 nM aTc (which we defined as the 100%

induction level). We performed time-lapse video microscopy studies (cf. Materials and Meth-

ods) to observe the growth and fluorescence of individual filamentous bacteria over time.

Microfluidic trap chambers were connected to fresh medium supply channels (S4 Fig). Upon

100% induction of the CRISPRi mechanism, we were able to switch to filamentous cell growth

(with a division rate approaching zero, cf. inset of Fig 3B). As shown in Fig 3B the average

length of the bacteria increased faster with higher inducer concentrations and continued expo-

nential growth at 100% induction. A medium induction level (43%) results in a constant aver-

age cell length which is, however, larger than for normal growing and dividing cells. As found
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Fig 3. Filamentous bacteria. (A) Histogram of the cell length (calculated from 1000 cells each) at different time points at 100%

induction level (corresponding to 500 μM IPTG and 107 nM aTc). Over time the distribution broadens and the whole population shifts

to larger lengths. (B) Tracking the cell length at different induction levels. Inset: division rates decrease with increasing inducer

concentrations. Results are mean values over 100 min.

https://doi.org/10.1371/journal.pone.0198058.g003
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by Li et al. [25], at low induction levels there is a co-existence of subpopulations of normal

growing and filamentous cells. Filamentous growth of E. coli proceeded up to 10 hours after

which all bacteria had finally burst (S2 Movie).

Efficiency of restoration of normal cell division

We investigated three switching strategies to revert filamentous cells back to normal growth

(Fig 4A): i) passive switching by stopping the production of dCas9-sgRNAs via removal of

CRISPRi inducers aTc and IPTG (Fig 4D); ii) by induction of anti-sgRNAs in the presence of

CRISPRi inducers (the ‘antisense’ strategy), or iii) by removal of CRISPRi inducers and addi-

tion of anti-sgRNA inducer (the ‘active’ approach). We investigated the three strategies using

bulk measurements on liquid cultures and single cell data obtained from flow cytometry and

time-lapse fluorescence microscopy using microfluidic cell traps.

In the bulk experiments, we found that the cell length distribution of a sample from a liquid

culture after induction of CRISPRi had a mean of<L> = 10 μm, which shifted back to<L> =

4 μm after 3 hours using both the passive (i) and the antisense strategy (ii) (Fig 4B).

In case of the active strategy (iii) in the absence of CRISPRi inducers, we performed flow

cytometry (FCM) experiments [29–31] to quantitatively monitor changes in cell morphology

during the switching process. Here, the forward scatter (FSC) signal is roughly proportional to
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of IPTG, aTc), or after 3 hours in medium without any inducers. For both rescue strategies, the mean cell size shifted back from<L> = 10 μm to<L> = 4 μm. (C)

Flow cytometer density plots of bacteria displaying mVenus fluorescence vs. forward scatter (FSC) signal from a non-induced, normal growth state (top) towards the

filamentous state by induction with IPTG/aTc (second) and back again (bottom) by supplementation of AHL (in the presence of IPTG/aTc). Both the mVenus and
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https://doi.org/10.1371/journal.pone.0198058.g004
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the cell size, while the side scatter (SSC) signal contains information about the cellular granu-

larity [32, 33]. A change in cell morphology such as filamentation thus correlates with changes

in FSC and SSC. Upon IPTG/aTc induction about 93% of the cells switch to higher mVenus

(co-expressed with dCas9) fluorescence intensity and higher FSC signal (Fig 4C and S5 Fig).

After supplementation of AHL (60 nM for 3 hours) the non-filamentous population already

increased from 6% to 28%. The AHL concentrations used, however, did not strongly affect

bacterial growth in corresponding control experiments (S6 Fig).

All three strategies were investigated using microfluidics. To our surprise, in contrast to the

bulk experiments we here usually did not observe re-initiation of cell division under strategy

(ii), i.e., supplementation of AHL while aTc and IPTG are still present. From about 2000 ana-

lyzed cells only a single rescue event was observed for strategy (ii) as shown in S7 Fig. By con-

trast, the removal of the CRISPRi inducers–both with or without AHL–allowed a fraction of

about 1.5–3% of all analyzed cells to resume normal cell division (Fig 5A and.S4 Movie). How-

ever, in the presence of AHL (iii) some cells started to divide again after filamentous growth

significantly faster than in the absence of AHL (i) (Fig 5A). Furthermore, full induction of the

CRISPRi compared to 43% induction level for about 2 hours delayed the timing of the first

division event even in the presence of AHL.

