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Abstract: The synthesis of trifluoromethylated cyclopro-
penes is often associated with important applications in

drug discovery and functional materials. In this report, we
describe the use of readily available chiral rhodium(II) cat-

alysts for a highly efficient asymmetric cyclopropenation
reaction of fluorinated donor–acceptor diazoalkanes with

a broad variety of aliphatic and aromatic alkynes. Further
studies highlight the unique reactivity of fluorinated
donor–acceptor diazoalkanes in the synthesis of oligo-cy-

clopropenes. Subsequent C@H functionalization of trifluor-
omethyl cyclopropenes furnishes densely substituted cy-

clopropene frameworks and also allows the alternative
synthesis of bis-cyclopropenes.

Cyclopropenes are the smallest carbocycle containing at least

one C@C double bond and are a fascinating class of highly
strained small molecules with applications in the fields of drug
discovery, catalysis, and materials chemistry.[1] Existing methods

to construct these compounds typically rely on catalytic car-
bene transfer reactions of ester-substituted diazoalkanes and

alkynes using chiral CuI, RhII, IrIII, or AuIII catalysts.[2, 3] More re-
cently, light-mediated processes were demonstrated as power-
ful alternatives to access these important strained carbocy-

cles.[4] Despite tremendous research efforts, the synthesis of
the trifluoromethylated cyclopropene subclass remains a chal-

lenge in organic synthesis.[3] On the other hand, small mole-
cules containing two or more cyclopropene units, or oligo-cy-

clopropenes, have been rarely reported, although their oligo-
cyclopropane counterparts have been well explored in litera-

ture.[5] In 1986, Okamoto and co-workers described a synthetic

protocol for bis-cyclopropenes by cycloaddition reactions of
free carbenes and diaryl-substituted alkynes.[6a] Lin and co-

workers subsequently demonstrated that bis-alkynes could be
transformed into bis-cyclopropenes with a multistep synthesis

using ruthenium catalysts.[6b] To the best of our knowledge,
there has been no report of a catalytic method for efficient

synthesis of oligo-cyclopropenes.

From the perspective of the carbene-transfer reagent, while
the majority of research was performed on ester-substituted

diazoalkanes, limited examples report on cyclopropenation re-
actions of diazoalkanes with other electron-withdrawing substi-

tutions such as nitrile, sulfonyl, or fluorinated alkyl groups.[2, 3]

In particular, the asymmetric carbene-transfer reaction of tri-
fluomethylated diazoalkanes for the enantioselective synthesis

of their cyclopropene derivatives is scarcely investigated. In
2011, Katsuki et al. reported the application of a chiral IrIII com-

plex in cyclopropenation reactions of trifluoromethyl-substitut-
ed diazoalkanes, though high catalyst loading was required to
facilitate the reactions on a small substrate scope of only four
aromatic alkynes.[2g] A general and broadly applicable catalytic

approach for the enantioselective synthesis of fluorinated cy-
clopropenes has not been described until now and still re-
mains a challenge in asymmetric synthesis.

As part of our ongoing interest in small fluorinated mole-
cules, we became intrigued by cyclopropenation reactions of

fluoroalkyl-substituted donor–acceptor diazo compounds[7]

with alkynes and oligo-alkynes. This approach would result in a

concise synthesis of valuable trifluoromethyl-cyclopropenes[3a]

that can be readily functionalized for further synthetic values.
Based on our previous study in this field,[8] we envisioned that

commercially available chiral RhII complexes would be suitable
catalysts to promote cyclopropenation reactions of fluoroalkyl-

substituted diazocompounds. Such a method would not only
provide a simple and convenient access to chiral trifluorometh-
yl-substituted cyclopropenes, but also be a significant im-

provement over existing methods in terms of efficiency and se-
lectivity (Scheme 1).

We set out our investigations by examining different RhII cat-
alysts in the reaction of 5-chloro-pent-1-yne (1 a) and (1-diazo-

2,2,2-trifluoroethyl)benzene (2) using toluene as the solvent.[9]

The phthalimido rhodium series ([Rh2((S)-NTTL)4] , [Rh2((S)-
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PTAD)4] , [Rh2((S)-PTTL)4] , see entries 1–3 in Table 1) only gave
reasonable cyclopropene product yields with a moderate level

of enantioinduction. Contrarily, [Rh2((S)-BTPCP)4] proved to be
highly efficient and excellent stereoselectivity was observed

(Table 1, entry 5). Although [Rh2((S)-DOSP)4] has been reported
to be an excellent catalyst for cyclopropenation reactions of
ester-substituted diazoalkanes, as demonstrated by Davies and

co-workers,[2c] this catalyst proved to be inefficient in our cyclo-
propenation reaction of the aliphatic alkyne 1 a with fluorinat-

ed diazoalkane 2 (entry 4). To further understand this marked
difference in reactivity, we investigated the reactivity of aro-

matic alkynes with [Rh2((S)-DOSP)4] nd [Rh2((S)-BTPCP)4] . In the

reaction of diazoalkane 2 with p- tolylacetylene, both catalysts
proved to be highly efficient and the desired aryl-substituted

cyclopropene was obtained with excellent stereoselectivity (en-
tries 6–7), clearly indicating that [Rh2((S)-BTPCP)4] is more suita-

ble for broader alkyne substrate scope. No better results were
obtained using ethers or halogenated solvents; higher reaction

temperatures resulted in significantly reduced product yields
(entries 8–12).

