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Abstract

Incidence of disease due to dengue (DENV), chikungunya (CHIKV) and yellow fever (YFV) viruses is increasing in many parts
of the world. The viruses are primarily transmitted by Aedes aegypti, a highly domesticated mosquito species that is
notoriously difficult to control. When transinfected into Ae. aegypti, the intracellular bacterium Wolbachia has recently been
shown to inhibit replication of DENVs, CHIKV, malaria parasites and filarial nematodes, providing a potentially powerful
biocontrol strategy for human pathogens. Because the extent of pathogen reduction can be influenced by the strain of
bacterium, we examined whether the wMel strain of Wolbachia influenced CHIKV and YFV infection in Ae. aegypti. Following
exposure to viremic blood meals, CHIKV infection and dissemination rates were significantly reduced in mosquitoes with the
wMel strain of Wolbachia compared to Wolbachia-uninfected controls. However, similar rates of infection and dissemination
were observed in wMel infected and non-infected Ae. aegypti when intrathoracic inoculation was used to deliver virus. YFV
infection, dissemination and replication were similar in wMel-infected and control mosquitoes following intrathoracic
inoculations. In contrast, mosquitoes with the wMelPop strain of Wolbachia showed at least a 104 times reduction in YFV
RNA copies compared to controls. The extent of reduction in virus infection depended on Wolbachia strain, titer and strain
of the virus, and mode of exposure. Although originally proposed for dengue biocontrol, our results indicate a Wolbachia-
based strategy also holds considerable promise for YFV and CHIKV suppression.
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Introduction

Mosquito-transmitted viruses cause significant human morbidity

and mortality throughout the world and impose particularly heavy

health and economic burdens on developing countries. Dengue,

caused by infection with any of the four dengue virus (DENV)

serotypes, is currently the leading arboviral disease, with millions of

cases of classic dengue fever and tens of thousands of deaths

annually due to hemorrhagic disease [1]. Yellow fever virus (YFV)

has been implicated in an estimated 200,000 clinical cases and

30,000 human deaths annually in the equatorial regions of Africa

and South America [2,3]. Recently, chikungunya virus (CHIKV)

emerged as a major threat, with unprecedented outbreaks on islands

in the western Indian Ocean, as well as in India, Thailand, Malaysia

and Italy [4]. Effective vaccines against all four DENV serotypes

and CHIKV are still at various stages of development and clinical

trial [5,6]. Although a highly effective vaccine against YFV has been

administered for over 50 years, rapid vaccination of susceptible

populations either prior to or during an epidemic is financially and

logistically challenging, particularly in developing countries [2,3].

Current disease control measures focus on the suppression of

mosquito vector populations to reduce virus transmission. The

primary vector of DENVs, CHIKV and YFV is the mosquito Aedes

aegypti, a highly domesticated species that feeds almost exclusively

on humans. Its geographic range has expanded with increased

urbanization, resulting in increased arbovirus transmission [7].

The primary mosquito control activities are source reduction to

eliminate larval habitats, application of larvicides (such as

Temephos or s-methoprene), or adulticiding with indoor residual

spraying or ultra-low-volume application. While these approaches

can be successful, they are often labor-intensive, can be

prohibitively expensive to implement and require a sustained

commitment from all levels of government [8]. Furthermore,

increasing insecticide resistance and concerns with non-target

effects on the environment have necessitated the development of

alternative approaches to arbovirus control.

An emerging biocontrol approach to reducing transmission of

arboviruses is provided by the transinfection of Ae. aegypti

mosquitoes with Wolbachia pipientis from other insect hosts [9,10].

Wolbachia is a maternally transmitted, endosymbiotic bacterium
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that manipulates host reproduction to enhance its own transmis-

sion [11]. Estimated to infect over 60% of insect species [12],

Wolbachia can provide its host with nutritional benefits [13] and

enhanced resistance to pathogens [14,15]. Ae. aegypti transinfected

with the wMelPop-CLA strain of Wolbachia from Drosophila

melanogaster [16] displayed a shortened life span [16], a reduction

in blood feeding success [17,18] and dramatically lowered DENV

serotype 2 (DENV-2) infection levels compared to Wolbachia-free

control mosquitoes [19]. Although these phenotypes are likely to

reduce virus transmission in the field, wMelPop-CLA may also

impose fitness costs on Ae. aegypti, such as reduced fecundity due to

poor blood feeding success [17,18] and decreased embryonic

viability [20].