Our experiments in microfluidic cell traps revealed a considerable phenotypic heterogene-

ity upon induction of filamentation, which was reversed once normal growth was restored

(Fig 5B). In addition to their size, we characterized the cells with respect to their fluorescence

intensity. After 2 hours of continuous induction with IPTG/aTc, the coefficient of variation

(CV = standard deviation/mean) of the cell size as well as of mVenus and mRFP expression

increased considerably. In contrast to aTc-induced mVenus (on the CRISPRi plasmid), the

constitutively expressed mRFP (on the anti-sgRNA plasmid) level dropped during filamenta-

tion (Fig 5C). Additionally, most of the cells that divide within 120 minutes after the removal
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of the CRISPRi inducers with strategy (iii) have a mean mVenus fluorescence that is 0.2 times

lower than the average of the main population (Fig 5A and S10 Fig).

Discussion

In E. coli cells, a knockdown of the ftsZ gene stops cell division while still allowing cell growth,

resulting in long filamentous cells. Restoration of FtsZ levels, in principle, allows cells to return

back to normal growth. This opens up the possibility to implement a genetic switch that can

turn cell division in E. coli off and on again. We here used a plasmid-based inducible CRISPRi

system to reduce the FtsZ levels in E. coli and stop cell division. To implement the circuit in

viable bacteria, decoy-binding sites for the FtsZ-suppressing dCas9-sgRNA complexes had to

be introduced as genetic buffer elements. We then reverted the knockdown by removing the

CRISPRi inducers and counter-acted CRISPRi utilizing inducible antisense-sgRNA molecules

that could be used to adjust the threshold for bacterial filamentation and thus modulate the

switching process. Due to the critical role of cell division in the bacterial life cycle, however,

our CRISPRi-based approach strongly interfered with the physiology of the bacterial host chas-

sis including slowing down cell division restoration in the majority of the cells.

We used microscopy time lapse experiments to follow thousands of cells through the

switching process to understand the response to the genetic switch on the single cell level. We

found that at best only about 1.5–3% of the analyzed cells revert back to normal growth

whereas the rest of the cells lyse. However, expression of anti-sgRNAs can rescue cell division

faster than in experiments, in which only the CRISPRi inducers are removed. Our experiments

demonstrate both the possibilities and limitations of using dCas9 as a switchable repressor for

genes such as ftsZ that affect bacterial fitness.

Switching cell division off

The CRISPRi-mediated knockdown of ftsZ was a surprisingly efficient method to stop cell

division. The microfluidic time-lapse videos of the filamentation process revealed that some

bacterial cells can still undergo cell division, but the division rate is decreasing with the inducer

concentration of the CRISPRi system resulting in a larger average cell length (Fig 3B). Further-

more, the distribution of cell lengths broadens with continuing CRISPRi induction (Fig 3A).

We were able to identify at least three contributions to such a broadening distribution: fila-

mentous cells do not necessarily divide symmetrically [34], larger cells can produce cell mass

faster than smaller cells [35] and filamentous cells start to slow down their growth rate at some

point and eventually lyse.

It was found that when the FtsZ level falls below� 28% of its initial value, the cell is not

able to form FtsZ rings [15]. We observed a reduction of the FtsZ level by about 80% (judged

from RT-qPCR and Western Blotting), by targeting the template strand of the promoters

(ftsZ2p, ftsZ3p, ftsZ4p) that, however, only account for about 14% of the total transcription of

ftsZ in the cell [36]. Hence, a major fraction of the FtsZ level reduction (about 66%) may be

caused by dCas9-sgRNA blocking the transcriptional elongation also from upstream promot-

ers. It was previously found that targeting the non-template strand with the sgRNA results in

stronger repression of transcriptional elongation [37]. Indeed, Elhadi et al., tested several

sgRNA variants targeting different positions of the non-template strand within the ftsZ gene

and found that by combining two different sgRNA variants the repression efficiency was

above 95% [17].

