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Superconducting wires are widely used in fabricating magnetic coils in fusion reactors. In consideration 
of the stability of 11B against neutron irradiation and lower induced radio-activation properties, MgB2 
superconductor with 11B serving as boron source is an alternative candidate to be used in fusion reactor 
with severe irradiation environment. In present work, a batch of monofilament isotopic Mg11B2 wires 
with amorphous 11B powder as precursor were fabricated using powder-in-tube (PIT) process at different 
sintering temperature, and the evolution of their microstructure and corresponding superconducting 
properties was systemically investigated. Accordingly, the best transport critical current density 
(Jc) = 2 × 104 A/cm2 was obtained at 4.2 K and 5 T, which is even comparable to multi-filament Mg11B2 
isotope wires reported in other work. Surprisingly, transport Jc vanished in our wire which was heat-
treated at excessively high temperature (800 °C). Combined with microstructure observation, it was 
found that lots of big interconnected microcracks and voids that can isolate the MgB2 grains formed in 
this whole sample, resulting in significant deterioration in inter-grain connectivity. The results can be a 
constructive guide in fabricating Mg11B2 wires to be used as magnet coils in fusion reactor systems such 
as ITER-type tokamak magnet.

Fusion power is one of the most promising candidate energy sources that may solve global energy problems, con-
sidering its safer and greener merits compared with the conventional mineral energy sources. In the world-class 
International Thermonuclear Experimental Reactor (ITER) fusion energy project, the superconducting magnet 
system serves as a key determinant. A high and steady magnetic field needs to be produced to confine the deu-
terium (D)–tritium (T) burning plasma inside the ITER tokamak nuclear fusion reactor. According to the pre-
vious ITER plan, hundreds of tons of superconducting magnets made from NbTi and Nb3Sn will be fabricated 
to assemble 18 Nb3Sn toroidal field (TF) coils, a 6-module Nb3Sn central solenoid (CS) coil, 6 Nb-Ti poloidal 
field (PF) coils, and 9 pairs of Nb-Ti correction coils (CC)1,2. There is one major drawback, however, for the 
application of Nb-based superconductors in this project. After irradiation, 93Nb will be transformed into the 
long-lived nuclide 94Nb with a half-life of about 20,000 years3,4. Hence, before irradiated Nb-based alloys are safe 
to be recycled, tens of thousands of years are required for them to “cool down”, and meanwhile, thicker shielding 
is necessary for long-term operation. For the convenience of radioactive waste treatment and environmental 
protection, the radioactivation properties of superconducting components within the fusion reactor should be 
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taken into account. Compared with conventional Nb-based superconductors, MgB2 features “low activation” and 
a much shorter decay time. Within 1 year, the dose rate of MgB2 materials will be reduced to the hands-on main-
tenance level, which is considered as desirable for a fusion reactor magnet system3. Additionally, because of the 
reaction 10B +  n → 7Li +  He (gas) under the heavy irradiation condition, 10B can no longer guarantee the stability 
of the MgB2 superconducting magnet. By replacing 10B with the isotope 11B, Mg11B2 superconducting wires will 
be much more stable in a neutron irradiation environment due to the smaller neutron capture cross-section of 
11B5. Considering the abundant reserves of 11B on Earth (20 wt% for 10B, 80 wt% for 11B), the anticipated cost for 
extracting the isotope from natural boron is expected to be decreased during the chemical synthesis.

The superconductivity of MgB2 was discovered in 20016. It is well-known for its simple binary chemical com-
position and much higher critical transition temperature (Tc) of 39 K than that of NbTi at 9.3 K. In order to 
operate Nb-based low-temperature superconductors, the core of the magnet needs to be cooled down to 4 K. 
The only eligible cryogen is liquid helium, which is extremely expensive, not always available on hand, and very 
difficult to handle. In the case of MgB2, a working temperature as high as 20 K is low enough to achieve acceptable 
performance. Remarkably, the operating cost is expected to be cut by over 50% by substituting cryocooler-cooled 
MgB2 materials for liquid-helium-cooled Nb-based superconductors. Furthermore, the fabrication cost of MgB2 
superconducting wire itself ($2.64/kA∙m) is less than 1/3 of that of Nb3Sn wire ($9/kA∙m). Therefore, due to the 
advantages of cost-effectiveness, lower radioactivation, and the shorter decay time of isotopic Mg11B2, fundamen-
tal research on Mg11B2 superconducting wires will be valuable for improving the efficiency of practical application 
in high-irradiation environments such as fusion reactors.