A second strain of Wolbachia, wMel that is closely related to

wMelPop-CLA and also occurs naturally in D. melanogaster was

recently introduced into Ae. aegypti as an additional strain for the

biocontrol of dengue [21]. Both strains induce cytoplasmic

incompatibility and have high rates of maternal transmission

[16,21], phenotypes necessary for the invasion of Wolbachia in

natural populations of mosquitoes. Unlike wMelPop-CLA infected

mosquitoes, Ae. aegypti infected with wMel did not suffer any

significant deleterious fitness costs when compared to uninfected

controls [21]. Similar to wMelPop-infected Ae. aegypti, wMel-

infected mosquitoes displayed dramatically reduced replication of

DENV-2 [21]. Ae. aegypti infected with wMel were deployed in the

field in north Queensland, Australia over the 2010–2011 summer

[22]. Wolbachia was able to reach almost 100% fixation in wild

mosquito populations only a few months following release,

indicating that Wolbachia-infected mosquitoes present a very

promising strategy for the control of dengue that is cost-effective

and poses minimal environmental and social harm [23,24].

Although originally developed as a biocontrol tool for DENVs,

Ae. aegypti infected with wMelPop-CLA showed reduced infection

with CHIKV [19], filarial nematodes [25] and avian malaria [19].

Therefore, wMelPop-CLA infected mosquitoes could potentially

be used for biocontrol in areas where human pathogens other than

DENVs occur. However, not all strains of Wolbachia protect

equally well, with those phylogenetically most closely related to

wMel and wMelPop conferring the greatest degree of protection

[26]. In Drosophila, wMel confers protection against a range of

viruses, for example Drosophila C virus, Flock House virus and

Cricket paralysis virus [14,15]. However, it remains unclear

whether wMel infection is able to limit the replication of human

pathogens other than DENVs in mosquitoes, information that is

critical to evaluating different Wolbachia strains for biocontrol.

Here, we tested the ability of the wMel strain of Wolbachia to

limit infection in Ae. aegypti with CHIKV and YFV. We also tested

the ability of YFV to replicate in mosquitoes infected with

wMelPop-CLA, in order to compare this strain to wMel. We found

reduced levels of CHIKV but not YFV infection in wMel-infected

Ae. aegypti, although the degree of virus inhibition depended on the

mode of infection. By contrast, mosquitoes harboring the

wMelPop-CLA strain of Wolbachia showed reduced infection rates

with YFV with the extent of reduction virus strain and titer

dependent.

Materials and Methods

Mosquitoes
Six different lines of Ae. aegypti were used in the experiments.

The transinfection of Ae. aegypti with the wMelPop-CLA and wMel

strains of Wolbachia and maintenance of infected lines has been

previously described [16,21]. The wMel-infected line, MGYP2,

and its tetracycline-treated counterpart, MGYP2.tet, were exposed

to both YFV and CHIKV. Both lines were in the F16 generation

for the YFV experiments and the F24 generation for the CHIKV

experiments. The original wMelPop-CLA infected line, PGYP1

[16], and the corresponding tetracycline-treated line, PGYP1.tet,

were assessed in the YFV experiments only. The PGYP1 line was

used in the combined F52 and F53 generations, while the

PGYP1.tet was used in the combined F50 and F52 generations. A

Wolbachia-uninfected wild-type line of Ae. aegypti, designated

Cairns3, which originated from Cairns, Australia, was used as a

positive control for all experiments. The YFV-susceptible Rex-D

white-eye Higgs strain of Ae. aegypti that originated from Rexville,

Puerto Rico, was used as an additional positive control for the

YFV experiments [27,28]. Both the Cairns3 and Rex-D lines had

been in colony for .40 generations.

Virus strains
The CHIKV strain was isolated from a patient visiting

Melbourne, Australia in 2006 and contained the alanine to valine

mutation in the membrane fusion glycoprotein E1 gene (E1-

A226V) that has been linked to increased infectivity in mosquitoes,

especially Ae. albopictus [29,30]. The CHIKV stock had previously

been passaged three times in African green monkey kidney (Vero)

cells prior to use in this study. Two YFV strains that have been

characterized in mosquitoes were used for the experiments: BA-55

which was isolated from a fatal yellow fever case in Nigeria in 1987

[31] and Cinetrop 28 (OBS 7549), which was isolated from a

yellow fever patient in Bolivia in 1999 (R.B. Tesh, University of

Texas Medical Branch, personal communication). The BA-55

strain had been passaged three times in suckling mouse brains,

whilst the Cinetrop 28 strain had been passaged twice in C6/36

(Ae. albopictus) cells.

Exposure of mosquitoes to YFV and CHIKV
The CHIKV experiments were undertaken in the Biosafety

Level 3 (BSL-3) insectary at Queensland Health Forensic and

Scientific Services, Brisbane, Australia, and the experiments with

YFV were undertaken in the BSL-3 insectary located at the

University of Texas Medical Branch, Galveston, Texas, USA. The

MGYP2, MGYP2.tet and Cairns3 lines were exposed to CHIKV

using both intrathoracic inoculation and oral feeding. Intratho-

racic inoculation was employed because it circumvents the midgut

Author Summary

Mosquito-transmitted viruses such as dengue, yellow fever
and chikungunya, are responsible for significant morbidity
and mortality throughout tropical and sub-tropical regions
of the world. These viruses are primarily transmitted by
Aedes aegypti, a mosquito that due to its close association
with humans has historically been difficult to control. An
innovative control strategy involving the release of
mosquitoes infected with the intracellular bacterium
Wolbachia is currently being developed. This approach is
based on the recent discovery that Wolbachia reduces
infection of mosquitoes with dengue virus, malaria
parasites and filarial nematodes. In the current study, we
demonstrated that Wolbachia also blocks infection of
chikungunya and yellow fever viruses in Ae. aegypti. The
degree of virus inhibition depended on the strain of
Wolbachia, the route of virus exposure, the virus strain and
the titer of virus that the mosquitoes were exposed to. The
implementation of Wolbachia-based control strategies has
the capacity to transform the way that mosquito-
transmitted diseases are controlled in the future.