In this context, dCas9 off-target kinetics have been previously studied [38]. Off-target bind-

ing strongly affects dissociation and association kinetics and thus occupancy of DNA sites,
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which could further contribute to gene expression heterogeneity. In addition, Cho et al.
reported dCas9 binding to several genes even in the absence of guide RNA [27].

To our surprise, the plasmid-based inducible CRISPRi-system led to filamentous growth

even in the absence of inducers (Panel A in S1 Fig). This stands in contrast to ftsZ knockdown

using tunable CRISPRi (tCRISPRi) or other previously employed plasmid-based CRISPRi sys-

tems [17, 25]. One major difference is that we used an inducible T7 RNA Polymerase (RNAP)

for the expression of the sgRNAs rather than constitutive E. coli promoters. We assume that

the leaky expression of the T7 RNAP together with the leaky expression of dCas9 produces

enough dCas9-sgRNA complexes to already sufficiently knock down ftsZ on the chromosome.

Previously, strongly binding TFs such as TetR were buffered by the introduction of DNA

sponges [39]. In a similar way, we here set the threshold for CRISPRi-based ftsZ knockdown

via the sponge copy number, solving the problem of non-induced filamentation (Fig 1 and

Panel B in S1 Fig). Thus, cellular filamentation in the present study could be clearly linked to

the CRISPRi reduced FtsZ levels, which was supported by various control experiments. Poten-

tial CRISPRi off-target effects have not been studied in the context of this work, however.

Restoration of E. coli to normal growth

Microfluidic time lapse videos showed that switching cell division back on was less efficient

than anticipated from samples of the liquid bulk culture (Fig 4B) and from flow cytometry

data (Fig 4C). Methods that lack an appropriate time resolution such as the two methods men-

tioned above, do not allow to distinguish between cells that have just switched back and daugh-

ter cells from already restored cells. This can lead to an overestimation of the switching

efficiency, in particular when the new state of the bacteria is associated with increased fitness

(which is the case here).

In all our switching strategies, restoration of normal growth for most cells occurred within

a few hours, which is slower than in studies where ftsZ was directly put under the control of an

IPTG-inducible promoter [15]. In our case, the removal of the inducers stops new

dCas9-sgRNA complexes from being expressed and assembled, but does not influence already

bound complexes. In particular, it has been shown that activated dCas9 binds to its recognized

DNA target site very strongly (Kd� 0.5 nM) [38, 40]. In general, transcription factors (TFs)

with strong affinity for their DNA-binding site such as TetR do not unbind from their target

site until an extremely low amount of only a few molecules per cell (corresponding to low

nanomolar concentrations) is reached. In agreement with this consideration, Boyle et al found

that dissociation of dCas9 from on-target sites with strong affinity can take many hours [38].

Recovery of FtsZ levels is thus expected to be governed by the dilution of the dCas9-sgRNA

complexes, which is automatically provided by cell growth. Thus, cell division can resume at

potential division sites as soon as FtsZ levels recover. Other studies aiming at the reversal of

CRISPRi due to dilution, reported full restoration of expression levels of targeted fluorescent

proteins after washing away CRISPRi inducers at around 350–480 min [16, 25]. Interestingly,

with our approach, it took only about 260 minutes on average to observe the first division

events after the removal of CRISPRi inducers, suggesting that cell division resumes even before

the ftsZ levels are fully recovered. However, in microfluidic devices we also observe that the

main part of the population does not survive the slow knockdown and recovery process (Fig

5A). Importantly, the expression of anti-sgRNA allows some cells to resume cell division faster

than without anti-sgRNA (Fig 5A). As suggested by the results from the in vitro experiments

(Fig 2 and S2 Fig), the anti-sgRNA inhibits complex formation of dCas9 and sgRNA by bind-

ing to the sgRNA. The partial recovery of mVenus fluorescence in the cell-free expression sys-

tem by the addition of anti-sgRNA after repression by CRISPRi lets us assume that anti-
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sgRNA can even displace the sgRNA from the dCas9-sgRNA complex. Hence, the expression

of anti-sgRNA in the cells probably reduces the amount of dCas9-sgRNA bound on DNA tar-

get sites by reducing the concentration of free dCas9-sgRNA complexes, and thus shifting the

equilibrium between the bound and unbound state.