With the optimal conditions in hand, we next investigated a
range of aliphatic alkynes with different chain length, halogen-

and ester substituents as well as branched aliphatic alkynes in

this asymmetric cyclopropenation reaction (Scheme 2). In all
cases, we obtained the desired trifluoromethylated cyclopro-

penes with a high level of enantioselectivity and good to ex-
cellent isolated yields. To our surprise, benzylic and olefinic

substituents (entries 3 e and 3 j) had a detrimental effect on
the induction of stereochemistry. Nevertheless, a good level of

enantioselectivity was obtained and exclusive cyclopropena-

tion was observed for these two substrates. After having estab-
lished a protocol for the asymmetric synthesis of trifluorome-

thylated cyclopropenes from aliphatic alkynes, we then ex-
plored the applicability with aromatic alkynes (Scheme 3). We
were pleased to observe that different halogen, aliphatic, and
electron-donating substituents in the para- and meta- position

were well tolerated and the respective cyclopropenes were iso-
lated in excellent yields and enantiomeric ratios. Electron-with-
drawing groups, such as nitriles, resulted in a reduced yield
though at a high level of enantioinduction (5 e). Substituents
in the ortho- position gave significantly reduced yields and the

cyclopropenes could be isolated with only moderate enantio-
selectivity, which can be attributed to the steric hindrance im-

posed by ortho-substituents (5 l,m). Pyridinyl and nonterminal
alkynes, in contrast to an earlier study by the Carreira group,[3a]

proved to be unreactive in this transformation (4 o,p), presum-

ably due to nucleophilicity mismatch or steric clash with our
donor–acceptor carbene.

We subsequently decided to explore the challenging synthe-
sis of oligo-cyclopropenes from substrates bearing multiple

Scheme 1. Enantioselective synthesis of trifluoromethyl cyclopropenes.

Table 1. Reaction optimization.

Entry[a] Catalyst Solvent/T Yield [%] e.r.

1 [Rh2((S)-NTTL)4] toluene/@78 8C 44 67:33
2 [Rh2((S)-PTTL)4] toluene/@78 8C 58 64:36
3 [Rh2((S)-PTAD)4] toluene/@78 8C n.r.[c] –
4 [Rh2((S)-DOSP)4] toluene/@78 8C n.r.[c] –
5 [Rh2((S)-BTPCP)4] toluene/@@78 88C 93 96:4
6[b] [Rh2((S)-DOSP)4] toluene/@78 8C 97 94:6
7[b] [Rh2((S)-BTPCP)4] toluene/@78 8C 97 96:4
8 [Rh2((S)-BTPCP)4] hexane/@78 8C 59 85: 15
9 [Rh2((S)-BTPCP)4] DCM/@78 8C <5 n.d.
10 [Rh2((S)-BTPCP)4] THF/@78 8C <5 n.d.
11 [Rh2((S)-BTPCP)4] toluene/@45 8C 59 94:6
12 [Rh2((S)-BTPCP)4] toluene/RT 49 90:10

[a] Reaction conditions: 1 a (2.5 equiv.) and catalyst were dissolved in the
appropriate solvent (1 mL) and a solution of 2 (1.0 equiv.) in 1 mL solvent
was added over 3 h at the given temperature and stirred for 12 h. [b] Re-
action with p-tolylacetylene instead of 1. [c] n.r. : no reaction.

Scheme 2. Substrate scope of aliphatic alkynes.
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alkyne moieties (Table 2). These studies would a) reveal insights

into the chemoselectivity and the reactivity of oligo-alkynes in
this transformation and b) provide convenient access to the

structural class of rare oligo-cyclopropenes. We commenced
these studies by investigating the reaction of 1,4-bis(ethynyl)-

benzene (6, Table 2) with (1-diazo-2,2,2-trifluoroethyl)benzene
(2). In principle, three different reaction products can be ob-

tained from this transformation, namely the mono-cyclopro-
pene 7, and two different diastereoisomers of bis-cyclopro-
pene 8. Therefore, it would be interesting to study the effect
of different rhodium(II) catalysts and the stoichiometry of reac-
tants on the outcomes this transformation. Due to the more
challenging nature of the double cyclopropenation process,

the reaction conditions were slightly modified from the opti-
mized settings in Table 1 in that the reaction temperature was
raised to 0 8C to allow shorter reaction time. [Rh2(esp)2] proved

to be the best catalyst for this particular transformation giving
the same diastereoisomer compared to [Rh2(BTPCP)4] (see

