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Background: Numerous studies have shown that the aging microenvironment played a
huge impact on tumor progression. However, the clinical prognostic value of aging-related
risk signatures and their effects on the tumor immune microenvironment (TIME) in head
and neck squamous cell carcinoma (HNSCC) remains largely unclear. This study aimed to
identify novel prognostic signatures based on aging-related genes (AGs) and reveal the
landscape of the TIME in HNSCC.

Methods: Differentially expressed AGs were identified using the gene set enrichment
analysis (GSEA). The prognostic risk model of AGs was established by univariate and
multivariate Cox regression and least absolute shrinkage and selection operator (LASSO)
regression analyses. The independent prognostic value of the risk model and the
correlations of the prognostic signature with immune score, tumor immune cell
infiltration, and immune checkpoints were systematically analyzed.

Results: A prognostic risk model of four AGs (BAK1, DKK1, CDKN2A, and MIF) was
constructed and validated in the training and testing datasets. Kaplan–Meier curves and
time-dependent receiver operating characteristic (ROC) curve analysis confirmed that the
four-AG risk signature possessed an accurate predictive value for the prognosis of
patients with HNSCC. Correlation analysis revealed that the risk score was negatively
associated with immune score and immune cell infiltration level while positively correlated
with immune checkpoint blockade (ICB) response score. Patients of the high-risk subtype
contained higher infiltration levels of resting natural killer (NK) cells, M0 macrophages, M2
macrophages, and resting mast cells while having lower infiltration levels of memory B
cells, CD8+ T cells, follicular helper T cells, regulatory T cells (Tregs), and activated mast
cells than did those of the low-risk subtype. The expressions of CTLA4, PDCD1, and
TIGIT were downregulated while the PDCD1LG2 expression was upregulated in the high-
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risk subtype compared to those in the low-risk subtype. Furthermore, the four selected
AGs in the risk model were demonstrated to possess important functions in immune cell
infiltration and ICB response of HNSCC.

Conclusions: The aging-related risk signature is a reliable prognostic model for
predicting the survival of HNSCC patients and provides potential targets for improving
outcomes of immunotherapy.
Keywords: aging-related genes, prognosis, tumor immune microenvironment, immune checkpoint, head and neck
squamous cell carcinoma (HNSCC)
INTRODUCTION

Head and neck squamous cell carcinoma (HNSCC) is a frequent
malignant tumor derived from the mucosal epithelium in the
oral cavity, pharynx, and larynx, which presents an incidence
rate of approximately 600,000 new cases and 350,000 deaths
annually worldwide and an increasing prevalence among older
adults (1, 2). In order to establish etiological risk factors related
to lethal malignancy of HNSCC, in-depth studies have been
conducted to analyze the genetic, epigenetic, and environmental
factors that may trigger the occurrence of tumor (3). However,
no effective screening strategy for HNSCC has been found so far,
and careful physical examination is still the main method for
early detection. In addition, most patients with advanced
HNSCC present no clinical history of precancerous lesions (3).
Therefore, there is an urgent need to identify novel biomarkers
that are able to predict the progression of HNSCC precancerous
lesions, treatment response, and survival.

Substantial efforts are being made to identify biomarkers for
prejudging the prognosis of HNSCC patients. For example, the
CXC chemokines have been proven to provide functional
prognosis and suitable therapeutic value for HNSCC (4). A
research cohort of 383 HNSCC patients revealed that elevated
expression of NR2F6 is related to poorer recurrence-free
survival, which could be used as a new prognostic indicator for
early detection of local recurrences in patients with HNSCC (5).
Recently, increasing autophagy- and ferroptosis-related risk
signatures have been constructed to prognosticate survival for
patients with HNSCC by a set of bioinformatics analyses (6–8).
However, accurate and reliable prognostic indicators or models
are still insufficient to improve the clinical outcomes of
HNSCC patients.

The tumor microenvironment (TME) refers to a complex
ecosystem involving persistent complex interactions between
cancer cells, immune cells, stromal cells, and extracellular
matrix components, which can play a significant role in
tumor initiation and metastasis (9, 10). Substantial evidence
has shown that a deep understanding of the heterogeneity of the
TME within each type of cancer is essential to identify
predictive biomarkers of patient outcomes that can routinely
be used in the clinic (11, 12). Numerous reviews of published
datasets have shown that the aging microenvironment can
dramatically affect normal cells of the TME, which may have
a huge impact on tumor progression (13–15). As one of the
2

hallmarks of aging, inflammaging can result in degeneration of
tissue and destruction of acute inflammation, which is closely
correlated with the occurrence and progression of cancer (16,
17). Cellular senescence plays an important role in promoting
the aging process and has been recognized as a primary factor
that links inflammaging to a variety of age-related malignant
tumors (17, 18). Age-related accumulation of senescence-
associated secretory phenotype (SASP) cells can promote
cancer progression by remaking the primary and metastatic
microenvironment over time to a state where malignant cells
are more likely to grow. Previous results have shown that
cellular senescence is regulated by aging-related genes (AGs),
which present important functions in tumor malignancy (19,
20). Given the tremendous changes in the extracellular matrix,
secreted factors, and immune system as age increases, there
may be potential clinical implications for immunotherapy and
targeted therapy in patients with HNSCC. However, there is
limited knowledge about the comprehensive correlations of the
AGs with the tumor immune microenvironment (TIME) and
the prognosis of HNSCC patients.