Another CRISPRi anti-sgRNA approach was recently conducted by Lee et al. [19]. The

anti-sense RNA in this study was shown to fully recover the expression of a fluorescent

reporter within 360 minutes, even in the presence of continuously expressed sgRNA. Further-

more, they were able to establish a relationship between the de-repression efficiency and the

binding affinity of the anti-sgRNA to the sgRNA, supporting the hypothesis that de-repression

by anti-sense RNA can be partially explained by equilibrium thermodynamics. In contrast to

the simple strand invasion approach taken in our study, Lee et al. augmented their antisense-

sgRNA with binding sites for the RNA chaperone Hfq, which apparently increased its de-

repression efficiency.

Rather than increasing sgRNA-anti-sgRNA interactions in this manner, alternatively the

binding strength of dCas9-sgRNA to its target may be weakened. For instance, Vigouroux

et al. recently demonstrated that reduced complementarity between target DNA and sgRNA

increases the probability of the dCas9-sgRNA complex being kicked off by RNA or DNA poly-

merase [41]. This could help in the release of kinetically trapped dCas9-sgRNA complexes on

the DNA target site to the cytosol where they might be more accessible to anti-sgRNA.

Heterogeneity in gene expression

After switching to filamentous growth, we observed an increase in population heterogeneity,

which is reflected by altered reporter fluorescence levels, an increase in their coefficients of

variation, and by varying bacterial length distributions (Fig 5B and S8–S10 Figs). The mea-

sured decrease in constitutively expressed mRFP fluorescence intensity could be caused by

plasmid dilution, a reduced protein expression rate or both.

Although both plasmid copy number controls are based on a negative feedback mechanism

that measures the concentration of the plasmids in the cells, it is unclear what happens to the

copy number in filamentous cells [42] [43]. Furthermore, only the copy number of the sum of

the pLysS and CRISPRi plasmid should remain fixed, allowing for larger ratios between the

two. We assume that the subpopulation of bacteria that switches faster than the rest of the

cells, and which can be characterized by low mVenus fluorescence (S10 Fig), has a low copy

number of the CRISPRi plasmid. After switching back to normal cell growth, the new popula-

tion of growing cells displayed CV values similar to the starting population.

Materials and methods

Plasmids

We constructed plasmids by Gibson assembly of synthetic DNA fragments into the target vec-

tor (pSB1K3 and CRISPRi plasmid 44249 from addgene). The final plasmid sequences can be

found in S2 Table. The sender strain was constructed in an earlier study and contains the gene

for LuxI synthase (BioBrick part BBa_C0261). The sgRNA, anti-sgRNA and sponge element

sequences are listed in S1 Table.

Bacterial cell culture

Experiments with filamentous cells were performed in Escherichia coli BL21 (DE3) pLysS.

Although the pLysS plasmid has the same origin of replication as the CRISPRi plasmid we

select with the antibiotics (Carbenicillin) for the CRISPRi plasmid to ensure its presence in the
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cells. Furthermore, we detect the inducible mVenus expression from the CRISPRi plasmid in

the cells. Cells from glycerol stock were grown in 5 ml Luria-Bertani medium containing anti-

biotics selecting for both plasmids (CRISPRi and asgRNA plasmid) and incubated over night

at 37˚C and 250 rpm. The following day, cells were diluted 1:1000 and incubated for additional

4 h. Optical density (OD) values between 0.4–0.6 were obtained. From this batch, 1 ml of the

culture was centrifuged and the pellet resuspended in 300 μl growth medium. The concen-

trated cells were immediately loaded on a microfluidic chamber until single or few bacteria

were captured in the traps. In such a microfluidic chemostat with defined bacterial trap dimen-

sions, we supplied the bacterial suspension constantly with fresh nutrients (LB medium, anti-

biotics and/or inducer chemicals or dyes) using a pressure flow controller (OB1, Elveflow).

Fluorescence time-lapse microscopy

The microfluidic PDMS (Sylgard 182, Dow Corning) device was fabricated using standard soft

lithography as previously described [44]. The microfluidic device is a combination of a gradi-

ent mixer [45] and bacterial traps designed with dimensions of 200 μm x 10–50 μm x 1 μm as a

H-shaped chemostat (S1 Fig).

