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Cavity-induced quantum spin liquids
Alessio Chiocchetta 1✉, Dominik Kiese1, Carl Philipp Zelle1, Francesco Piazza2 & Sebastian Diehl1

Quantum spin liquids provide paradigmatic examples of highly entangled quantum states of

matter. Frustration is the key mechanism to favor spin liquids over more conventional

magnetically ordered states. Here we propose to engineer frustration by exploiting the

coupling of quantum magnets to the quantized light of an optical cavity. The interplay

between the quantum fluctuations of the electro-magnetic field and the strongly correlated

electrons results in a tunable long-range interaction between localized spins. This cavity-

induced frustration robustly stabilizes spin liquid states, which occupy an extensive region in

the phase diagram spanned by the range and strength of the tailored interaction. This occurs

even in originally unfrustrated systems, as we showcase for the Heisenberg model on the

square lattice.
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Quantum spin liquids (QSLs) represent strongly correlated
phases of matter, which are characterized by quantum
fluctuations so dominant as to suppress magnetic

ordering down to the lowest temperatures. Yet, the spins may be
quantum mechanically entangled over long distances1–3. In
Nature, QSLs are expected to occur in proximity to magnetic
phases, but their existence often remains elusive. The key ingre-
dient behind quantum spin liquid formation is, however, clearly
identified: it is the presence of strong frustration, which disallows
magnetic symmetry breaking, but need not be averse to, e.g.,
quantum mechanical singlet ordering. The routes towards frus-
tration are manifold: one promising avenue is the focus on
materials where magnetic ordering is penalized by the geometry
of the lattice, such as for triangular, Kagomé or pyrochlore
lattices4–7. Another one proceeds via the energetic competition of
couplings of different ranges, like in the antiferromagnetic (AFM)
J1–J2 Heisenberg model or dipolar-interacting systems8–10, where
the simultaneous appearance of nearest- and beyond-nearest-
neighbour couplings counteracts global antiferromagnetism.

The challenge is then out to engineer robust QSL states of
quantum condensed matter. Here, we will achieve this task by
coupling an ordinary Heisenberg antiferromagnet on a square
lattice to the electromagnetic field of an optical cavity.

The physical mechanism stabilizing the QSL takes the second
route towards strong frustration to the extreme, by considering
long-range AFM interactions described by an algebraically
decaying spin–spin interaction ~r−α including the case of all-to-
all couplings α= 0, mediated by the cavity, cf. Fig. 1a. For the
limiting case α= 0 and a cavity-induced interaction γ dominating
over the nearest-neighbour Heisenberg coupling J, J/γ= 0, this
realizes a state with long-range correlations mediated by singlets
of arbitrarily large size (LRS). Away from this limit, and for decay
exponents α≲ 1, within a Schwinger–Boson approach, we find
that the frustration imprinted by the cavity creates an extensive
regime of QSL states. It is characterized by the absence of
spontaneous symmetry breaking, and fractional excitations of
both of a gapped (SL-I) and of gapless (SL-II) nature, cf. Fig. 1b.
As a consequence of the underlying long-ranged interactions,
correlations decay algebraically in both these phases.

In terms of physical implementation, we draw motivation from
recent developments exploring the interplay of quantum mate-
rials with quantized light. This idea has been researched in the
context of weakly correlated systems, mainly as a tool to reinforce
superconductivity and other coherent many-body phases11–20.
First works have also addressed the strong coupling regime,
showing how existing phases can be manipulated in this

way12,21,22. Here, we demonstrate that the coupling to a cavity
can even induce phases that are not present in its absence: an
unfrustrated AFM system is turned into a quantum spin liquid,
provided the AFM interaction mediated by the cavity is suffi-
ciently long-ranged and strong. To achieve these requirements,
we develop a solid-state implementation harnessing localized
electronic orbitals as effective spin degrees of freedom, coupled to
the cavity modes via additional coherent laser drive, cf. Fig. 1a.
This gives rise to quantum mechanically fluctuating, effective
magnetic fields in all linearly independent spatial directions,
which vanish on average. They thus counteract dynamically
magnetization in any direction, but do not suppress the spin-
singlet ordering, crucial for QSL states.