Mg11B2 wires using isotopically pure 11B powder always show lower critical current density (Jc) values, how-
ever, than the wires fabricated with natural boron powder. According to previous work7,8, this lower Jc is a result 
of the increased amount of non-reactive precursor, which decreases the superconducting fraction. On the other 
hand, inter-grain connectivity is considered another crucial factor in the current-carrying capability of Mg11B2 
superconducting wires9–11. In this work, with the aim of further improving Jc in Mg11B2 wires, the evolution of 
the microstructure and superconducting performance in Mg11B2 wires sintered at different temperatures was 
investigated in detail. The influence of both the superconducting fraction and the inter-grain connectivity on 
the Jc performance is discussed. We optimized the temperature of the heat-treatment at which the best transport 
performance can be obtained. Surprisingly, in the case of Mg11B2 wire sintered at high temperature, the transport 
Jc vanished, although magnetic Jc was still detected. According to detailed microstructure observations, this could 
be ascribed to the formation of a unique microstructure that was only obtained in the sample sintered at exces-
sively high temperature. This kind of microstructure leads to significant deterioration in inter-grain connectivity 
and ultimately, poor transport current performance.

Experimental Details
The standard in-situ powder-in-tube (PIT) procedure was applied to all the samples. The starting materials for the 
Mg11B2 wire consisted of 11B amorphous powder (from Pavezyum Kimya, Turkey, Moissan method12, 95.5%) and 
magnesium powder (100–200 mesh, 99%). The isotopic purity and particle size with respect to the 11B enriched 
boron powder was > 99.5% and 840 nm, respectively. After mixing the precursor powders, the mixture was tightly 
packed into Nb/Monel tubes with 10 mm outer diameter and 6 mm inner diameter. The composite wire was 
swaged and drawn to a final outer diameter of 1.08 mm. Then, the fabricated Mg11B2 wires were sintered at dif-
ferent temperatures ranging from 700 °C, 750 °C, 770 °C, and 800 °C for 60 min (ramp rate: 5 °C/min) under high 
purity flowing argon gas. Finally, the samples were furnace-cooled to room temperature.

The transport critical current (Ic) measurements were carried out by using an American Magnetics super-
conducting magnet with DC current (with the upper limit of the current source 200 A) under possible magnetic 
field up to 15 T, with the standard four-probe method and the criterion of 1 μ V/cm. The critical current density 
Jc was calculated by dividing Ic by the cross-section of the Mg11B2 core, which was examined with an optical 
microscope (Leica M205A). Scanning electron microscopy (SEM, JEOL JSM-6490LV & JEOL JSM-7500) was 
employed to observe the microstructure under different magnifications. X-ray diffraction (XRD) θ–2θ scans 
(GBC-MMA) were used to identify the phase composition. Measurements of electrical resistivity and magnetic 
moment were conducted in a 9 T Physical Properties Measurement System (PPMS, Quantum Design). In case of 
XRD, SEM, and PPMS measurements, the outer sheaths of the Mg11B2/Nb/Monel wires were removed for better 
data accuracy.