Time-lapse microscopy measurements were conducted on a Nikon Ti-Eclipse epi-fluores-

cence microscope controlled with NIS-Elements Imaging Software. The microscope was

equipped with a sCMOS camera (Zyla, Andor), an automated x-y-stage (Prior Scientific, Cam-

bridge, UK) and an incubator box (Okolab) to maintain an operation temperature of 37˚C. All

videos were recorded with 40x apochromatic magnification objectives. Every 5 to 20 min,

images in phase contrast mode, YFP as well as RFP fluorescence mode (in combination with

the appropriate filter sets) were taken for a total run time of up to 20 hours. The exposure

times were automatically adjusted.

Cell-free expression

For the cell-free assay, the sgRNA sequences were designed complementary to the non-tem-

plate strand (sequences can be found in Supporting Information S3 Table). Anti-sgRNA and

sgRNA where transcribed in vitro by T7 RNA Polymerase (NEB) from linear DNA (IDT) over-

night and then extracted with Phenol-Chloroform. The concentration of the RNA was deter-

mined by comparing a SYBR Green II stained band in a denaturing PAGE (8M Urea at 45˚C)

to the RNA Ladder (NEB, N0364S). The plasmid with mVenus was purified using Phenol-

Chloroform prior the reaction in the cell extract. The crude S30 cell extract was obtained by

beat beating of a BL21- Rosetta2(DE3) mid-log phase culture with 0.1 mm glass beads in a

Minilys device (Peqlab) and supplemented with an energy mix and reaction buffer as

described in ref. [28]. Instead of 3-phosphoglyceric acid (3-PGA), phosphoenolpyruvate (PEP)

was utilized as an energy source. dCas9 was His-tagged and purified by gravity- flow chroma-

tography with Ni-NTA Agarose Beads (Qiagen). The fluorescence intensity was measured

with a FLUOstar Omega plate reader (BMG) in 96-well plate (ibidi) at 37˚C. The composition

of a single cell-free reaction was: 33% (v/v) S30 cell extract mixed with 42% (v/v) buffer and

25% (v/v) DNA plus inducers. For the experiments with the PURE system (NEB E6800S), the

linear DNA fragment coding for mVenus with a T7 RNAP promoter was amplified using a

standard PCR reaction and purified with Monarch PCR & DNA Cleanup Kit (NEB T1030S).

Flow cytometry

An overnight culture was diluted (1/100) to 5 ml culture in LB and supplemented with appro-

priate antibiotics. The cell suspension was incubated for 2 hours and then induced with

100 μM IPTG and 11 nM aTc. 1 ml cell suspension was centrifuged and the pellet was solved
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in 2 ml PBS. For measurements with a flow cytometer (Cube8, Partec), the sample was further

diluted with PBS (1:3). The anti-sgRNA was induced with 60 nM AHL for 3 h and 7 h before

measuring. Cultures were diluted every 3 hours to keep the bacteria in the exponential growth

phase. For each experiment, 100.000–150.000 events were recorded in FSC, SSC and FL1

(488ex/536em) and FL2 (532ex/590em) mode for mVenus and RFP detection.

RT-qPCR

For the relative quantification of FtsZ levels between normal growing, filamentous and rescued

cells, an overnight culture was diluted 1:1000 in LB containing Carbenicillin and Kanamycin.

After 5 h at 37˚C, an OD value of 0.4 was reached and 1 ml of the cells was centrifuged at 4˚C for

5 min at 5000 rcf. RNA isolation was performed according to the RNA isolation II protocol (Bio-

line) with the following exception for lysis: 2.5 μl (1.25U) Proteinase K (NEB) was added to the

lysozyme-based step. After the addition of buffer RLY, the sample was flash frozen in liquid nitro-

gen and stored at -80˚C until filamentous and switched back cell samples were collected.

The remaining suspension of normal growing cells was diluted to OD 0.1 and supple-

mented with inducers (1 mM IPTG, 107 nM aTc) in fresh medium for 2 h and collected as

described above at OD 0.4. The filamentous cell sample was again diluted (1:100) and supple-

mented with all inducers (1 mM IPTG, 107 nM aTc and 100 nM AHL) in fresh medium for 3

h. After the cells reached OD 0.1 a second dilution step (1:100) was performed in fresh LB+-

inducers and the cells were grown overnight. Next day, the switched back cells were diluted

(1:100) one more time into fresh medium with all inducers until OD 0.4 was reached and the

cells were collected as described above, flash frozen in LN2 and kept at -80˚C until the continu-

ation of RNA isolation procedure.