Wolbachia Limits Arbovirus Infection in Mosquitoes
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infection and escape barriers, and allows a standard amount of

virus to be delivered. The six Ae. aegypti lines were exposed to YFV

via intrathoracic inoculation and in an infectious blood meal.

However, low feeding rates in all lines coupled with unexpectedly

low infection rates in control lines that did actually feed,

compromised our ability to draw any meaningful conclusions

from the YFV oral feeding data. Thus it was excluded from the

current paper. For intrathoracic inoculation, immobilized mos-

quitoes were inoculated with 0.5 ml and 0.22 ml of YFV or

CHIKV suspension, respectively. The suspension consisted of

stock virus diluted in growth media (GM; Gibco-BRL, Gaithers-

burg, MD) which contained antibiotics and antimycotics and was

supplemented with 10% fetal bovine serum (FBS) for YFV or 3%

FBS for CHIKV. For oral feeding, mosquitoes were allowed to

feed on a blood meal consisting of CHIKV diluted in commer-

cially available defibrinated sheep blood (Institute of Medical and

Veterinary Science, Adelaide, Australia) and 1% sucrose. The

blood meal was housed within a membrane feeding apparatus that

was fitted with pig intestine as the membrane [32]. Feeding was

undertaken at 23uC and a 2 h period was used to ensure that a

sufficient number of mosquitoes had imbibed a blood meal.

Immediately following virus exposure, mosquitoes were anaesthe-

tized with CO2 and engorged mosquitoes placed in 900 ml gauze-

covered containers. All mosquitoes were maintained on 10%

sucrose at 28uC, high relative humidity and 12L:12D light cycle

within an environmental growth cabinet.

Infection and dissemination
For the YFV experiments, mosquitoes were processed at either

day 10 or 14 post-exposure. Mosquitoes were chilled and the

heads removed from the bodies and placed separately in 0.5 ml of

GM supplemented with 10% FBS, and antibiotics and antimy-

cotics. Recovery of virus from the head demonstrated that the

virus had infected head tissue and was potentially able to be

transmitted.

For the CHIKV experiments, infection, dissemination and

transmission were assessed using a modified in vitro capillary tube

system [33]. Briefly, mosquitoes were anaesthetized with CO2 and

the legs and wings removed. The saliva was collected by inserting

the proboscis of the mosquito into a capillary tube containing GM

with 20% FBS. After 30 min, the contents of the capillary tube

were expelled into 600 ml of GM with 3% FBS. The salivary

glands were then dissected from the body in a drop of GM with

3% FBS. The dissected salivary glands were washed in a drop of

1% bleach [34], before being rinsed in 2 drops of GM with 3%

FBS. The body remnants and salivary glands were placed in

separate 2 ml tubes containing 1 ml of GM with 3% FBS and 3

sterile glass beads.

Salivary glands were also excised for visualization of CHIKV

infection via an immunofluorescence assay (IFA). The glands were

dissected in a drop of PBS and washed in another two drops of

PBS, before each gland was placed in separate wells of an 18 well

microscope slide. Slides were air-dried, fixed in cold acetone for

30 min, before being stored at 280uC.

Virus assays
Titration of initial blood/virus mixtures. Blood/virus

mixtures were titrated as serial ten-fold dilutions in 96 well

microtiter plates seeded with confluent monolayers of C6/36 cells.

Plates were incubated at 28uC for 5 days or 7 days for YFV- or

CHIKV- infected blood/virus mixtures, respectively, before being

fixed in PBS/acetone and stored at 220uC. Infection with YFV

was detected using an indirect immunofluorescence assay with the

monoclonal antibody (Mab) 863 [35–37], whilst CHIKV infection

was detected using a cell culture enzyme immunoassay (CC-EIA;

[38]) and the alphavirus-reactive Mab, B10 (provided by Roy A.

Hall, University of Queensland, Brisbane, Australia).

Detection of YFV and CHIKV in mosquito components

and saliva expectorates. Heads, salivary glands, bodies and

body remnants were homogenized and clarified by centrifugation.

The CC-EIA was used to detect CHIKV in all mosquito tissues

and saliva expectorates. To further reduce bacterial and fungal

contamination, the mosquito tissues and saliva expectorates were

filtered through a 0.2 mm filter prior to being inoculated onto the

C6/36 cell monolayers.

