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We have collected several valuable lessons that will help
improve transcriptomics experimentation. These lessons
relate to experiment design, execution, and analysis. The
cautions, but also the pointers, may help biologists avoid
common pitfalls in transcriptomics experimentation and
achieve better results with their transcriptome studies.

Preamble

During the course of over a decade of transcriptomics
experimentation, we have learned some valuable lessons.
Now, at a turning point in transcriptomics experimentation,
marked by the transition from microarray technology into
next-generation sequencing, it seems timely to share these les-
sons with the life-sciences scientists that are increasingly
including transcriptomics experiments in their research. Espe-
cially, since many issues raised here may have prevented tran-
scriptomics to live up to its promises, particularly in the
context of mechanistic studies.

We have organized the lessons- learned according to 3
leading topics: design, execution, and analysis of transcrip-
tomics experimentation. As the distinction is not always clear,
several lessons-learned have an effect on 2 or even all 3 ele-
ments of experimentation. The order is relatively arbitrary:
all lessons are equally important, although some discussed
elements have more profound effects on experiment interpre-
tation than others.

We will restrict our lessons-learned to transcriptomics studies
that aim to unravel subcellular molecular mechanisms. Bio-
marker studies have a different approach and objective and are
not evaluated, although it is clear that many of the mentioned les-
sons likewise apply.

Lessons-learned

Design for Experimentation
Microarray technology and nowadays next-generation

sequencing (NGS) have provided us with greatly improved
“detectors” for investigating RNA levels in cell-based systems.
Not only has it become possible to evaluate the gene-expression
levels of many genes simultaneously by employing these tran-
scriptomics techniques, but their results are also more quantita-
tive than with the classical Northern blot and qPCR analysis
(due to the variability of “housekeeping genes”). 1

One would expect that the introduction of such significantly
improved detectors would have a major impact on how biologists
design their new transcriptomics experiments. However, many
biologists consider microarray technology merely a very high-
throughput Northern blot and often still use “classical approach-
es” for their transcriptomics experiments. These are usually based
on phenotypic endpoints, such as apoptosis or cell-cycle arrest,
taken from common and accepted practice. Ignoring the impact
of new detectors on experiment design and analysis may have
serious consequences on the conclusions that one is allowed to
draw based on such experiments.

The most obvious consequence is that if one investigates tens
of thousands of genes, this will generate hundreds of thousands
of observations, which will invariably lead to a considerable num-
ber of genes that are incorrectly implied to be involved in a pro-
cess, due to chance combined with biological variability. Hence,
statistics become extremely important in the analysis and thus in
the design of the experiments. Tackling known and unknown
confounding factors that are causing these false positives is the
biggest challenge in transcriptomics. To this end, statistical coun-
termeasures have to be implemented in all steps along the chain
of experimentation. For instance, samples should be properly
randomized, enough replicates should be included, appropriate
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statistical methods, such as false discovery rate correction, should
be applied, and so on. In practice, optimal implementation of
these statistical elements is often under duress due to budget con-
straints that limit numbers of replicates, absence of sufficient sta-
tistical expertise, or a desire to obtain publishable results, and so
forth. Although many of these reasons often seem plausible
and/or acceptable, the effect on the eventual outcome of the
experiments is frequently underestimated. Moreover, since tran-
scriptomics has increasingly become a hypothesis-generating
approach, wrong conclusions may lead to flawed hypotheses,
which in turn may lead to misdirected research. The obvious rec-
ommendation is that for proper design for transcriptomics exper-
imentation, expert biostatisticians should be involved from the
start to ensure a better chance of valid research. It is extremely
important at this early design stage to foresee, as much as possi-
ble, the eventual required data analyses, as these regularly influ-
ence the experiment design.2-4

One key lesson, related to statistics, concerns sample pooling.
For decades, biologists intuitively have pooled their samples. The
reasoning is that “pooling averages out the differences between
individual samples,” hence there will be less noise in the experi-
ment. Although this is true,5,6 the differences between (repli-
cated) samples are exactly what is needed for statistical power and
inference. From a biological perspective, pooling of substantially
different cells results in the generation of an artificial in-between
cell type. Even though it has been somewhat of an uphill battle,
currently more and more biologists are starting to realize that
pooling in transcriptomics experimentation should be a con-
scious choice in the experimental design, because it can hamper
biological interpretation.5-8

Another notion, related to the use of classical phenotypic end-
points, is that in order to achieve such a phenotypic endpoint,
frequently quite severe perturbations are required.9,10 However,
severe perturbations lead to severe transcriptome responses,
which often represent a generic stress response rather than a

specific reaction to the perturbation of interest.10 It seems that at
a certain stress point, a cell will choose to activate its generic stress
response. From that point on, the specific responses to a pertur-
bation may no longer be present, not even hidden, behind the
cloud of stress-induced noise.10 Ways to reduce these risks
include, first of all, a precisely defined biological question and
avoiding complicated set-ups with high-level and/or multiple
biological questions and/or multiple experimental factors.