Results and Discussion
Typical transport Jc - B performances of all four wires sintered at different temperatures are shown in Fig. 1. For 
reference purposes, transport Jc data of for the multi-filament Mg11B2/Ta/Cu wire reported by Hishinuma7 is also 
plotted in the figure. It should be noted that our best monofilament Mg11B2 wire shows comparable transport 
Jc performance to the multifilament wire fabricated by the National Institute for Fusion Science (NIFS)7. This 
result is considered as a big breakthrough, and it strongly supports the feasibility of replacing commercial NbTi 
by high-performance Mg11B2 wires in highly radioactive fusion reactors. In our Mg11B2 wires, 750 °C is the opti-
mized temperature for heat treatment. The corresponding wire possesses a Jc value near 2 ×  104 A/cm2 at 4.2 K and 
5 T. Slight Jc degradation is observed in the wire treated at temperatures deviating from 750 °C. Surprisingly, no 
transport current was detected in the wire treated at 800 °C. For verification, five attempts at measurement were 
carried out on three batches of wires produced under the same sintering conditions. Ultimately, none of them 
gave detectable transport current data. It is speculated that some unexpected qualitative change inside the wire 
might occur once the heating temperature reaches a certain level. This should probably be attributed to a unique 
property of the 11B starting powder. It is believed that investigations of the phase composition, microstructure, 
and inter-grain connectivity will give an explanation for this abnormal phenomenon.



www.nature.com/scientificreports/

3Scientific RepoRts | 6:36660 | DOI: 10.1038/srep36660

To confirm the phase composition, Mg11B2 cores were removed from their outer sheaths and finely ground as 
XRD specimens. In Fig. 2(a), the main peaks indexed as Mg11B2 can be observed in all spectra, indicating that the 
temperature is high enough to permit the formation of Mg11B2 phase. Very little oxidation was detected, accord-
ing to the negligible MgO peak. Un-reacted Mg and 11B-rich phase are found in the wire sintered at relatively 
low temperature. Apparently, it is very hard for Mg to completely diffuse into boron particles, if the sintering 
temperature is not high enough. A diminishing gradient of Mg concentration exists along the radial direction of 
the boron particle. As a result, Mg11B2 phase can only be formed on the outer layers of boron particles. The rest of 
the Mg will either stay in the elemental state (un-reacted Mg) or participate in other secondary reactions. Hence, 
11B-rich phase is prone to form in this case, which can be deduced from the Mg-B phase diagram13. The presence 
of those impurities (un-reacted Mg and 11B-rich phase) will reduce the fraction of superconducting phase, which 
is crucial for the final performance of superconductors. It has to be pointed out that the chemical activity of 11B 
is lower in comparison with natural B due to the isotope kinetic effect14. This might explain why 700 °C is not 
high enough for the complete reaction in this work. Figure 2(b) shows the mass fractions of Mg11B2 phase in the 
wires as a function of sintering temperature. The mass fractions were calculated by using Rietveld refinement. 
The smallest Mg11B2 fraction, as low as 84.7%, is found in the wire treated at 700 °C. This is mainly due to the 
presence of impurities, as reflected by the XRD results. Furthermore, the degradation in transport Jc performance 
also confirms its relatively poor superconductivity (see Fig. 1). With increasing sintering temperature, un-reacted 
Mg peaks become smaller and almost disappear. Correspondingly, the mass fractions of Mg11B2 phase in the rest 
of the wires all remain at a high level (> 90%). Since the crystallization of Mg11B2 phase is confirmed to be good 
in the Mg11B2 wire sintered at 800 °C, while its mass fraction of superconducting phase is also satisfactory, the 
observed abrupt disappearance of transport current in the wire sintered at 800 °C is related to neither the phase 
composition nor a low superconducting fraction.

Figure 1. Transport Jc - B performance at 4.2 K of Mg11B2 wires using amorphous 11B isotope as the boron 
source. Results from NIFS are also plotted for reference. No transport Ic was detected in the wire treated at 
800 °C.