Results
Model. We consider a long-range SU(2)-symmetric Heisenberg
model on a square lattice

H ¼ J ∑
hi;ji

Si � Sj þ γ∑
i≠j

Si � Sj
jrijjα

; ð1Þ

with Si ¼ ðSxi ; Syi ; Szi Þ spin-1/2 operators on the lattice site i, J > 0
the nearest-neighbour AFM exchange, γ > 0 the strength of the
long-range interaction modulated by the exponent α and rij≡
ri− rj. Periodic boundary conditions are assumed. Before ana-
lysing the ground-state phase diagram of the Hamiltonian (1), let
us qualitatively discuss the expected phases, starting with some
known limiting cases. For γ= 0, the ground state of the Hamil-
tonian (1) displays Néel-like order23. For α= 0 and γ≫ J, the
long-range Hamiltonian is proportional to the total spin ð∑iSiÞ2:
this imposes a constraint on this singlet manifold, energetically
penalizing states with a finite value of the total spin S, including
states with finite magnetization. As a result, the ground state of
the total Hamiltonian is given by the ground state of the short-
range Hamiltonian projected on the singlet manifold. This is
similar to the analysis in ref. 24, where resonating valence bond
(RVB) states with singlets of arbitrarily large size were used as
variational wavefunctions. We will denote this state as a long-
range singlet state (LRS). Finally, for J= 0, different scenarios are
possible: for α large enough, only nearest-neighbouring sites
experience an appreciable interaction, and therefore Néel-like
order is expected. For smaller values of α, the frustrating nature of
the interaction is expected to penalize AFM order, thus favoring
disordered phases. This was shown to be the case for α= 3 on the
triangular lattice8, and on the square lattice9 (although only for

Fig. 1 Implementation of a cavity-induced quantum spin liquid and phase diagram. a Setup: a two-dimensional material, with nearest-neighbour
exchange interaction J, is coupled to a cavity with fundamental frequencies ω⊥,∥, whose field is represented by the light-blue arrows. The system is driven
by an external laser with frequency ωL. b Level scheme: the electronic orbitals jb1;2i, with energies ~ϵ1,2 are coupled to the auxiliary band b3

�� �
, with energy

~ϵ3 via the laser with Rabi frequency ΩL and the cavity modes a⊥,∥. The third band is detuned from the laser by Δ3, and from the cavity modes by Δ⊥,∥. c
Phase diagram for the ground state of Hamiltonian (1), obtained from the bosonic spinon decomposition, as a function of the exponent α and of the
coupling ratio γ/J, featuring spin-liquid (SL), long-range-single (LRS) and antiferromagnetic (AFM) phases. Error bars on the phase boundaries are within
the symbols’ size. The inset shows the square lattice and the reciprocal one, with the respective primitive vectors.
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spatially anisotropic interactions in the latter case), where a QSL
phase was found.

Summarizing, by varying γ/J and α, we expect three kinds of
phases: (i) Néel-like AFM, (ii) a disordered QSL phase, and (iii)
an LRS phase. This is substantiated below using a
Schwinger–Boson approach, which is capable of capturing all
the phases mentioned above. In particular, it provides a natural
interpolation scheme between the well-understood RVB and Néel
physics discussed above.

In order to unveil the nature of the ground state of the
Hamiltonian (1), we apply the bosonic spinon decomposition
pioneered in refs. 25–27, where the spin operators are represented
in terms of new bosonic degrees of freedom, ultimately
interpreted as emergent fractional excitations. While this method
represents an approximation25,26, it still provides useful informa-
tion to identify candidate spin liquids. Moreover, the main
advantage of this method is its flexibility to interpolate between
the different states previously identified. On the one hand, SU(2)-
symmetric bosonic ground states are identified with candidate
spin liquids. On the other hand, the onset of magnetic order is
signalled by the Bose–Einstein condensation of these bosons.

The spin operators on the lattice site j are decomposed as
(using sum convention for the Greek indices)

Sj ¼
1
2
byj;μσμνbj;ν; ð2Þ

where bj,μ is a boson (spinon) with spin μ∈ {↑, ↓}, and σ the
vector of Pauli matrices. The mapping is then completed by the
constraint byjμbjμ ¼ 1. Insights on the nature of the state are then
obtained from the expectation values of the SU(2)-invariant
bilinears Aij ¼ iσyμνhbiμbjνi=2; and Bij ¼ hbyiμbjμi=2, which indi-
cate the tendency of the spins at the sites i and j of forming a
singlet or to align, respectively. For SU(2)-symmetric states, finite
values of Aij and Bij determine a finite spinon hopping between
the lattice sites i and j, thus signalling the emergence of
propagating fractional excitations.