Table S1, page 4 in the Supporting Information for more de-
tails). Much to our surprise when we embarked on this investi-

gation, reactant stoichiometry had only little influence on the

product distribution. The uses of one or two equivalents of
1,4-bis(ethynyl)benzene 6 both resulted in the bis-cyclopro-

pene 8 as the only product with excellent yields (50 or 49 %
w.r.t. 6 respectively, see entries 1 and 2, Table 2), which is

almost a quantitative conversion of the diazoalkane 2 to the
bis-cyclopropene 8. The addition of two equivalents of diazo 2
resulted in an excellent isolated yield of the bis-cyclopropene 8
(84 % w.r.t to 6, entry 3), which was identified as rac-8 by analy-
sis of 19F- and 13C NMR spectra.[9]

Careful analysis of the crude reaction mixtures by NMR spec-
troscopy and mass spectrometry revealed only trace amounts

of mono-cyclopropene (7). Further experiments employing dif-
ferent achiral and chiral rhodium(II) catalysts and solvents did

not improve the yield of the desired double-cyclopropenation

product (see Table S1, page 4 in the Supporting Information
for more details). It is important to note that when using

[Rh2((S)-BTPCP)4] the same double cyclopropenated product 8
was obtained as a single diastereoisomer albeit in moderate

yield. The above data provided intriguing insights into the re-
action mechanism of the double-cyclopropenation reaction

that warrant a full investigation in future. It seemed that the

initial, first cyclopropenation product (7) tends to react rapidly
with a second rhodium carbene species, hence resulting only
in small quantities of the mono-cyclopropene ‘intermediate’ 7
in the reaction mixture. The high efficiency can presumably be

attributed to a possible coordination of the rhodium catalyst,
after the first cyclopropenation, to the newly formed cyclopro-

pene ring itself. Such coordination has been observed in rhodi-
um-activation chemistry of cyclopropene, which in this case
renders the second alkyne moiety very reactive and thus fa-

vours the exclusive formation of the bis(cyclopropene) product
over its mono-cyclopropenated intermediate.[10]

Looking back to our newly developed cyclopropenation
method, the substrate scope was indeed limited to terminal al-

kynes. However, the resulting products bear cyclopropenylic

C@Hs, which offer an excellent motif for another interesting
but under-investigated chemical transformation. Thus, we

became interested in the C@H functionalization reaction of the
cyclopropene ring of trifluoromethyl-substituted cyclopro-

penes 5. In a preliminary study, we were delighted to observe
that C@H functionalization of 5 a with iodobenzene 9 readily

Scheme 3. Substrate scope of aromatic alkynes.

Table 2. Investigations towards the synthesis of bis-cyclopropenes.

Entry[a] Cat. ([mol %]) Conditions Ratio of 6 :2 Yield [%] (8)

1 [Rh2(esp)2] (1 mol %) PhMe, 0 8C 1:1 >99[b]

2 [Rh2(esp)2] (1 mol %) PhMe, 0 8C 2:1 98[b]

3 [Rh2(esp)2] (1 mol %) PhMe, 0 88C 1:2 84
4 [Rh2((S)-BTPCP)4] (1 mol %) PhMe, 0 8C 1:2 49

[a] Reaction conditions: 6 (0.2 mmol) and catalyst were dissolved in tolu-
ene (1 mL) and a solution of 2 (2 equiv.) in 1 mL toluene was added over
3 h at the given temperature and stirred for 12 h. Yields are based on 6.
[b] Yield based on diazoalkanes.
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proceeds by using a simple catalyst, namely Pd(OAc)2,[11] with-
out the need of any ligands or directing group. We could

obtain the tetra-substituted cyclopropene 10 in good isolated
yield. Furthermore, double C@H functionalization using 1,4-

diiodobenzene 11 and 5 a proceeded with similar efficiency to
afford the fully substituted bis-cyclopropene 12 in moderate

yield (Scheme 4).

In summary, we report a novel method for the asymmetric

synthesis of valuable trifluoromethyl cyclopropenes. Trifluoro-
methyl-substituted donor–acceptor diazoalkanes were shown

to readily undergo highly enantioselective cyclopropenation

reactions (up to 98 % yield, up to 99:1 e.r.) with aliphatic and
aromatic terminal alkynes using simple and commercially avail-

able RhII catalysts. The reactivity of trifluoromethyl-substituted
diazoalkanes was further investigated in cyclopropenation re-

actions of oligo-alkynes, which smoothly reacted to the rare
subclass of oligo-cyclopropenes. Mono-cyclopropene products

can also be readily modified by C@H functionalization using a

simple PdII catalyst, which provides access to fully-substituted
CF3-cyclopropenes and oligo-cyclopropenes. Our RhII-catalyzed

cyclopropenation reaction of trifluoromethyl-substituted diazo-
alkanes opens up an efficient pathway towards chiral CF3-cy-

clopropenes and gives access to rare oligo-cyclopropenes with
potential applications in drug discovery and functional materi-
als.
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