In this study, a risk model of the four AGs was constructed
and was recognized as an independent prognostic index for
HNSCC patients. The correlations of the risk model with
immune score, immune cell infiltration, and potential immune
checkpoints were systematically assessed based on the aging-
related signatures. Furthermore, the effect of the four selected
AGs on the TIME was explored to reveal their potential
functions in tumor progression. Our findings contributed to
clarify the regulatory mechanisms of the AGs related to the
TIME and implied that these AGs might be functional
prognostic biomarkers for predicting clinical outcomes of
HNSCC patients and provide new targets for improving the
immunotherapy response.
MATERIALS AND METHODS

Data Sources and Processing
The fragments per kilobyte of exon model per million mapped
reads (FPKM) RNA-sequencing data TCGA-HNSC (The Cancer
Genome Atlas -Head and Neck Squamous Cell Carcinoma) and
corresponding clinical follow-up information of HNSCC
samples were obtained from TCGA data portal (https://portal.
gdc.cancer.gov/). Aging-related human ontology gene sets were
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downloaded from the Molecular Signatures Database (MSigDB)
(http://www.gsea-msigdb.org/gsea/msigdb/index.jsp) via
searching by aging. These raw datasets of TCGA-HNSC were
normalized by the multi-array average method, and the
ENSEMBL gene ID was transformed to the GeneSymbol using
the “biomaRt” package. The expressions of the same
GeneSymbol were combined and unidentified gene IDs were
excluded, whereas the expressions of 39,743 genes were analyzed.
Identification of Prognostic
Aging-Related Genes
The enrichment of aging-related gene sets was identified via the
gene set enrichment analysis (GSEA, version 4.1.0) using TCGA-
HNSC as expression datasets and aging-related human ontology
gene sets as database. Nominal (NOM) P-values <0.05, |Normalized
enrichment score (NES)| >1, and false discovery rate (FDR) q < 0.25
were used as filtering criteria. Then, the core AGs were obtained by
screening the significantly upregulated AG sets in tumors from the
GSEA via leading edge analysis. Finally, differentially expressed AGs
between HNSCC and non-tumor samples were obtained using
“Limma” package by R software (version 4.1.1) according to the
cutoff criterion of |log2(fold change)| > 1 and p < 0.05.

These differentially expressed AGs were analyzed using
univariate Cox regression to identify prognostic candidates (p <
0.05). Then, false-positive prognostic-associated AGs were
eliminated by the least absolute shrinkage and selection operator
(LASSO) Cox regression analyses. To improve the effectiveness
and accuracy of prognostic prediction of these AGs, prognosis-
related AGs were further analyzed by multivariate Cox regression
to exclude those genes that cannot be used as independent
indicators for prognostic monitoring.
Construction and Validation of Aging-
Related Gene-Related Prognostic Model
A risk model was established using the LASSO Cox regression
analysis of prognosis-related AGs based on the training cohort
(the whole dataset, n = 502). The risk score for each patient in both
the training cohort and the testing cohort (randomly selected, n =
250) was estimated based on the formula, and patients were
classified into high-/low-risk subtypes stratified by the median
risk score. Kaplan–Meier analyses and log-rank test were
conducted to compare survival differences between patients in
the high-risk and low-risk subtypes. The time-dependent receiver
operating characteristic (ROC) curves and corresponding areas
under the curve (AUC) values were utilized to assess the
prognostic value of AG-related risk model based on training and
testing cohorts. Univariate and multivariate Cox regression
analyses were conducted to further confirm the prognostic
capacity of the AG-related signature. A nomogram and
calibration plots were then built to further provide a prognosis
of HNSCC that integrated clinicopathological factors. The
relationships between the risk score with the overall survival
(OS) and clinical characteristics of HNSCC patients were
explored by stratification survival analyses.
Frontiers in Oncology | www.frontiersin.org 3
Determination of Associations of the
Prognostic Model With Immune Cell
Infiltration and Immune Checkpoint Genes
The immune scores of HNSCC samples were calculated with R
package ESTIMATE (21). The infiltration levels of 22 types of
immune cells of HNSCC samples were calculated via
CIBERSORT (http://cibersort.stanford.edu/) (22). Then, the
effect of the selected AGs in the risk model on infiltration
levels of six types of immune cells was further analyzed via the
TIMER database (https://cistrome.shinyapps.io/timer/) (23). To
predict the immune status and potential immune checkpoint
blockade (ICB) response, the correlations of the prognostic
model with immune checkpoint expression and ICB response
were investigated based on TCGA datasets. Potential ICB
response was predicted with tumor immune dysfunction and
exclusion (TIDE) algorithm (24).
Statistical Analyses
The statistical analyses were carried out using R software
(version 4.0.2) and GraphPad Prism 8 (San Diego, CA, USA)
(25). Kaplan–Meier analyses were performed to compare OS
between pairs of subtypes. The differences in the risk score
between different clinical characteristic subtypes and
differences in the immune cell infiltration level and immune
checkpoints between the high and low subtypes stratified by the
median risk score and median expression levels of BAK1, DKK1,
CDKN2A, and MIF were evaluated by Wilcoxon test.
RESULTS