Furthermore, one should tailor-make each transcriptomics
experiment to answer the specific biological question under
study, instead of designing its setup based on classical phenotypic
endpoints or common practice. This may include running small,
technical and biological test experiments to determine the opti-
mal experimental settings for a final experiment. Additionally,
carefully planned range finding experiments are useful in deter-
mining the optimal location in the experiment design space.11

Designing range finding experiments forces a scientist to define
its biological question or hypothesis quite narrowly; for example,
instead of “which genes are involved in UV response?,” it would
be something like “which genes in the nucleotide excision repair
pathway respond to low-dose UV-C-induced DNA damage?.”

Unfortunately, range finding is not always sufficient. In vivo
studies also need to be tested for inter-individual differences. If
these are too diverse on a basal transcriptome level for the tissue
under study, they cannot be considered replicates anymore. This
effectively inhibits standard transcriptomics experimentation and
a different experimental approach should be found. Examples of
how improper replicates can be deceiving are our encounters, on
several occasions, with very smooth looking profiles of average
gene expression, suggesting a relation between the observed
experimental factor and gene expression, whereas looking at the
profiles from the underlying individual animals, no rhyme or rea-
son could be detected (Fig. 1).

As a general suggestion, if one cannot afford high-quality
‘omics’ experiments, i.e., having a sufficiently solid experiment

Figure 1. Smoothing effects of improper averaging over individuals. Time profiles of Log2 fold change compared to t D 0 of the Mdm2 gene in skin
derived from an in vitro mouse study. The mice were treated with UV-B at t D 0. (A) Averaged profiles over biological replicates for both treated and
untreated samples. (B) Profiles of individual mice that were not treated. Different colors indicate individual mice. (C) Profiles of individual mice that were
irradiated with a high dose of UV-B. Different colors indicate individual mice.
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design, then such experiments should not be attempted. There
are many transcriptomics experiments out there that have yielded
sub-par results due to an incomplete experimental design, miss-
ing, for instance, essential controls due to budgetary reasons.3,4

In these cases, it would be better to set up the experiments on a
smaller scale or using a different technique that has a solid design
and lies within budgetary limits. Conversely, given the growing
understanding of the role of miRNA in gene expression regula-
tion in combination with good and affordable NGS technology
for small RNA-seq, it seems good science to investigate both
mRNA and miRNA transcriptomes in parallel within one experi-
ment. We anticipate that this co-analysis will become common
practice within the next few years.12-14 This is also true for
including alternative splice variants in mRNA analysis, as they
are increasingly recognized as an important biological principle.
Given the fact that new long-read NGS techniques will allow for
solid detection of splice variants, this also should become an inte-
grated part of mRNA analysis.

Experimentation Execution
One of the points that ties in with designing tailor-made

experiments, is the fact that optimizing the quality of starting
material can profoundly improve the experimental results. This
includes: using single cells, homogenizing cell-populations, syn-
chronizing cell-samples, and removing unwanted stressors. For
instance, synchronization of the cultured cells at the start of the
experiment and eliminating the commonly used excess of oxygen
during in vitro experiments, lowers transcriptome variability and
will result in more robust results.10 In general, it is often extremely
difficult, if not impossible, to avoid confounding factors such as
differential sample composition, e.g., due to infiltrating cells or
time of day effects caused by circadian rhythm. Uncorrected con-
founding factors will limit the scope of an experiment or, in
extreme cases, can render an experiment entirely useless.

Sensitive detectors are generally quite vulnerable to errors.
This means that it is advisable to let experiments be executed by
well-trained transcriptomics experts. The involved delicate labo-
ratory equipment should be well-maintained and only be oper-
ated by these experts. The usually, relatively, relaxed laboratory
attitude in molecular biology research can have negative effects
on results obtained from such sensitive detectors. In the near
future, it might be best if all transcriptomics experiments would
be executed by recognized professionals organized in, certified,
non-academic support facilities with a high level of application
specialization.

Another technology-related notion concerns the continuing
wish of biologists to include technical replicates in their transcrip-
tomics experiments. This originates from an apparently indelible
bad reputation from the early days of microarray technology,
which is also reflected by the fact that many reviewers still
demand validation of microarray-based results by qPCR. As a
general rule for transcriptomics experimentation, biological varia-
tion heavily outweighs technological variation,5 so it is generally
better to use biological replicates than technical ones.