After performing a mean-field decoupling of the spinonic
Hamiltonian (see ‘Methods’ for further details), the values of Aij

and Bij are self-consistently determined by minimizing the
ground-state energy. This task is enabled in practice by using an
Ansatz for the values of Aij and Bij. The most natural choice is
the manifestly translational-invariant Ansatz Aij ¼ Ai�j,
Bij ¼ Bi�j, which follows from a projective-symmetry-group
analysis28. The resulting saddle-point equations, reported in Eq.
(9a, b, c), are reduced to a system of 2N+ 1 coupled non-linear
equations, for finite-size systems with N= L × L lattice sites. The
numerical complexity of the problem still limits the size N of the
systems for which a solution can be found.

For finite-size systems, a spontaneous symmetry breaking
cannot occur, and therefore the AFM order parameter always
vanishes. Accordingly, other criteria are needed to assess the onset
of an ordered phase. Here, we identify the onset of an AF-ordered
phase when the two following conditions are met: (i) the gap
Eg � minq Eq in the spinon dispersion closes upon increasing the
system size N and (ii) the squared magnetizationM2≡∑j∣Sj ⋅ S0∣/N
approaches a constant value upon increasing N. Notice that these
two indicators also naturally lend themselves to characterize the
other phases outlined before: a phase with M2= 0 corresponds to
either a gapped (Eg ≠ 0) or a gapless Eg= 0 QSL, while a phase with
M2 ≠ 0 and Eg ≠ 0 can be naturally identified with an LRS state.
These criteria are summarized in Table 1.

Let us finally discuss the phase diagram in Fig. 1c. The first,
main result, is the emergence of a gapped QSL phase (denoted as
SL-I) for α≲ 1.25, and γ≳ 5J, characterized by the presence of a

gap and by the absence of long-range correlations. This phase
appears for any α > 0.05, corresponding to the minimum value
here considered, suggesting that the LRS phase is unstable in this
region and only exists for α= 0. In addition, our data also show
the existence of a gapless QSL phase (denoted SL-II) for
intermediate values of α, clearly manifested in the largest
available system sizes, as shown in Fig. 2a, b.

For γ≲ 5J, the LRS phase is remarkably stable for α≲ 1.25.
Here, the system is simultaneously gapped and characterized by
long-range correlations (cf. Table 1), which, however, do not
correspond to a spontaneous symmetry breaking. Finally, we
observe that, as expected, for large values of α, as well as for γ= 0,
the system is always in the ordinary Néel–AFM phase.

An example of extrapolated values of M2 and Eg used to build
the phase diagram in Fig. 1c is shown in Fig. 2d, as a function of α
for γ= 7J. The fitting function used to extrapolate the L→∞
limit of these observables has the form OL ¼ O1 þ bOL

�ωO , with
O1, bO and ωO fitting parameters. The slightly negative
extrapolated values of M2 and Eg are due to the simplified form
of the extrapolation function above, which neglects subleading
terms in 1/L (cf. ref. 29). This fitting function was identified by a

preliminary evaluation of the quantity ξOðLÞ ¼ 1=ln OL�4�OL�2
OL�2�OL

� �
,

which displays a linear behaviour in L for algebraic finite-size
scaling, while it saturates for an exponential one30. The algebraic
finite-size scaling occurring also for gapped phases is imprinted
by the algebraic character of the interactions31. For the same
reason, the spin–spin correlation functions in the QSL phases also
display an algebraically decaying behaviour, rather than the usual
short-range one, with an exponent depending continuously on
the interaction’s exponent α (cf. Fig. 2e). Algebraic correlations
were similarly found for gapped, disordered phases in spin chains
with long-range interactions32–34, further substantiating the
generality of this mechanism.

Besides gap and long-range order, we provide a further
observable to characterize the phases here identified, i.e., the
dynamical structure factor SqðωÞ ¼

R
te
iωthS�qðtÞ � Sqð0Þi, with Sq

the Fourier transform of the spin operators with momentum q.
Sq(ω), which can be straightforwardly computed from the spinon
decomposition35, leads to markedly different features depending
on the phase. For the SL-I and SL-II phases (Fig. 3a, b,
respectively), the DSF features a broadening originated in the
continuum of fractional excitations. On the contrary, the AFM
phase (Fig. 3c) shows a sharper signal close to the gapless quasi-
particle dispersion, corresponding to the magnonic dispersion
expected in the AFM phase. We emphasize that the presence of a
gap in the DSF for the SL-II phase is a finite-size effect, and it is
expected to close in the thermodynamic limit. Finally, the LRS
phase (Fig. 3d) features a broadening similar to the SL-I phase,
suggesting the presence of fractionalized excitations.