The RNA yield and quality was analyzed with a NanoDrop absorbance spectrometer (Unin-

duced: 118ng/μl, A260/280 1.9; filamentous: 253 ng/μl, A260/280 2.09; switched back: 264 ng/

μl A260/280 2.117). Since the uninduced RNA sample showed low A260/280 value, all samples

were off-column DNAseI digested and repurifed on a silica column. The final values obtained

for A260/280 were >2 for all samples. Isolated RNA was flash frozen in LN2 and stored at

-80˚C until reverse transcription was performed according to the Maxima H Minus First

Strand Synthesis Kit and manual for RT-qPCR (ThermoFisher) with 500 ng RNA for each

sample. The DNA sequences for the used gene specific primers can be found in the supporting

information file (S4 Table). The cDNA samples were aliquoted and flash frozen in LN2 and

kept at -80˚C until RT-qPCR was performed.

The RT-qPCR reactions were performed on a BioRad IQ5 instrument with the following set-

tings: dynamic well factor method by addition of 10 nM Fluorescein to each sample and detection

in the FAM channel by cycling 1x 1 min 95˚C, 45x 30 s 95˚C -> 15 s 60˚C, 1x melt curve 55–

95˚C. The reactions were prepared with 7 μl of 1:10 serial dilutions of the cDNA and LunaScript

Universal MasterMix 2x (New England Biolabs) in white PCR stripes with flat lid (AB-1191, Ther-

moFisher). Three technical replicates were recorded for each sample (two for the minus reverse

transcriptase control and one for the non-template control). The gene specific primers for ftsZ
and the reference genes can be found in the supporting information file (S4 Table). The Cq values

were determined by the instruments´ data analysis software for background corrected and fitted

curves. The RT-qPCR raw data can be found in the Dryad data package (doi: 10.5061/dryad.

t153690). Fold changes of gene expression were determined by the Paffl method [46].

Western blotting

An overnight culture was diluted in LB to OD 0.25 and grown for three hours with and with-

out inducers (107 nM aTc and 1 mM IPTG). The sample with inducers was split and diluted
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again (to OD 0.25) to create two samples, one with 107 nM aTc and 1 mM IPTG and the other

with 107 nM aTc, 1 mM IPTG and 100 nM AHL. Before and after the dilution, 2 ml from each

sample were pelleted and suspended in lysis buffer (50 mM Tris, 14 mM MgGlu, 60 mM

KGlu, 1 mM DTT, 0.1% TritonX100, pH 7.7) so that each sample had a concentration of 5 μg/

ml (calculated from the OD). The samples were lysed with sonication on ice, pelleted and the

supernatant was denatured at 95˚C in Lämmli buffer and resolved by sodium dodecyl sulfate-

polyacrylamide gel electrophoresis. 20 μg of proteins were transferred to PVDF membranes

using a semi-dry transfer-blot apparatus (Bio-Rad). The membranes were blocked with 5% (w/

v) BSA in TBST overnight at 4˚C and probed with anti-sera to FtsZ (1:1000, Agrisera) for 1,5 h

at room temperature [47]. A TRITC anti-mouse secondary antibody (1:5000; Agrisera) was

applied for 1 h at 4˚C in 5% BSA in TBST for 1 h and the blot was imaged with a Typhoon

FLA 9500 scanner (General Electric) in the Cy3 channel.

Data analysis

Image analysis was performed using NIS-Elements (Nikon) and customized MATLAB soft-

ware. Flow cytometry data were plotted with FlowJo.

Supporting information

S1 Fig. Filamentation control tests. First, we tested the decoy-binding site strategy under the

non-induced state. The liquid culture bacteria contained the CRISPRi-plasmid without (A)

and with (B) a high copy number sponge plasmid. Only with additional sponge elements, the

cells grow and divide. In (C) we tested dCas9 influence on cell morphology. The cells with

CRISPRi and anti-sgRNA plasmids grow normal under dCas9 induction (107 nM aTc) for 3

hours. The corresponding reporter gene mVenus is also expressed from a tet-promoter as well

as constitutive mRFP. The image is an overlay of phase contrast, mRFP and mVenus fluores-

cent channels.