Identification and Extraction of
Differentially Expressed
Aging-Related Genes in Head and
Neck Squamous Cell Carcinoma
The RNA-sequencing data and clinical follow-up data of 502
HNSCC and 44 non-tumor samples were obtained from TCGA
portal, and 11 aging-related human ontology gene sets were
obtained from MSigDB. GSEA showed that 7 gene sets
including “GOBP_CELL_AGING", “GOBP_REGULATION_
OF_CELL_AGING", “GOBP_CELLULAR_ SENESCENCE",
“GOBP_NEGATIVE_REGULATION_OF_CELL_AGING",
“GOBP_POSITIVE_ REGULATION_OF_CELL_AGING",
“GOBP _AG ING ” , a n d " GOBP _REP L I CAT IVE _
SENESCENCE" are significantly enriched in HNSCC samples
(Figure S1). A total of 134 core enrichment genes were
identified as AGs via leading edge analysis of the above 7
gene sets (Table S1). Then, 41 significantly upregulated AGs
were extracted according to the expression of all core
enrichment genes in tumor and non-tumor samples
(Figures 1A, B). The differences in expression patterns of
these 41 differentially expressed AGs were further presented
in box plots (Figure 1C).
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Identification of Prognostic Risk Model of
Aging-Related Genes in Head and Neck
Squamous Cell Carcinoma
To investigate the prognostic value of differentially expressed
AGs in HNSCC patients, univariate Cox proportional hazards
regression analyses were conducted to estimate the prognostic
relationship between AGs and OS in patients with HNSCC
according to their mRNA expression level in the whole TCGA
dataset (n = 502).

The prognostic value of differentially expressed AGs in
HNSCC patients was explored using univariate Cox
proportional hazards regression analyses based on the whole
TCGA dataset (n = 502). Results showed that 12 differentially
expressed AGs (DKK1, SERPINE1, ADA, HMGA2, APP,
CDKN2A, MIF, NEK6, ADM, BAK1, CDK6, and PRNP) were
Frontiers in Oncology | www.frontiersin.org 4
remarkably related to the OS of HNSCC patients (p < 0.05,
Figure 2A). Subsequently, false-positive prognosis-associated
AGs were eliminated by LASSO Cox regression analyses, and 7
AGs including BAK1, DKK1, CDKN2A, ADA, APP, MIF, and
ADM were obtained (Figure S2). Then, the impact of these 7
prognosis-associated AGs on OS and clinical outcomes of
HNSCC patients was evaluated via multivariate Cox regression
analyses (p < 0.05, Figure 2B). Finally, 4 AGs including BAK1,
DKK1, MIF, and CDKN2A were identified with independent
prognostic values for OS prediction and further applied to
establish a prognostic risk model.

A prognostic risk model derived from the four selected AGs
was constructed by LASSO Cox regression analyses, of which
BAK1, DKK1, and MIF were identified as high-risk genes while
CDKN2A was identified as a low-risk gene. The risk score
A

C

B

FIGURE 1 | Extraction of differentially expressed aging-related genes (AGs) based on TCGA datasets. (A) Volcano plot for the 134 AGs in HNSCC retrieved from
GSEA based on TCGA datasets. FC represents fold change. Red indicates upregulation, gray indicates no difference, and the studied four genes are marked in
green. (B) Heat map of the 41 differentially expressed AGs in HNSCC. (C) Expression distribution of differentially expressed AGs in HNSCC and normal tissue
samples. The red dot represents normal tissue sample, and the blue dot represents tumor sample. ***p < 0.001.
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formula was as follows: Risk score = (0.2126) * BAK1 + (0.137) *
DKK1 + (-0.0716) * CDKN2A + (0.2474) * MIF. Afterward,
patients were divided into high-risk and low-risk subtypes by the
median risk score. The risk plot distribution and survival status
of HNSCC patients showed that the OS rates of patients in the
high-risk subtype were markedly lower than those in the low-risk
subtype (Figure 2C). In addition, the heat map of the included
genes showed that the expressions of BAK1, DKK1, and MIF
were significantly higher in the high-risk subtype while the
expression of CDKN2A was significantly higher in the low-risk
subtype (Figure 2C).