Salivary glands and saliva expectorates were also analyzed for

CHIKV RNA using real time TaqMan RT-PCR. YFV viral RNA

was detected in the heads and bodies using a YFV-specific

TaqMan RT-PCR. Viral RNA was extracted from 140 ml of each

of the mosquito components and the saliva expectorates using the

QIAmp Viral RNA kit following the manufacturer’s protocol

(Qiagen, Clifton Hill, Australia), with modifications described in

Moreira and others used for the YFV extractions [19]. The primer

and probe sequences, preparation of synthetic controls, reaction

mix components, and cycling conditions are the same as described

previously [39,40]. The CHIKV TaqMan RT-PCR was used to

qualitatively detect viral RNA in the salivary glands and saliva

samples, with a sample considered to be positive if the cycle

threshold (Ct) value was ,40. The number of YFV RNA copies in

heads and bodies was quantified using the TaqMan RT-PCR,

with RNA standards produced for the relative quantification of

YFV RNA copy numbers normalized to RNA levels of the Ae.

aegypti house-keeping gene RpS17 [19].

IFA analysis of CHIKV in Ae. aegypti salivary

glands. Fifteen microliters of B10 Mab was added to each well.

After incubation at 37uC for 30 min in a humidified container,

slides were rinsed in PBS pH 7.4 before being washed for 10 min

in PBS pH 7.4. Slides were air-dried before the addition to each

well of 15 ml Dako Anti-Mouse FITC Conjugate (Dako, Glostrup,

Denmark) in 0.04% Evan’s Blue in PBS pH 7.4. Slides were

incubated and washed as described above, followed by application

of two drops of Dako fluroescent mounting medium (containing

NaN3; Dako, Glostrup, Denmark). A slide containing wells

inoculated with Ross River virus, Barmah Forest virus, Sindbis

virus and CHIKV infected cells was included as a positive control.

Slides were examined under an Olympus CX41 fluorescent

microscope (Olympus, Tokyo, Japan).

Statistical analysis
Infection, dissemination and transmission rates were analyzed

using Fisher’s Exact Tests with two-tailed P-values. YFV copy

numbers were tested for differences among mosquito lines using

Wilcoxon rank sum tests for non-parametric data and P-values

,0.05 were considered statistically significant. P-values were

adjusted for multiple tests using a Bonferroni correction. All

analyses were performed in R [41].

Results

wMel inhibits infection and dissemination of CHIKV in Ae.
aegypti

We challenged wMel-infected (MGYP2 line) and uninfected

mosquitoes (the tetracycline-treated MGYP2.tet and wild-type

Cairns3 lines) with CHIKV in two replicate oral feeding

experiments. In both experiments, fewer MGYP2 mosquitoes

displayed CHIKV infection compared to MGYP2.tet and Cairns3

lines (Table 1). In experiment 1, virus was detected in significantly

fewer MGYP2 (23%) mosquito bodies compared to MGYP2.tet

Wolbachia Limits Arbovirus Infection in Mosquitoes
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(83%) and Cairns3 (58%) lines (P,0.01). Similarly, in experiment

2, CHIKV was detected in significantly fewer MGYP2 (30%)

bodies compared to MGYP2.tet (70%) and Cairns3 (67%) lines

(P,0.01).

Next, we used both CC-EIA and a CHIKV-specific TaqMan

RT-PCR assay to track dissemination of the virus to the salivary

glands and saliva following oral feeding experiments. CHIKV was

detected in significantly fewer MGYP2 (20%) salivary glands

compared to those from MGYP2.tet (80%) and Cairns3 (66%)

lines (P,0.01) in experiment 1, but only when using the TaqMan

RT-PCR assay (Table 1, in bold). The TaqMan RT-PCR assay

detected more CHIKV-positive saliva expectorates than the CC-

EIA (Table 1), suggesting that, if infectious particles were present

in the saliva, they were below the threshold of CC-EIA detection.

Nonetheless, in both oral feeding experiments CHIKV was

detected in significantly fewer saliva expectorates in MGYP2

(10% and 6%) than MGYP2.tet (58% and 47%) (in both

experiments P,0.01), but not Cairns3 mosquitoes.

We tested whether wMel infection reduced CHIKV infection

rates in Ae. aegypti using intrathoracic inoculations as the mode of

virus delivery, in two separate experiments. Inoculations with

CHIKV at titers of 104.5 and 106.3 TCID50/ml resulted in similar

rates of virus infection among the three mosquito lines in bodies,

salivary glands and saliva expectorates, using both CC-EIA and

TaqMan RT-PCR for detection (Table 1, experiments 3 and 4).

Rates of infection in bodies and salivary glands were consistently

high across all three lines. A smaller percentage of saliva

expectorates from MGYP2 mosquitoes were virus infected

compared to MGYP2.tet and Cairns3 mosquitoes, but the

difference was not statistically significant.