A final word of caution concerns the accuracy of the bosonic
spinon decomposition used here. As a mean-field theory, it
provides a qualitatively correct topology of the phase diagram,
while the phase borders cannot be expected to be quantitatively
accurate.

Table 1 Ground-state phases.

SL-I SL-II LRS AFM

Gap Yes No Yes No
LRO No No Yes Yes

The summary of the four phases identified in this work was according to the criteria discussed in
the main text.
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Implementation. The Hamiltonian Eq. (1) (or variations of it)
can be realized in quantum simulators using trapped ions or
ultracold atoms8,36,37. While these platforms provide unprece-
dented controllability, the realization of low-temperature strongly
correlated phases remains challenging. On the converse, solid-
state platforms naturally feature strongly correlated physics at
cryogenically accessible temperatures. Moreover, the controll-
ability in 2D materials is progressing fast, making them, among
others, candidates for quantum simulators38. In the following, we

will focus on a scheme for implementing the Hamiltonian (1) in a
solid-state system.

Our proposal uses two electronic orbital degrees of freedom,
constituting a pseudospin of length S= 1/2. In the absence of a
cavity, the pseudospins are assumed to be described by a short-
range AFM Heisenberg model, emerging as a strong Mott limit of
a Hubbard model for the electronic degrees of freedom: this is the
case, e.g., of iridate and ruthenate materials39–41. We assume
SU(2) symmetry for the sake of simplicity.

Fig. 2 Numerical characterization of the ground state. a, b Dependence of the spinon gap (upper panel) and square magnetization (lower panel) on the
inverse linear system size. The curves refer to values of α and γ/J denoted in Fig. 1c by star symbols, according to the corresponding background colours.
The maximum linear size considered is L= 110. Insets: values of the functions ξEg ;M2 ðLÞ as functions of the linear system size L. c Spinon dispersion for
γ= 7J and α= 0.3 (SL-I phase), for given cuts in the first Brillouin zone. Inset: spinon dispersion in the first Brillouin zone. The white lines denote the cuts of
the main plot. d Extrapolated gap (blue curve) and square magnetization (red curve) as functions of the exponent α. The background colours reflect the
phases illustrated in Fig. 1c. e Spin–spin correlation functions along the lattice axis for different values of the exponent α and for γ= 7J. Inset: spin–spin
correlations at short distances.

Fig. 3 Dynamical structure factor. Sq(ω) as a function of the frequency ω and of the momentum q. Results are shown for: SL-I [panel a, γ= 9J, α= 0.3],
SL-II [panel b, γ= 9J, α= 0.6], AFM [panel c, γ= 5J, α= 1.0] and LRS [panel d, γ= 4.4J, α= 0.35].
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As substantiated further below, the coupling of the localized
electronic states to the cavity will result in a coupling between the
pseudospins and quantized effective magnetic fields. The setup we
consider is sketched in Fig. 1a. Two aspects of the long-range
Hamiltonian (1) are essential to unveil QSL phases: (i) an AFM
character of the induced interaction and (ii) a high degree of
symmetry, ideally SU(2). In order to control the symmetry of the
emerging cavity-mediated interaction, we propose to use two
cavity modes. While a single mode is sufficient to mediate a U(1)-
symmetric interaction, a second mode allows for an enhancement
to SU(2) symmetry. The required selectivity in the cavity–spin
coupling can be achieved via an auxiliary third band which is
driven far off-resonance by a laser [see Fig. 1b]. The resulting
two-photon transitions involve virtual excitations to the third
band and back to one of the two bands implementing the
pseudospin degree of freedom. The sign of the cavity-mediated
interaction is then finally determined by the detuning between the
laser and each cavity mode.

The paramagnetic and diamagnetic coupling terms between
electrons and electromagnetic field are given by:

Hint ¼
1
2m

Z
r
ψyðrÞ½2e p � Aðr; tÞ þ e2A2ðr; tÞ�ψðrÞ ; ð3Þ

with ψ the electronic operators, e the electronic charge and A(r, t)
the vector potential. A(r, t) includes the external laser with
frequency ωL and the cavity modes a⊥,∥ with frequencies ω⊥,∥. By
choosing the proper polarization for the cavity modes and the
laser, the scheme depicted in Fig. 1b can be realized: the laser and
the cavity mode a⊥ induces transitions between orbitals 1 and 3,
while the cavity mode a∥ couples only orbitals 2 and 3. As we
assume the electrons to be localized by the strong interaction
between particles, due to the strong localization, the field
operators can be conveniently expanded onto localized orbitals23:
ψ(r)=∑i,b= 1,2,3wib(r)cib, where wib(r)= wb(r− ri), with ri the
position of the centre of the unit cell. Here, the index i runs over
the lattice sites and b is the band index. The interaction
Hamiltonian (3) thus reads (see ‘Methods’ for further details)