The prognostic value of the AG signature was validated in the
training cohort (the whole dataset, n = 502) and the testing cohort
(randomly selected, n = 250). Kaplan–Meier survival analyses
showed that the high-risk group patients had a shorter OS than
those of the low-risk group both in the training and testing cohorts
(p < 0.001; Figures 3A, B). The 2-, 3-, and 5-year AUC values of
ROC curves for the AG signature in the training cohort were
0.663, 0.676, and 0.652, respectively (Figure 3C). And the
corresponding 2-, 3-, and 5-year AUC values of ROC curves in
the testing cohort were 0.660, 0.684, and 0.709, respectively
(Figure 3D). These data together revealed the accuracy of the
risk model of the four selected AGs for HNSCC prognosis.
Frontiers in Oncology | www.frontiersin.org 5
Associations of the Risk Model With
Overall Survival and Clinicopathological
Characteristics of Patients With Head and
Neck Squamous Cell Carcinoma
To examine the associations of the risk model with
clinicopathological characteristics of HNSCC patients, the
differences in risk scores between subgroups sorted by age, tumor
grade, pathological TNM stage, pathological T stage, pathological N
stage, gender, and therapy were compared viaWilcoxon test. It was
found that risk scores were significantly correlated with the tumor
grade (p < 0.01) and pathological T stage (p < 0.05), whereas they
showed no relationship with age, pathological TNM stage,
pathological N stage, gender, and therapy (Figure 4A).
Furthermore, univariate Cox regression analyses showed that the
age, pathological N stage, and pathological TNM stage were
significantly associated with OS in patients with HNSCC (p <
0.05, Figure 4B). Multivariate Cox regression analyses revealed that
age, pathological N stage, pathological TNM stage, and radiation
therapy were obviously related to OS in HNSCC patients (p < 0.05,
Figure 4B). In order to provide a prognosis of HNSCC that
integrated age, pathological N stage, pathological TNM stage, and
radiation therapy, a nomogram with the C-index for survival
prediction of 0.764 (p < 0.001) was built (Figure 4C). Calibration
A C

B

FIGURE 2 | Construction of prognostic risk model of AGs for HNSCC patients. (A) Forest plot of 12 AGs that related to overall survival via univariate Cox regression
analyses. (B) Multivariate Cox regression analyses of 7 prognosis-associated AGs. (C) Risk plot distribution, survival status of patients, and heat map of expression
of included genes in the whole TCGA-HNSC dataset.
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curves for the 2-, 3-, and 5-year OS nomogram model showed a
good consistency between nomogram predictions and actual
observations (Figure 4D).

Moreover, stratification survival analyses were performed to
assess the predictive ability of the four-AG risk model for
prognosis in multiple HNSCC subtypes sorted by age (<60
years and ≥60 years), gender (Men and Women), tumor grade
(Grade I, Grade II, and Grade III), pathological TNM stage
(Stages I–II and Stages III–IV), pathological T stage (T1–2 and
T3–4), pathological N stage (N0 and N1–2), and therapy
(Radiation therapy and Pharmaceutical therapy) (Figure 5).
Comparison of survival curves conducted by log-rank
(Mantel–Cox) test revealed that patients of the high-risk group
presented a remarkably poorer OS than that of the low-risk
group in all HNSCC subtypes (all p < 0.05; Figures 5A–I, K–O)
except pathological T1–2 HNSCC subtype (p > 0.05, Figure 5J).
These results suggested that the identified four-AG risk model
has a reliable predictive value for the prognosis of HNSCC.