Finally, we visualized CHIKV infection in the salivary glands of

MGYP2 and Cairns3 Ae. aegypti lines using immunofluorescence

assays (IFA). Twelve days following oral exposure, 27% (3/11) and

67% (6/9) of the MGYP2 and Cairns3 lines, respectively, were

positive in the IFA. There did not appear to be any consistency in

the localization of virus within infected salivary glands from either

Ae. aegypti line (Figure 1).

Reduced YFV infection rates in wMelPop-CLA but not
wMel-infected Ae. aegypti

We tested the effect of wMel and wMelPop-CLA (PGYP1

mosquito line) Wolbachia strains on body infection rates, using

intrathoracic inoculation with two strains of YFV isolated from

Nigeria (BA-55) and Bolivia (Cinetrop 28). Four Wolbachia-

uninfected mosquito lines were used as controls: Cairns3, Rex-

D, MGYP2.tet and PGYP1.tet. Due to high mortality rates in

some lines, mosquitoes exposed to 103.5 TCID50/ml of YFV BA-

55 were tested at 10 days post virus exposure. Mosquitoes exposed

to104.5 TCID50/ml of YFV BA-55 and 104.0 TCID50/ml of YFV

Cinetrop 28 were tested at 14 days post exposure.

At both low (103.5 TCID50/ml) and high (104.5 TCID50/ml)

titers of YFV strain BA-55, MGYP2 mosquitoes had the same high

(100%) rates of body infection as MGYP2.tet, Cairns3 and Rex-D

mosquitoes (Table 2), detected using a YFV-specific Taqman

assay. By contrast, at low titer, significantly fewer PGYP1 (12%)

mosquitoes displayed body infections compared to the PGYP1.tet

(100%), Cairns3 (100%) and Rex-D (100%) lines (P,0.001).

PGYP1 mosquitoes also displayed significantly lower rates of body

infection compared to MGYP2 mosquitoes (P,0.001). At the

higher virus titer a similar number (100%) of PGYP1 mosquitoes

was infected with YFV as for the PGYP1.tet, Cairns3 and Rex-D

lines. A similar pattern was observed for the Cinetrop 28 strain of

YFV, with mosquito body infection rates ranging from 96–100%

and no significant differences among the mosquito lines, although

this strain was tested at only one titer (104.0 TCID50/ml).

Next, we assessed the impact of the two strains of Wolbachia on

YFV dissemination to the head in Ae. aegypti. Using the YFV strain

BA-55, MGYP2 mosquitoes displayed similar high rates of

dissemination to the head as the MGYP2.tet, Cairns3 and Rex-

D mosquitoes (92–100%), at both low and high virus titers

(Table 2). At low virus titer, however, no dissemination to the

head was observed in PGYP1 mosquitoes compared to control

lines PGYP1.tet (100%), Cairns3 (100%), Rex-D (100%) and the

MGYP2 (100%) (P,0.001). At high virus titer, a higher (78%)

number of PGYP1 mosquitoes had virus in the heads and no

Table 1. Effects of the wMel strain of Wolbachia (MGYP2 line) on CHIKV infection and dissemination in Ae. aegypti 12 days after
virus exposure.

Body Salivary glands Saliva

% infected (N) % infected (N) % infected (N)

Experiment

CHIKV titer
(log10 TCID50/
ml) MGYP2 MGYP2.tet Cairns3 MGYP2 MGYP2.tet Cairns3 MGYP2 MGYP2.tet Cairns3

1 7.3 23 (30)* 83 (24)* 58 (26) 33 (15) 66 (15) 60 (15) 3 (30) 17 (24) 8 (26)

- - - 20 (15)* 80 (15)* 66 (15) 10 (30)* 58 (24)* 35 (26)

2 7.3 30 (30)* 70 (23)* 67 (30) 20 (15) 60 (15) 67 (15) 3 (30) 10 (23) 3 (30)

- - - 27 (15) 67 (15) 67 (15) 6 (30)* 47 (30)* 33 (30)

3 4.5 86 (30) 100 (30) 100 (30) 73 (15) 100 (15) 100 (15) 10 (30) 20 (30) 27 (30)

- - - 86 (15) 100 (15) 100 (15) 36 (30) 63 (30) 60 (30)

4 6.3 100 (30) 100 (30) 100 (30) 86 (15) 76 (14) 100 (15) 6 (30) 6 (30) 20 (30)

- - - 100 (15) 100 (14) 100 (15) 36 (30) 53 (30) 60 (30)

Virus infection determined using CC-EIA and TaqMan RT-PCR assays (shown in bold), in mosquitoes exposed to CHIKV using oral feeding (experiments 1 and 2) and
intrathoracic inoculations (experiments 3 and 4). The Body category refers to the infection rate in the body remnants that remained after the salivary glands were
removed. Wolbachia-uninfected lines = MGYP2.tet and Cairns3. N = total number of mosquitoes tested.
*P,0.01 (Fisher’s Exact Test, two-tailed P). For clarity, we only denote significant differences between MGYP2 and its tetracycline-treated counterpart.
doi:10.1371/journal.pntd.0001892.t001
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significant differences in infection rates were found across the

mosquito lines. High head dissemination rates (84–100%) were

found across all mosquito lines challenged with the Cinetrop 28

strain of YFV, with no significant differences among them.