(PDF)

S2 Fig. Cell-free control tests. We used mVenus under T7 promoter in the PURExpress cell-

free system (New England Biolabs). The expression of mVenus (5 nM DNA template) is

blocked by the supplementation of dCas9 (50 nM) (NEB) and sgRNA (100 nM) and is reacti-

vated upon the addition of anti-sgRNA56 (1 μM). The data points are three technical repli-

cates. Expression levels reached the micromolar range. The inset figure shows one replication

experiment in our homemade cell-free system with transcription under T7 polymerase.

(PDF)

S3 Fig. ftsZ levels in normal, filamentous and switched-back cells. (A) RT-qPCR data for tar-

get gene ftsZ. The fluorescence intensities of serial dilutions (1:10) of technical triplicates of

non-induced samples and of 1:100 dilutions of induced (1 mM IPTG, 107 nM aTc) and

switched back samples (1 mM IPTG, 107 nM aTc, 100 nM AHL) are shown in the plot. From

non-induced serial dilution curves, the amplification efficiency of 110% (top inset figure) was

calculated from the obtained slope of the linear fit of extracted Cq values of the standard curves

(Cq values can be found in S5 Table). The melt curve (inset figure below) shows a single peak

corresponding to a single amplification product. The shoulder in front of the peak belongs to

the master mix containing low ROX dye. The data for a minus reverse transcriptase control

(-RT) and a non-template control (NTC) are also plotted in the graph. (B) Immunoblot show-

ing FtsZ levels of normal and filamentous (+aTc/IPTG) cells. Diluting and splitting the fila-

mentous cell culture with and w/o AHL (in the presence of aTc and IPTG), shows FtsZ
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recovery with AHL.

(PDF)

S4 Fig. Microfluidic trap dimensions for single cell measurements. (A) The medium inlet

direction is indicated with arrow marks. The exchange of nutrients and waste products occurs

via diffusion. The channel width and trap dimensions are given in the layout. (B) The cannel

height is 15 μm whereas trap height is 1 μm. The traps are incorporated in a microfluidic gradi-

ent mixer [45].

(PDF)

S5 Fig. Quantitation of the switching process using flow cytometry. The mRFP (top panel)

and the SSC signal (bottom panel) are plotted against the FSC signal. mRFP is constitutively

expressed in initially normal cells but also after induction of filamentation. After switching

actively back with AHL in the presence of filamentation inducers IPTG/aTc for 3 h, a popula-

tion with decreased mRFP signal arises, which finally represents the main population (after 7 h

of asgRNA induction). In the filamentous state, the SSC signal ramps up in proportion with

the FSC signal (t = 3 h with aTc/IPTG). However, rescued cells quickly recover and the major-

ity of the cells turn back to the initial scatter plot position as measured with normal growing

and dividing bacteria (cf. not induced and after t = 7 h with aTc/IPTG/AHL).

(PDF)

S6 Fig. Cell growth and expression of fluorescent protein in bulk measurements. (A) Bacte-

rial growth measured by monitoring the absorbance of the bacterial culture at λ = 600 nm for

various inducer concentrations. Bacterial growth was not affected by the induction of filamen-

tation with aTc and IPTG nor by the supplementation of AHL. Three samples for each induc-

tion level are shown. (B) Fluorescence intensity time traces of mVenus measured at λem = 540

nm (excitation at 540 nm). (C) Fluorescence intensity of mRFP measured at λem = 590 nm

(excitation at 544 nm). The fluorescence signal obtained from mRFP was both delayed and

reduced for samples with AHL.

(PDF)

S7 Fig. Cell division in the presence of inducers IPTG/aTc/AHL. The images are an overlay

of bright field (phase contrast) and the fluorescence channels of mVenus and mRFP. During

the first 1 hour and 20 minutes the cells are exposed to 215 μM IPTG and 46 nM aTc (43%).