Associations of the Risk Model With
Immune Score and the Immune Cell
Infiltration Level in Head and Neck
Squamous Cell Carcinoma
The association between the immune score and risk score was
first investigated. The immune score in the high-risk group was
Frontiers in Oncology | www.frontiersin.org 6
notably lower than that in the low-risk group (p < 0.001)
(Figure 6A). Subsequently, the differences in infiltration levels
of 22 types of immune cells between high-risk and low-risk
groups were evaluated using CIBERSORT formula (Figure 6B).
Patients with HNSCC in the high-risk group contained lower
infiltration levels of memory B cells (p < 0.05), CD8+ T cells (p <
0.001), follicular helper T cells (p < 0.001), regulatory T cells
(Tregs) (p < 0.001), and activated mast cells (p < 0.001) while
having higher infiltration levels of resting NK cells (p < 0.01), M0
macrophages (p < 0.01), M2 macrophages (p < 0.05), and resting
mast cells (p < 0.001) than did those in the low-risk group. Then,
the associations of the above nine types of immune cells with the
selected AGs in the risk model were explored. HNSCC patients
in the subtype of high BAK1 expression included lower
infiltration levels of memory B cells (p < 0.001), follicular
helper T cells (p < 0.001), Tregs (p < 0.001), and activated
mast cells (p < 0.05) while having higher infiltration levels of
resting NK cells (p < 0.05) and M2 macrophages (p < 0.05)
(Figure 6C). HNSCC patients in the subtype of high DKK1
expression presented lower infiltration levels of memory B cells
(p < 0.05), CD8+ T cells (p < 0.001), follicular helper T cells (p <
0.001), Tregs (p < 0.001), and activated mast cells (p < 0.05) while
having higher infiltration levels of resting NK cells (p < 0.01), M0
macrophages (p < 0.05), and resting mast cells (p < 0.01)
(Figure 6D). The results of CDKN2A, as a protective factor,
A B

C D

FIGURE 3 | Validation of the prognostic capacity of the selected four-AG signature. (A, B) Kaplan–Meier survival curves for the risk model based on the training
cohort (the whole dataset, n = 502) and the testing cohort (randomly selected, n = 250). (C, D) Receiver operating characteristic (ROC) curves for the risk model in
the training and testing cohorts.
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showed that HNSCC patients with a high CDKN2A expression
contained higher infiltration levels of CD8+ T cells (p < 0.05) and
Tregs (p < 0.05) while having lower infiltration levels of M2
macrophages (p < 0.05) (Figure 6E). The results of MIF showed
that only resting mast cells (p < 0.001) was positively associated
with the expression of MIF (Figure 6F).

In addition, correlation analysis of the risk score and
infiltration levels of six types of immune cells was conducted
based on the TIMER database to estimate the effect of the four-
AG risk model on the TIME for HNSCC patients (Figure 7).
Results showed that the risk score was negatively related to the
infiltration of B cells (p < 0.001, Figure 7A), CD4+ T cells (p <
0.001, Figure 7B), and CD8+ T cells (p < 0.05, Figure 7C),
Frontiers in Oncology | www.frontiersin.org 7
whereas no significantly negative correlation was found between
the risk score and infiltration of neutrophils (p > 0.05,
Figure 7D), macrophages (p > 0.05, Figure 7E), and myeloid
dendritic cells (p > 0.05, Figure 7F).

To explore the mechanisms underlying AGs on the TIME in
HNSCC, the relationships between the six types of immune cells
and the four selected AGs were further investigated (Figure 8).
HNSCC patients in the subtype of high BAK1 expression
included significantly higher infiltration levels of CD8+ T cells
(p < 0.05) and neutrophils (p < 0.001) while having a lower
infiltration level of B cells (p < 0.001) than did those in the
subtype of low BAK1 expression (Figure 8A). Only B cells were
negatively related to the expression level of DKK1 (p <0.001,
A

B

C D

FIGURE 4 | Associations of the risk model with the overall survival and clinicopathological characteristics of HNSCC patients. (A) Relationships between the risk
score and clinicopathological characteristics of HNSCC patients. (ns) Non-significant, *p < 0.05, **p < 0.01, and ***p < 0.001. (B) Univariate and multivariate Cox
analyses of clinical characteristics based on the training cohort. (C) The nomogram based on age, pathological N stage, pathological TNM stage, and radiation
therapy for providing prognosis of HNSCC patients. (D) Calibration plots for the overall survival nomogram model. A dashed diagonal indicates the ideal nomogram,
and the orange line, purple line, and blue line represent the predicted 2-year, 3-year, and 5-year overall survival of HNSCC patients.
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A B C

D E F

G H I

J K L

M N O

FIGURE 5 | The prognostic ability of the four-AG signature for overall survival in multiple HNSCC subtypes. Kaplan–Meier curves for OS prediction in HNSCC
subtypes of (A) Age <60 years, (B) Age ≥60 years, (C) Men, (D) Women, (E) Grade I, (F) Grade II, (G) Grade III, (H) Stages I–II, (I) Stages III–IV, (J) T1–2, (K) T3–4,
(L) N0, (M) N1–3, (N) Radiation therapy, (O) Pharmaceutical therapy.
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Figure 8B). But for CDKN2A, as a protective factor, only B cells
were positively related to the expression level of CDKN2A (p <
0.05, Figure 8C). HNSCC patients of the high-MIF expression
subtype showed a lower infiltration level of B cells, CD4+ T cells,
CD8+ T cells, neutrophils, macrophages, and myeloid dendritic
cells than did those of low-MIF expression subtype (all p < 0.05,
Figure 8D). The four selected AGs in the risk model (BAK1,
DKK1, CDKN2A, and MIF) were demonstrated to possess
important functions in regulating the TIME of HNSCC.
Frontiers in Oncology | www.frontiersin.org 9
Association of Immune Checkpoints and
Immune Checkpoint Blockade Response
Scores With the Risk Score and the Four
Selected Aging-Related Genes
The expression levels of eight immune checkpoint genes including
CD274, CTLA4, HAVCR2, LAG3, PDCD1, PDCD1LG2, TIGIT,
and SIGLEC15 were calculated to explore the correlations of
immune checkpoints with the risk score and the four selected
AGs. The expressions of CTLA4, PDCD1, and TIGIT were found
A B