Reduced YFV replication in Wolbachia-infected Ae.
aegypti is virus titer and strain dependent

Next, we explored the effect of Wolbachia on the number of YFV

RNA copies in Ae. aegypti bodies following intrathoracic inoculation

with the strains BA-55 and Cinetrop 28, at three different titers.

Overall, infection with both Wolbachia strains resulted in a lower

median number of virus copies per body in Ae. aegypti compared to

control lines. However, PGYP1 mosquito bodies consistently

displayed several log fewer copies than MGYP2 lines (Figure 2).

Significantly fewer copies were found in MGYP2 compared to

Wolbachia-uninfected MGYP2.tet, Cairns3 and Rex-D mosquitoes

(P,0.05 in all Wilcoxon rank sum tests) in challenges with YFV

strain BA-55 at a titer of 103.5 TCID50/ml. However, virus levels

were high in both MGYP2 and the Wolbachia-uninfected lines

(medians .108 copies/body; Figure 2A). By contrast, median

virus copy in PGYP1 mosquitoes was zero, an 8-log difference

compared to MGYP2 (P,0.0001, Wilcoxon rank-sum test) and

significantly less than PGYP1.tet, Cairns3 and Rex-D mosquitoes

(P,0.0001 in all Wilcoxon rank-sum tests) (Figure 2A).

In challenges with YFV strain BA-55, at the higher titer of 104.5

TCID50/ml, MGYP2 bodies still had significantly fewer virus

Figure 1. Chikungunya virus in the salivary glands of Ae. aegypti. CHIKV antigen (green fluorescence) detected in the salivary gland from a
wMel-infected mosquito (MGYP2) at 1006 (A) and 4006 (B) magnification, and from a Wolbachia-uninfected mosquito (Cairns3) at 1006 (C) and
4006 (D) magnification. Salivary glands negative for CHIKV antigen from MGYP2 (E) and Cairns3 (F) mosquitoes (Both glands are shown at 1006
magnification).
doi:10.1371/journal.pntd.0001892.g001

Wolbachia Limits Arbovirus Infection in Mosquitoes
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copies than Rex-D (P,0.001, Wilcoxon rank-sum test) but not the

MGYP2.tet or Cairns3 lines (Figure 2B). However, PGYP1

bodies had far less virus than either the MGYP2 or Wolbachia-

uninfected lines (P,0.0001 in all Wilcoxon rank-sum tests)

(Figure 2B). YFV replicated to a significantly lesser extent in

MGYP2 and PGYP1 bodies following challenge with the Cinetrop

28 strain compared to control lines (P,0.0001 in all Wilcoxon

rank-sum tests) (Figure 2C). YFV copy numbers were almost 5-

logs lower in PGYP1 than MGYP2 bodies (P,0.0001, Wilcoxon

rank-sum test) (Figure 2C).

We also explored whether Wolbachia strain and YFV inoculation

titer influenced the extent to which the virus replicated in Ae.

aegypti heads, using TaqMan RT-PCR quantification of viral RNA

(Figure 3). In challenges with YFV strain BA-55 at the lower titer

of 103.5 TCID50/ml, significantly fewer RNA copies were detected

in MGYP2 heads compared to Wolbachia-uninfected lines

(P,0.001 in all Wilcoxon rank-sum tests), although the number

of virus copies was still high (Figure 3A). By contrast, no virus was

detected in the heads of PGYP1 mosquitoes. In challenges with

YFV strain BA-55 at the higher titer of 104.5 TCID50/ml, similar

levels of virus disseminated to the head in MGYP2 as in Cairns3

and Rex-D, but not MGYP2.tet mosquitoes (P,0.01, Wilcoxon

rank-sum tests) (Figure 3B). Median virus copy number for PGYP1

heads was six logs lower than the median for MGYP2 lines

(P,0.0001, Wilcoxon rank-sum test), although virus was present in

the majority of PGYP1 heads (Figure 3B). Significantly less virus

Table 2. Effects of the wMel and wMelPop-CLA (MGYP2 and PGYP1 lines, respectively) strains of Wolbachia on YFV infection and
dissemination in Ae. aegypti.