Figure 2. (a) XRD θ–2θ patterns of all Mg11B2 wires sintered at different temperatures. The numbered labels 
(hkl) represent Mg11B2 reflections. The pound sign (hashtag) stands for unreacted Mg. A small amount of B-rich 
phase (with its peak marked by the plus sign) is detected only in samples sintered at 700 °C. (b) Mass fractions, 
obtained from Rietveld refinement, of Mg11B2 and Mg as functions of the different sintering temperatures.
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Figure 3(a) shows the zero-field-cooled (ZFC) and field-cooled (FC) demagnetization results as func-
tions of the sintering temperature for all four samples. H =  100 Oe was applied in this measurement. A clear 
normal-superconducting transition was observed in all samples, including the wire sintered at 800 °C, which did 
not show any current value in the transport measurements. The magnetic Jc (H) of the samples was estimated at 5 K 
based on the magnetization hysteresis loops and the Bean critical state model. Generally, the formula for a rectangular 
shaped sample is: Jc =  20(Δ M/V)/[a(1− a/3b)], where Δ M =  [M(+ ) −  M(− )] is the difference between the upper and 
lower branches of the M(H) loop, V is the volume, and a and b (a <  b) are the length and width of the cross-section 
which is perpendicular to the direction of the applied magnetic field15. In our case, the Mg11B2 cores are cylindrical in 
shape. So, the formula can be simplified to Jc =  30(Δ M/V)/d, where d is the diameter of the circular cross-sectional 
area16,17. According to the calculations, the magnetic Jc (H) results at 5.0 K are shown in Fig. 3(b). The wire sintered at 
750 °C shows the best magnetic Jc (H) performance throughout the entire range of fields, which is consistent with the 
transport Jc results shown in Fig. 1. Some differences can be found between the values of magnetic Jc and transport Jc. 
Other than measurement deviation, the intrinsic distinction between the magnetic Jc signal and the transport Jc signal 
also needs to be taken into consideration. Generally, due to the existence of negative structures such as porosity and 
cracks, not all the MgB2 in a sample is capable of passing transport current. Inter- or intra-grain connectivity should 
always be considered when dealing with transport performance. On the contrary, as long as they possess superconduc-
tivity, all the MgB2 fragments will contribute to the magnetic Jc. It should be noted that the magnetic Jc was detected 
and showed good performance in the wire sintered at 800 °C. This means that the Mg11B2 superconducting phase in 
the wire was not badly damaged by the high sintering temperature. Hence, after ruling out the effects of inferior super-
conducting phase, it can be speculated that the transport current in the wire sintered at 800 °C disappeared as a result of 
a problem with inter-grain connectivity. A high sintering temperature might introduce some defects and significantly 
destroy the connection between Mg11B2 superconducting grains.

It is estimated that the vanishing of transport current in the Mg11B2 wire is caused by the severe deterioration of 
inter-grain connectivity, which can be visually confirmed by SEM micrographs. The low-magnification SEM images of 
the cross-sections of Mg11B2 wires sintered at 700 °C, 750 °C and 800 °C are presented in Fig. 4(a–c). Obvious evolution 
of the surface morphology is exhibited with increasing temperature. In the wire treated at 700 °C, it was already proved 
by the XRD results that the Mg had partially reacted with the boron. As the particle size of the Mg powder is much 
bigger than for the boron powder, un-reacted Mg melted and smoothly covered the Mg11B2 grains. Therefore, the mor-
phology of this sample was fairly plain and incompact. A dense surface is observed in Fig. 4(b) on the optimal sample 
sintered at 750 °C, indicating complete reaction and good inter-grain connectivity. This is consistent with the Jc - B and 
XRD results discussed above. Once the sintering temperature reached 800 °C, big cracks (marked by black arrows) were 
observed, as shown in Fig. 4(c). They are much bigger than the normal microcracks in other samples. Note that most 
of the big cracks are connected with each other. This feature is considered to be highly detrimental to the inter-grain 
connectivity. The resultant superconducting fragments are isolated from each other, and eventually, very little current 
can pass through the entire wire, which will significantly reduce the transport performance. On further increasing the 
magnification, porous structure is found in the same sample (marked by white arrows in Fig. 4(d)). When the wire was 
heat-treated at 800 °C, both the grain size and the mobility of the Mg11B2 grains were increased. The separate grains 
are prone to aggregate with each other, leaving plenty of voids in the morphology. Consequently, the effective current 
capacity is sharply reduced with the emergence of the porous structure. This is considered to be another barrier to 
obtaining high transport current in Mg11B2 wires. In addition, this kind of microstructure with abundant voids can be 
more brittle and thus be more prone to fracture and form big microcracks (see Fig. 4c) resulting from heat stress during 
the furnace-cooling process from high temperature to room temperature.