C

E

D

F

FIGURE 6 | Associations of immune cell infiltration level with the risk score and the four selected AGs. (A) Comparison of immune scores in the high-risk and low-risk groups.
(B) Comparison of compositional fractions of 22 types of immune cells between the high-risk and low-risk groups evaluated using the CIBERSORT formula. (C–F) Comparison
of infiltration levels of nine types of immune cells according to BAK1 (C), DKK1 (D), CDKN2A (E), and MIF (F) expression levels. *p < 0.05, **p < 0.01, and ***p < 0.001.
May 2022 | Volume 12 | Article 857994

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Chen et al. Aging-Related Prognostic Signature in HNSCC
A B C

D E F

FIGURE 7 | Correlations between the risk model and infiltration abundances of six types of immune cells. (A–F) Correlations between the risk score and six types of
tumor-infiltrating immune cells including B cell (A), T-cell CD4+ (B), T cell CD8+ (C), neutrophil (D), macrophage (E), and myeloid dendritic cell (F).
A B

C D

FIGURE 8 | Association of six types of immune cells with the four selected AGs. (A–D) Comparison of six types of immune cells according to BAK1 (A), DKK1 (B),
CDKN2A (C), and MIF (D) expression levels. *p < 0.05, **p < 0.01, and ***p < 0.001.
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to be downregulated while PDCD1LG2 expression was found to be
upregulated in the high-risk subtype (Figure 9A). BAK1 showed
crucially positive correlations with the expression of CD274,
LAG3, and PDCD1LG2 while having a negative correlation with
SIGLEC15 expression (Figure 9B). DKK1 showed a positive
relationship with the expression of PDCD1LG2 while having a
negative relationship with the expression of TIGIT (p < 0.05,
Figure 9C). CDKN2A revealed a positive correlation with PDCD1
expression (p < 0.05, Figure 9D). MIF revealed significantly
negative correlations with the expressions of CD274, CTLA4,
HAVCR2, PDCD1, PDCD1LG2, and TIGIT (p < 0.05,
Figure 9E). Furthermore, the differences of ICB response scores
in the high and low subtypes stratified by risk score and the four
selected AGs were evaluated. Results revealed that the ICB
response scores were crucially higher in the high-risk subtype,
high-DKK1 expression subtype, and high-MIF expression subtype
than those in the low subtypes (p < 0.001, Figure 9F).
DISCUSSION

The quality of life and life expectancy for HNSCC patients have
been significantly improved by advances in robotic surgery,
radiation and chemotherapy, immunotherapy, and molecular
characterization of human cancers (3). However, the high
mortality rate and outcomes of patients with advanced-stage
HNSCC have remained mostly unchanged due to the lack of
effective and reliable predictive biomarkers for monitoring
Frontiers in Oncology | www.frontiersin.org 11
HNSCC development (1, 3). Thus, the identification of novel
disease-related prognostic biomarkers with adequate
performance and clinical convenience in HNSCC is necessary
to develop novel therapeutic approaches for improving
treatment outcomes.

Studies have highlighted that many of the hallmarks of aging
are the same as those of cancer, such as epigenetic changes,
altered intracellular communication, changes in proteostasis,
mitochondrial dysfunction, and cellular senescence (26). Some
of these shared common characteristics, including increased
accumulation of genomic damage, telomere attrition,
epigenetic alteration, impaired proteostasis, and nutritional
perception disorders, may be attributed to tumor progression
(27–29). It has been demonstrated that age-dependent changes
in inflammation and immune cell infiltration levels played
important roles in tumor progression and malignancy (30).
Therefore, systematically exploring the functions of AGs in the
TIME is necessary to identify the function of the aging
microenvironment in HNSCC progression. However, few
studies to date have explored the associations of AGs with the
TIME and the OS of patients with HNSCC.