Mosquito lines

YFV Strain
YFV titer (log10

TCID50/ml) MGYP2 MGYP2.tet PGYP1 PGYP1.tet Cairns3 Rex-D

% infected (N) % infected (N) % infected (N) % infected (N) % infected (N) % infected (N)

BA-55 3.5 100 (13)* 100 (25) 12 (25) 100 (25)* 100 (25)* 100 (25)*

100 (13)* 100 (25) 0 (25) 100 (25)* 100 (25)* 92 (25)*

BA-55 4.5 100 (34) 100 (25) 100 (18) 96 (23) 100 (16) 100 (25)

100 (34) 100 (25) 78 (18) 96 (23) 100 (16) 100 (25)

Cinetrop 4.0 100 (31) 100 (15) 96 (25) 100 (25) 96 (24) 100 (25)

94 (31) 100 (15) 84 (25) 96 (25) 96 (24) 100 (24)

Virus infection in bodies and heads (shown in bold) determined using the TaqMan RT-PCR assay. Wolbachia-uninfected lines = MGYP2.tet, PGYP1.tet, Cairns3 and Rex-D.
N = total number of mosquitoes tested. Significant differences between PGYP1 and MGYP2, as well as PGYP1 and each of the control lines are denoted by
*P,0.001 (Fisher’s Exact Test, two-tailed P).
doi:10.1371/journal.pntd.0001892.t002

Figure 2. Effect of two Wolbachia strains on yellow fever virus replication in mosquito bodies. Viral RNA copies assayed by TaqMan RT-PCR
in wMel-infected (MGYP2), wMelPop-CLA infected (PGYP1) and Wolbachia-uninfected (MGYP2.tet, PGYP1.tet, Cairns3 and Rex-D) mosquitoes exposed
to 103.5 TCID50/ml (A) and 104.5 TCID50/ml (B) of African (BA-55) and 104.0 TCID50/ml (C) of South American (Cinetrop 28) YFV strains. Box plots show
median RNA copy numbers and 25 (below median) and 75 (above median) percentiles, with outer bars at the lowest and highest observations (lower
outer bars not shown when data overlaps zero). Number of mosquitoes assayed per line shown above box plots. #Denotes a median of zero.
*P,0.01, **P,0.001 (Wilcoxon rank sum tests). For clarity, we only denote significant differences in comparisons between Wolbachia-infected lines
and their corresponding tetracycline treated counterparts or between MGYP2 and PGYP1.
doi:10.1371/journal.pntd.0001892.g002
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had disseminated to MGYP2 and PGYP1 heads compared to

control, Wolbachia-uninfected lines (P,0.0001 in all Wilcoxon

rank-sum tests) when mosquitoes were challenged with the

Cinetrop 28 strain (Figure 3C). Interestingly, a higher amount

of YFV was found in PGYP1 heads in challenges with the

Cinetrop 28 strain (median = 104.8 copies, Figure 3C) compared

to BA-55 at either low (median = 0 copies; Figure 3A) or high

(median = 103.1 copies; Figure 3B) inoculation titers, suggesting

that the extent of YFV replication in the presence of Wolbachia

may depend on virus strain.

Discussion

Mosquito-transmitted viruses such as DENVs, CHIKV and

YFV pose a significant health risk for almost half of the world’s

population. The release of Wolbachia-infected mosquitoes into

natural populations has been proposed as a way of reducing

DENV transmission while minimizing social and environmental

harm [21,22]. Although developed for dengue biocontrol,

Wolbachia-infected mosquitoes may prevent the transmission of

other significant arboviruses. Here, we evaluated whether mos-

quitoes infected with the wMel strain of Wolbachia show limited

infection with CHIKV and YFV. To compare the two Wolbachia

strains, we tested whether YFV was able to infect and replicate in

wMelPop-CLA infected mosquitoes.

Mosquitoes infected with wMel showed significantly reduced

rates of CHIKV infection and dissemination to the salivary glands

compared to controls, but only in the oral exposure experiments.

CHIKV also showed limited dissemination in wMelPop-CLA-

infected mosquitoes following oral exposure [19], suggesting that

both strains of Wolbachia may be useful candidates for release in

CHIKV control programs. By contrast, YFV was much less likely

to infect and disseminate in Ae. aegypti infected with wMelPop-CLA

compared to wMel strains. The virus was also less likely to

replicate in wMelPop-CLA infected mosquitoes, with very high

virus loads detected in wMel-infected Ae. aegypti. Our experiments

suggest that wMelPop-CLA infected mosquitoes may be the best

candidates for YFV biocontrol programs, but were unable to

determine the extent of virus replication following oral exposure

rather than intrathoracic inoculation. Because virus inhibition with

some Wolbachia-virus combinations does not appear to be

complete, it is essential that epidemiological models be utilized

to establish the threshold of virus inhibition necessary to minimize

and prevent transmission in the field.

The wMel strain occurs at high levels in Ae. aegypti ovaries and

salivary glands but it is not present in as many body tissues as the

wMelPop-CLA strain [19,21]. In particular, wMel does not

accumulate to high levels in the fat bodies, brain and thoracic

ganglia, which are involved in secondary replication of arboviruses

prior to infection of the salivary glands [42]. YFV may have

replicated to a sufficiently high level in these tissues in wMel-

infected mosquitoes to allow dissemination to the salivary glands

and potentially be transmitted to humans. The presence of wMel

in the mosquito did not completely prevent the replication of

CHIKV in Ae. aegypti salivary glands, as determined by cell-culture,

real-time RT-PCR and IFA analysis.