Probe-affinity was long thought to be the major cause of
differences in microarray signals between distinct probes

investigating the same transcript. However, we now know that
these so-called probe-affinity problems are related to sequence
specific differences in cDNA synthesis and PCR amplification,
enzymatic steps that are used in microarray technology. As
these elements are also present in NGS, similar substantial dif-
ferences in read coverage occur along transcripts.15 In other
words, probe-affinity issues have been replaced by sequence-
ability, making any comparison between genes still
unreliable.16

Experiment Analysis
Obviously the outcome of any experiment analysis is highly

dependent on proper design for experimentation combined with
excellent experiment execution. As mentioned before, proper
data analysis starts by anticipating the necessary data analyses
during the experiment design phase. While everyone is familiar
with the adagio “garbage in, garbage out,” many life-sciences
researchers and bioinformaticians often still feel tempted to ana-
lyze poor data. Even though the reasons, such as expensive experi-
mentation, or pressure to finish a PhD study in time, can be very
persuasive, bioinformatics analysis of poor data invariably turns
out to be an extremely time-consuming effort that rarely has a
satisfying or scientifically sound outcome.3,4

Data analysis is still the domain of bioinformatics experts.
Currently, we experience a trend in which simple-to-operate
software tools allow biologists to analyze omics data them-
selves. Their increasing popularity among biologists is under-
standable from a perspective of both an apparent lack of
skilled bioinformaticians and a desire to be independent.
However, the fact that a scientist can operate a software tool
does not mean that he or she can use it safely. Like driving a
car, it helps if you have an expert instructor when you ven-
ture into treacherous traffic. Hence, bioinformatics-non-
expert biologists can opt to parameterize optimistically and
cherry pick their results. Consequently, they run the risk of
using wrong parameters settings or analyses methods during
their data analysis. Therefore, we recommend that at all
times expert bioinformaticians at least help to set up the
analysis workflow and preferably validate the workflow with
synthetic data sets. Likewise, at the time of the result inter-
pretation, expert genomics and bioinformatics guidance may
help avoid wrong conclusions. This argument goes both
ways, meaning that bioinformaticians should not interpret
experiment results without the assistance of genomics and
biology-domain experts. Much as we appreciate the desire for
independence in each life-sciences researcher, we advocate a
strict multidisciplinary approach when it comes to omics
experimentation.2,3,17

One of the most prevalent hazards in data analysis is that biol-
ogists and/or bioinformaticians get lost in the transcriptomics
data swamp. The sheer amount of data invariably leads to (appar-
ent) remarkable observations. However, without a proper
hypothesis these observations in data-driven experiment analysis
are in essence just phenomena, irrespective of whether they are
found by random data browsing or fancy data-correlating algo-
rithms. Although a phenomenon can lead to an (interesting)
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hypothesis, more often it will lead to endless wading through
the murky waters of transcriptomics data. Therefore, in the
hypothesis-driven versus data-driven dilemma, we would advise
to preferably use a hypothesis-driven approach in transcriptomics
experimentation.18

Another consequence of sensitive genome-wide detectors is
the fact that every response becomes visible. Choosing the
relevant one is a challenge. This brings us to the burning
question: Which transcriptome changes are biologically rele-
vant? Despite the fact that we have statistical tools to deter-
mine whether a difference is statistically significant, we have
no means to determine whether it is biologically relevant
and, as such, all observed differences should be considered
equally important. Yet, many scientists still use fold-change
(FC) difference as a cut-off to select important differentially-
expressed genes (DEGs), under the assumption that change
equals importance. One could wonder whether this assump-
tion is correct, given the fact that important regulating genes,
like p53, are mostly expressed at a relatively low level and
very often only show subtle differential expression.9 There-
fore, one could equally persuasively argue that genes that are
less important in gene expression regulation do not need to
be rigorously controlled, given that control is expensive in
terms of organization and energy. Advancing on that thought,
it seems as if so-called “significant noise” exists in cellular
organization. These are transcripts that are produced in a
given situation and can be detected with statistical confi-
dence, yet have no direct biological function just because, in
some complex cases, it is more efficient to use a relaxed sys-
tem for regulation than a strict one. To get a grip on func-
tionality of mRNA transcripts, one could for instance check
whether they are used for protein production by detecting
the associated proteins.

With respect to interpretation of results, clustering of
genes with differential expression has only limited use as it

may only lead to the identification of genes that are con-
trolled by the same mechanism, e.g., a common transcription
factor. To increase the knowledge about pathways, which
operate as cascades, gene set analysis is a better option for
analysis, although this will not extend these pathways beyond
the known gene sets. Another approach could be to consider
RNA levels of all genes as a signature of a “cell transcriptome
state.” Except for gene set analyses, most transcriptome analy-
ses compare RNA levels of individual genes between different
samples to identify DEGs. If one assumes that cells have a
certain “state” that is defined by the relative presence of RNA
between genes, one could compare the transcriptome state of
samples rather than individual genes. Also, the constant pres-
ence and absence of gene expression is important and should
be determined and incorporated in omics analyses. Of course,
this implies modeling in a systems-biology approach, which
currently seems to be out of reach when working with over
20,000 genes.

Closing

It is evident that transcriptomics has brought us many new
and exciting insights in the functioning of the cell, albeit often a
message of confusing complexity. Moreover, we have no doubt
that the approaching generation of omics technologies, which are
on the brink of introduction, will bring us even more compre-
hensive knowledge and, undoubtedly, many new lessons. All
together, we feel that the paradigm shift that has been preached
from the dawn of the omics era has only just arrived.
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