High-resolution SEM was employed to investigate the details of the crystalline structure in the four Mg11B2, 
wires, and the results are presented in Fig. 5. In the sample with the lowest sintering temperature, the crystalline 
grains have a wide range of sizes, and all of them are dispersed in a melted matrix, as shown in Fig. 5(a). Referring to 

Figure 3. (a) Temperature dependence of the ZFC and FC dc magnetization measured in a field of 100 Oe.  
(b) Field dependence of the magnetic Jc at 5.0 K on the logarithmic scale (with the inset showing an enlargement 
of the Jc (H) at low fields) for all samples.
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the XRD results above, the melted matrix is un-reacted Mg, which cannot be fully reacted with B at a relatively low 
temperature. This is strong evidence for the smaller mass fraction of Mg11B2 phase and lower transport performance 
in this sample. In the wires sintered at higher temperature, the amount of un-reacted Mg is greatly reduced, and the 
Mg11B2 crystalline grains keep growing and form typical hexagonal shapes, which can be observed in Fig. 5(b,c). 
Figure 5(d) shows the morphology of the wire sintered at 800 °C, in which some grains abnormally grow, and abun-
dant big clusters are found. These clusters are formed by the localized aggregation of Mg11B2 grains at the relatively 
high heat-treatment temperature. This phenomenon further increases the porosity on the macroscale and signifi-
cantly reduces the effective superconducting fraction for transporting current. As a result, the inter-grain connectiv-
ity is badly degraded. Combining these results with the low-magnification SEM images, it is thus concluded that the 
vanishing of transport current in the Mg11B2 sintered at high temperature should be attributed to the depression of 
inter-grain connectivity in the wire that is caused by the big microcracks and high porosity.

Figure 4. SEM micrographs of cross-sections of Mg11B2 wires sintered at (a) 700 °C, (b) 750 °C, and (c) 800 °C. 
Evolution of the surface morphology is clearly shown. Black arrows indicate big cracks. (d) SEM image of 
the wire sintered at 800 °C under higher magnification. White arrows indicate porous structure in the sample 
sintered at 800 °C.

Figure 5. High-resolution SEM micrographs of longitudinal sections of Mg11B2 wires sintered at (a) 700 °C, 
(b) 750 °C, (c) 770 °C, and (d) 800 °C. The shapes of grains can be easily distinguished. The yellow arrows in (d) 
indicate clusters composed of multiple Mg11B2 grains.
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Conclusions
The effects of sintering temperature on the superconducting performance and morphology of Mg11B2 monofilament 
wires made from isotopically pure boron powder were investigated in this work. It was found that increasing the sin-
tering temperature led to the evolution of microstructure and characteristic changes in the transport current capacity. 
Un-reacted Mg and B-rich phase existed in the wire sintered at low temperature. The Mg11B2 fraction, as well as the 
transport performance, was reduced because of the un-reacted Mg and B-rich phase impurities. With increasing sin-
tering temperature, better phase composition and crystallinity were obtained. The best transport Jc =  2 ×  104 A/cm2 was 
reached at 4.2 K and 5 T in the Mg11B2 wire sintered at 750 °C. It should be noted that although high magnetic Jc was 
detected in the wire sintered at 800 °C, the transport current was totally absent. The evolution of the morphology could 
be clearly seen in the wires corresponding to different sintering temperatures. Due to the abnormal growth and high 
mobility of Mg11B2 grains at relatively high ambient temperature, numerous big microcracks, voids, and Mg11B2 clusters 
formed in the wire sintered at 800 °C. As a result, the inter-grain connectivity was significantly suppressed, resulting in 
the inferior transport performance. The results obtained in our work can be a constructive guide for fabricating Mg11B2 
wires to be used as magnet coils in fusion reactor systems such as ITER-type tokamak magnets.
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