Hint ¼ ∑
i

cyi3ci1ðρL31 þ a?ρ
?
31Þ þ cyi3ci2akρ

k
32 þ h.c.

h i
; ð4Þ

where we neglected counter-rotating terms and changed to the
frame rotating with the laser frequency, where ci3 ! ci3e

�iωLt ,
a‘ ! a‘e

�iωLt . Correspondingly, the third electron band and the
fundamental frequencies of the cavity modes ω‘ are shifted as
Δ3= ϵ3− ωL and Δ‘ = ω‘ − ωL. The matrix elements ρ‘bb0 ,
‘∈ {L,⊥, ∥} correspond to the transition rates between the bands
b and b0.

The effective cavity–spin coupling is then obtained by
eliminating the third band adiabatically, assuming the band
detuning ∣Δ3∣ to be much larger than the matrix elements ρ‘bb0 ,
‘∈ {L,⊥, ∥} and the cavity detunings Δ⊥,∥. The resulting
interaction Hamiltonian describes spins coupled to global,
quantum mechanically fluctuating effective magnetic fields:

Hint ¼ ∑
i
BxSxi þ BySyi þ BzSzi
� �

; ð5Þ

with Bz ¼ �ðρL13ρ?31a? þ h.c. Þ=Δ3, Bx ¼ �ðρL13ρk32ak þ h.c. Þ=Δ3

and By ¼ �ðiρL13ρk32ak þ h.c. Þ=Δ3, and Si ¼ cyibσbb0cib0=2 is the
pseudo-spin operator. The values of the effective fluctuating
effective magnetic fields Ba, a= x, y, z, reflect the laser-assisted
processes illustrated in Fig. 1. For instance, Bx and By, which
couple the first and second orbital, result from the laser-assisted
excitation of an electron from the first to the third auxiliary band,
followed by a decay to the second band with the emission of a
cavity photon. The U(1) symmetry of the Hamiltonian results
from neglecting the counter-rotating terms, and it is evident from

the fact that an excitation from the first to the second band is
accompanied only by the creation of a cavity photon, and vice
versa. Equation (5) is one of the main results of this paper: the
effective quantum magnetic fields Ba couple to all the spins,
generating an effective long-range coupling. To further con-
solidate this insight, we integrate out the cavity field at the level of
the Heisenberg equations and obtain an effective Hamiltonian for
the spins only42:

Hint ¼ ∑
ij

γzS
z
i S

z
j þ γ?ðSxi Sxj þ Syi S

y
j Þ

h i
; ð6Þ

with the long-range exchange γz ¼ jρL13ρ?13j2=ðΔ2
3Δ?Þ and

γ? ¼ jρL13ρk23j2=ðΔ2
3ΔkÞ. The interaction is thus naturally U(1)-

symmetric, and full SU(2) symmetry can be achieved by adjusting
the cavity-mode detunings. Importantly, by choosing the latter to
be positive (i.e. a blue-detuned laser), the cavity-mediated
interaction is AFM.

We now briefly show how multi-mode cavities can generate
spatially dependent effective spin–spin interactions. To this end,
we consider a cavity with a large number of modes. For
simplicity, we assume them to correspond to photons propagat-
ing as plane waves along the transverse direction with a

dispersion Δ‘;q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
‘ þ ðcqÞ2

q
� ωL, with c the speed of light

in the medium. The form of the Hamiltonian (5) is then
preserved, with the fluctuating magnetic fields now possessing a
spatial structure according to

Ba ¼ ∑
q
gaq aq eiq�rj þ h.c. ; ð7Þ

with gaq the momentum-dependent version of the coupling
reported below Eq. (5). By integrating out the cavity photons, one
obtains an effective Hamiltonian as in Eq. (6), where the effective
exchange interaction between the spins Sa and Sb is given by
Γabij ¼ ∑qg

a
qg

b
q e�iq�rij=Δ‘;q: While the precise form of Γabij

depends on the details of gaq, its spatial structure is expected to
be long-ranged. In fact, the length scale governing the spatial

behaviour is proportional to Δ�1=2
‘ : in THz cavities, the ratio

between the lattice size and this length scale is of order 10−4, see,
e.g., ref. 14, and, therefore Γabij , can be effectively modelled as a
slowly decaying function. For photonic crystal cavities, the form
of Γabij can be even further engineered by exploiting the band
dispersion of the cavity photons43. The precise form of this
function is not expected to qualitatively affect the phase diagram.
Accordingly, we choose to parametrize the interaction as
Γabij ’ jri � rjj�α, with the value of α compactly encoding the
interaction range. The values of α achievable with realistic cavity
parameters are of order 10−1, and therefore favourable to observe
the SL phases (see ‘Methods’ for further details).