In this study, we identified 41 differentially expressed AGs by
GSEA based on the training (TCGA) dataset and further
constructed a four-AG risk signature using the LASSO Cox
regression analysis. It was confirmed that the risk model of the
four selected AGs could be recognized as a satisfactory
independent prognostic indicator for predicting the clinical
outcomes of HNSCC patients. BAK1, DKK1, and MIF acted as
A B C

D E F

FIGURE 9 | Association of the four-AG signature with immune checkpoints and ICB response scores. (A–E) Comparison of eight immune checkpoint genes in the
high and low subtypes stratified by risk score (A) and expression levels of BAK1 (B), DKK1 (C), CDKN2A (D), and MIF (E). (F) Comparison of ICB response scores
according to risk score (A) and expression levels of BAK1, DKK1, CDKN2A, and MIF. *p < 0.05, **p < 0.01, and ***p < 0.001.
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risk factors while CDKN2A acted as a protective factor in the risk
model. BAK1 played important roles in the mitochondrial
apoptosis process, which could alter the permeability of the
mitochondrial outer membrane to induce cell apoptosis (31).
DKK1 is an antagonist of Wnt signaling, which regulates various
cellular and biological processes that play important roles in cell
senescence, cell apoptosis, differentiation, and metastasis in
various tissues and numerous cancers (32, 33). Previous studies
had shown that elevated expression ofDKK1 was an independent
adverse prognostic indicator of survival in HNSCC (34, 35).MIF
has been determined as a pro-inflammatory cytokine that plays
multiple roles in inflammation and angiogenesis and was
associated with carcinogenesis (36). It had been reported that
overexpression of MIF promoted tumor metastasis and was
notably associated with poor prognosis of pancreatic ductal
adenocarcinoma (37). Kindt etal. (38) demonstrated that the
elevated expression of MIF resulted in tumor progression and
poorer prognosis of HNSCC. For CDKN2A, it had been shown
that methylation of CDKN2A was highly associated with HNSCC
carcinogenesis and bad OS, which could be a diagnostic and
prognostic indicator for HNSCC (39). In addition, it has been
demonstrated that the copy number loss of CDKN2A could be an
effective prognostic biomarker to independently predict poor
survival in human papilloma virus (HPV)-negative HNSCC (40).

The clinic correlation analysis confirmed that the risk score was
highly associated with tumor grade and pathological T stage.
Notably, stratification survival analysis revealed that the four-
AG risk signature possessed an accurate predictive value for
prognosis in multiple HNSCC subtypes sorted by age, gender,
tumor grade, pathological TNM stage, pathological T stage,
pathological N stage, and therapy. Calibration curves for the 2-,
3-, and 5-year OS nomogram model showed good consistency
between nomogram predictions and actual observations. Notably,
the 2-, 3-, and 5-year AUC values of ROC curves for the four-AG
signature in both the training and testing cohorts were higher than
0.65, which is better than those of previous prognostic signatures
of the seven AGs for HNSCC (41). In addition, the total point of
clinic efficacy in our nomogram is much higher than those of
previously developed and validated models (8, 41). These results
suggested that the identified four-AG risk model has a reliable
predictive value for prognosis of HNSCC.

The TME in HNSCC harbors a complex interplay between tumor
cells and stromal cells, including endothelial cells, cancer-associated
fibroblasts (CAFs), and immune cells, which can promote HNSCC
development (3). Numerous studies have reported that HNSCCs are
highly infiltrated by immune cells, and different immunophenotypes
combining several molecular features have been identified as
classifiers for HNSCC, which might be useful in predicting
response to different therapies, especially checkpoint inhibition (42,
43). Tumor-infiltrating lymphocytes [including T cells, B cells, and
natural killer (NK) cells] and myeloid lineage cells (including
macrophages, neutrophils, dendritic cells, and myeloid-derived
suppressor cells) are the main immune components of the HNSCC
TME (3). Previous studies showed that high levels of tumor-
infiltrating lymphocytes were usually correlated with better
prognosis of HNSCC depending on the balance of cells with
Frontiers in Oncology | www.frontiersin.org 12
antitumor activity vs. those with immunosuppressive activities (44,
45). Effector T cells and NK cells mainly regulated the antitumor
immunity in the TME, whereas Tregs, myeloid dendritic cells, and
M2 macrophages largely regulated the immune suppression and
tumor cell growth. It had been proven that high infiltration levels of
Tregs, myeloid dendritic cells, neutrophils, or M2 macrophages were
related to advanced-stage HNSCC or bad OS, whereas high
infiltration levels of CD8+ effector T cells and NK cells in the TME
were related to better outcomes (46). In this study, patients of the
high-risk group contained higher infiltration levels of restingNK cells,
M0 macrophages, M2 macrophages, and resting mast cells while
having lower infiltration levels of memory B cells, CD8+ T cells,
follicular helper T cells, Tregs, and activated mast cells than did those
of the low-risk group. In addition, negative correlations between the
risk score and infiltration levels of the B cells, CD4+ T cells, CD8+ T
cells, neutrophils, macrophages, and myeloid dendritic cells were
observed based on TIMER database. All these data suggested that the
integral index of the immunoscore obtained on the basis of the
expression of the four AGs included in our prognostic signature and
expression levels of these AGs are significantly correlated with
immunosuppressive activity for HNSCC patients. To explore the
mechanisms of AGs on the TIME, the correlations between the four
selected AGs and immune cell infiltration levels were investigated. It
was found that patients of subtypes of high BAK1 and DKK1
expressions contained lower infiltration levels of memory B cells,
CD8+ T cells, follicular helper T cells, Tregs, and activated mast cells,
suggesting a low immunosuppressive activity for HNSCC patients of
the high-expression groups. Based on the TIMER database, HNSCC
patients in the subtype of high BAK1 expression included significantly
higher infiltration levels of CD8+T cells and neutrophils while having
a lower infiltration level of B cells. HNSCC patients of the high-MIF
expression subtype showed a lower infiltration level of B cells, CD4+
T cells, CD8+ T cells, neutrophils, macrophages, and myeloid
dendritic cells than did those of the low-MIF expression subtype.
Results showed that the selected AGs in our risk model (BAK1,
DKK1, and MIF) were negatively related to the infiltration levels of
tumor-infiltrating lymphocytes (including T cells, B cells, and
macrophages), suggesting a low immunosuppressive activity for
HNSCC patients of the high-risk groups.