After 1 hour, 60 nM of AHL is supplemented to the growth medium. One bacterium resumes

cell division (marked by an arrow), which belongs to a persisting subpopulation. The time is

shown in hours. Scale bar: 20 μm.

(PDF)

S8 Fig. Passive switching in microfluidic chambers. 3D scatter plot with the mean mRFP

and mVenus fluorescence levels of single bacteria plotted against the observed area of the cor-

responding cells for about 1000 cells at three different points in time: 10 minutes after induc-

tion (43% induction level), after 2 hours of continuous induction and after additional 9 hours

without aTc/IPTG. About 5% of the filamentous cells divide (‘dividers’: black dots) again after

the inducers have been removed from the growth medium.

(PDF)

S9 Fig. Active switching in microfluidic chambers. Histogram of cell lengths. Actively

switched cells (strategy iii) regain normal cell length distributions similar to t = 0 hours of

starting induction of filamentous growth.

(PDF)
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S10 Fig. Cell division restoration in a subpopulation. (A) The subpopulation (yellow bars) is

characterized by low mVenus (top) and medium mRFP (bottom) levels. (B) 3D scatter plot of

an actively switched bacterial population (switching supportd by anti-sgRNA in strategy (iii).

About 5–6% of the analyzed cells re-initiates division upon removal of IPTG/aTc from the

growth medium while supplementing AHL (60 M) in order to induce the expression of anti-

sgRNA (‘fast dividers’: black dots).

(PDF)

S1 Table. Sequences of target sites, sponge elements, sgRNAs and anti-sgRNA. DNA

sequences of the target sites of ftsA (Gene ID: 944778)) and the derived elements employed in

this study.

(PDF)

S2 Table. Plasmid sequences and description. The table shows the plasmid features of the

constructed CRISPRi plasmid, the sponge plasmid and the anti-sgRNA plasmid in detail.

(PDF)

S3 Table. Sequences for the cell-free assay. The DNA regions of interest in this study are

summarized here.

(PDF)

S4 Table. Sequences for RT-qPCR primers. RT-primers were used for cDNA synthesis and

REV and FWD primer pairs were used in qPCR reactions. The amplification products were

for ftsZ (gene ID 944786) 97 nucleotides, for rrsB (gene ID 948466) 158 nucleotides and for

cysG (gene ID 947880) 105 nucleotides long.

(PDF)

S5 Table. RT-qPCR statistics. Cq values for technical triplicates for reference genes rrsB, cysG
and target gene ftsZ and their mean and standard deviation (StDiv) values.

(PDF)

S6 Table. RT-qPCR amplification efficiency and goodness of the linear fit for rrsB and

cysG. From the obtained Cq values (see S4 Table), the amplification efficiencies for reference

genes rrsB and cysG were extracted from the linear fit equations.

(PDF)

S1 Movie. This video shows E. coli (with the CRISPRi and anti-sgRNA plasmids) in a

microfluidic chamber without inducers of the CRISPRI mechanism. The images are an

overlay of BF/phase contrast and fluorescence channels of mVenus and mRFP. Time is shown

as hh:mm . . .

(AVI)

S2 Movie. This video shows filamentous growth of E. coli in microfluidic chambers upon

induction with 500 μM IPTG and 107 nM aTc (100% level). The images are an overlay of

BF/phase contrast and fluorescence channels of mVenus and mRFP. Time is shown as hh:mm

. . .

(AVI)

S3 Movie. Active switching in microfluidic chambers. Filamentous growth is induced

(215 μM IPTG and 46 nM aTc) for 2 hours. From there on the freshly supplied medium does

not contain IPTG and aTc, but is supplemented with 50 nM AHL. The video starts after 1

hour of induction. One cell starts to re-divide about 50 minutes after the medium change. The

images are an overlay of BF/phase contrast and fluorescence channels of mVenus and mRFP.
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The time is shown in hh:mm.

(AVI)

S4 Movie. Passive switching in microfluidic chambers. Filamentous growth is induced

(215 μM IPTG and 46 nM aTc) for 2 hours. After the time window, the freshly supplied

medium is without inducers. The images are an overlay of BF/phase contrast and fluorescence

channels of mVenus and mRFP. This video shows a bacterium that has a relatively low growth

rate during induction and takes relatively long to start re-division. The time is shown in hh:

mm.

(AVI)
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