Host immune pre-activation has been proposed as an explana-

tion for interference with virus replication because Wolbachia-

infected Ae. aegypti show significant immune upregulation

[19,25,43]. Recently, Pan et al. showed that Wolbachia infection

activates the Toll immune pathway in Ae. aegypti and the

production of antimicrobial peptides which inhibit DENV-2

[44]. However, Wolbachia infection in Drosophila, the endosymbi-

ont’s native host, also blocks DENV-2 replication despite the

absence of immune upregulation [45]. Therefore, although

immune upregulation may explain some of the observed

Wolbachia-mediated interference with virus replication, it may

not be the whole explanation [45]. Alternatively, Wolbachia may

Figure 3. Effect of two Wolbachia strains on yellow fever virus replication in mosquito heads. Viral RNA copies assayed by TaqMan RT-PCR
in wMel-infected (MGYP2), wMelPop-CLA infected (PGYP1) and Wolbachia-uninfected (MGYP2.tet, PGYP1.tet, Cairns3 and Rex-D) mosquitoes exposed
to 103.5 TCID50/ml (A) and 104.5 TCID50/ml (B) of African (BA-55) and 104.0 TCID50/ml (C) of South American (Cinetrop 28) YFV strains. Box plots show
median RNA copy numbers and 25 (below median) and 75 (above median) percentiles, with outer bars at the lowest and highest observations (lower
outer bars not shown when data overlaps zero). Number of mosquitoes assayed per line shown above box plots. # Denotes a median of zero.
*P,0.01, **P,0.001 (Wilcoxon rank sum tests). For clarity, we only denote significant differences in comparisons between Wolbachia-infected lines
and their corresponding tetracycline treated counterparts or between MGYP2 and PGYP1.
doi:10.1371/journal.pntd.0001892.g003

Wolbachia Limits Arbovirus Infection in Mosquitoes

PLOS Neglected Tropical Diseases | www.plosntds.org 7 November 2012 | Volume 6 | Issue 11 | e1892



compete with arboviruses for key cellular components [19,46].

Fluorescence in situ hybridization has revealed that wMelPop-CLA

infection is widespread throughout the body of infected Ae. aegypti,

and is prevalent in tissues and organs associated with viral

replication, including the fat bodies, brain and ommatidia [19].

Importantly, DENV-2 antigen did not co-localize in cells and

tissues that were infected with wMelPop-CLA. As DENV-2 and

YFV are closely related flaviviruses, it is possible that a similar

pattern of virus exclusion is occurring with YFV in wMelPop-CLA

infected cells and tissues. In vitro studies have shown that reduced

virus replication correlates with the density of Wolbachia in the cell

[46]. Further studies are required to determine the precise

molecular mechanism underpinning Wolbachia-mediated interfer-

ence with virus replication.

The discovery that Wolbachia limits arbovirus infection and

replication in Ae. aegypti has the potential to fundamentally alter

vector control strategies [23]. Importantly, mass release of wMel-

infected Ae. aegypti in two communities near Cairns, northern

Australia, resulted in .90% frequency within the population six

weeks after the first release [22]. Although the Wolbachia-based

control strategy was initially proposed to control DENVs, previous

work and the current study have demonstrated that releases of

Wolbachia-infected Ae. aegypti to control DENVs may have the

added benefit of reducing CHIKV and YFV transmission.

Alternatively, Wolbachia-infected Ae. aegypti could be released to

specifically reduce transmission of these viruses, irrespective of

whether DENVs were circulating or not in an area.

We have demonstrated that the level of virus blockage induced

by Wolbachia is dependent on the strain of Wolbachia, the strain of

virus and the mode of exposure to the virus. Higher YFV

intrathoracic inoculation titers allowed more breakthrough of virus

in wMelPop-CLA infected mosquitoes. Infection rates, accumula-

tion and dissemination to the head also differed between BA-55

and Cinetrop 28 in the presence of wMelPop-CLA, suggesting that

different virus strains may have different replication dynamics in

Wolbachia-infected mosquitoes. The CHIKV experiments showed

that the TaqMan RT-PCR was generally more sensitive than the

CC-EIA in detecting the presence of virus. This was not

unexpected, given that the TaqMan RT-PCR does not differen-

tiate between RNA derived from live, packaged infectious virus

particles, from that of dead or defective, non-infectious virus.

Thus, our experiments illustrate the importance of carefully

selecting virus titer, virus strain, mode of delivery and method of

virus detection when assessing the potential utility of different

Wolbachia strains for biocontrol.

As part of the implementation of Wolbachia-based control

strategies, it will be essential to assess the virus blocking ability of

different Wolbachia strains against different virus strains, and if

necessary, identify additional Wolbachia strains that could be

deployed in the field. Commensurate with this will be the need for

ongoing monitoring of Wolbachia-infected Ae. aegypti populations to

confirm that the virus-limiting phenotype is maintained in

successive generations post release.
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