Furthermore, we illustrated the relationships of immune
checkpoints with the risk score and the four selected AGs to
predict the response to different therapies, particularly
checkpoint inhibition. The immune checkpoint molecule is an
inhibitory regulatory molecule in the immune system, which is
essential for maintaining self-tolerance, preventing autoimmune
response, and minimizing tissue damage by controlling the time
and intensity of the immune response (47). Immune checkpoint
molecules expressed on immune cells will inhibit the function of
immune cells and prevent the body from producing effective
antitumor immune responses, which can result in tumor
immune escape (48). Thus, the decreased expression of
immune checkpoints may prevent tumor immune escape to
improve the outcomes of immunotherapy. Our results showed
that the expressions of CTLA4, PDCD1, and TIGIT were found to
be downregulated in the high-risk subtype; BAK1 showed
crucially positive correlations with the expressions of CD274,
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LAG3, and PDCD1LG2 while having a negative correlation with
SIGLEC15 expression; DKK1 showed a positive relationship with
the expression of PDCD1LG2 while having a negative
relationship with the expression of TIGIT; CDKN2A revealed a
positive correlation with PDCD1 expression; and MIF revealed
significantly negative correlations with the expressions of CD274,
CTLA4, HAVCR2, PDCD1, PDCD1LG2, and TIGIT. Hence, the
four selected AGs in our risk model (BAK1, DKK1, CDKN2A,
and MIF) performed important functions on immune
checkpoint expressions, which might be regarded as potential
targets to improve the outcomes of immunotherapy by
downregulating the expressions of immune checkpoints.

Moreover, the relationships of the ICB response score (TIDE
score) with the risk score and the four selected AGs were evaluated.
TIDE uses a set of gene expression markers to evaluate two different
tumor immune escape mechanisms, including the dysfunction of
tumor-infiltrating cytotoxic T lymphocytes (CTLs) and the rejection
of CTLs by immunosuppressive factors (24). The high ICB response
score indicates the poor efficacy of the immune checkpoint-blocking
therapy (ICB) and the short survival period after receiving ICB
treatment. Our results revealed that the ICB response scores were
crucially higher in the high-risk subtype, high-DKK1 expression
subtype, and high-MIF expression subtype than those in the low
subtypes, which suggest poor immunotherapy efficacy for patients
with HNSCC in the high-risk groups.

Nevertheless, there are several limitations in this study. First,
the risk signature of the four AGs was obtained and validated
based on TCGA datasets. The prognostic value of the AG-related
signature in HNSCC patients has not been externally validated
due to the lack of our own adequate available data. External
validation should be performed based on our own clinic data in
the future. Second, the relationship between the risk signature
and the immune cell infiltration level and the role of the AG-
related signature in immunotherapy efficacy were revealed via
comprehensive bioinformatics analysis. More in vitro and in vivo
experiments are needed to confirm these conclusions. Laboratory
experiments will be done in future research to validate the
specific roles of the AG-related signature in immunotherapy
efficacy for patients with HNSCC.
Frontiers in Oncology | www.frontiersin.org 13
CONCLUSIONS

In conclusion, our study constructed a risk signature of four AGs
that could be utilized as an independent prognostic indicator for
HNSCC patients and showed important functions in
immunosuppression of HNSCC. Meanwhile, the AG-related
signature might provide potential targets to improve the
outcomes of immunotherapy.
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