We finally provide an estimate for the values of γ in Eq. (1)
achievable with this setup (see ‘Methods’ for further details). The
dipole matrix elements can be estimated assuming a lattice
spacing of few angstroms. For THz cavities with a compression
factor of ~10−5 or smaller, a drive with an intensity of
~10MW cm−2 leads to values of γ of order ~100 K. This number
is comparable or larger than typical couplings in antiferro-
magnets, which range from ~5 K for vanadates44 to ~600 K for
iridates45. For α-RuCl3, the (ferromagnetic) Heisenberg interac-
tion is ~40 K, while the Kitaev one is ~80 K, see ref. 46.
Accordingly, the spin–liquid phases predicted in the phase
diagram in Fig. 1c are achievable with current setups.
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Discussion
In this work, we showed that long-range spin–exchange inter-
actions can be robustly induced by coupling a strongly correlated
electron system to the quantum fluctuations of a driven cavity.
The electron–cavity coupling gives rise to a variety of tunable spin
interactions, including frustrated ones. The thus created cavity-
mediated frustration can destroy the magnetic order, favoring
disordered spin–liquid states, absent in the cavity-less config-
uration. We have demonstrated this for an ordinary Heisenberg
antiferromagnet, whose ground state manifests an extensive and
robust quantum spin–liquid phase when coupled to a cavity. Our
results open avenues for engineering quantum spin liquids,
sparking the challenge to devise new schemes to control elec-
tronic degrees of freedom with quantum light, and to uncover
phases of matter that are usually inaccessible. This also represents
an exciting perspective for the experimental detection of strongly
correlated phases: photons emitted from the cavities carry sig-
natures of the quantum many-body state, which become acces-
sible to standard optical measurements. Our findings are
immediately relevant also for quantum simulations. Artificial spin
systems with tunable long-range interactions can be currently
created using either trapped ions36,47 or ultracold atoms coupled
to an optical cavity48–51. These platforms represent, therefore,
ideal candidates to simulate quantum spin liquid phases.

Methods
Saddle-point equations for bosonic spinons. In this section, we outline the
derivation of the saddle point equations for the spinon bilinear expectation values
Aij and Bij.

The spin-exchange terms appearing in Eq. (1) can be recast as SiSj ¼: By
ijBij :

�Ay
ijAij for i ≠ j, where Aij ¼ iσyμνbiμbjν=2 and Bij ¼ byiμbjμ=2 are SU(2)-invariant

spinonic bilinears. A finite expectation value of these operators indicates the
tendency of the spins at the sites i and j of forming a singlet (Aij) or to align (Bij);
moreover, it induces a finite bosonic hopping rate between the lattice sites i and j,
signalling the existence of propagating fractional excitations. In order to solve for
the value of these quantities, we build on the approach of ref. 25. First, the
bosonized version of the Hamiltonian (1) is represented as a path integral, with the
constraint implemented by a space- and time-dependent Lagrange multiplier λi(t).
After decoupling the bilinear products by using a Hubbard–Stratonovich
transformation, the expectation values Aij ¼ hAiji and Bij ¼ hBiji are obtained as
saddle point values of the corresponding action. This approximation imposes the
constraint only on average, and the now position- and time-independent Lagrange
multiplier λ has to be determined self-consistently. This approximation is
equivalent to decoupling the Hamiltonian (1) in bosonic bilinears as:

H ¼ 1
2
∑
i;j

ϵijb
y
iμbjμ þ iΔ�

ijσ
y
μνbiμbjν

� �
þ h.c. þ ε0; ð8Þ

where ϵij ¼ JijB�
ij þ δijλ=2, Δ

�
ij ¼ �JijA�

ij and ε0 ¼ ∑i;jð�jBijj2 þ jAijj2Þ � 2SNλ.
As discussed in the main text, we assume a translational-invariant ansatz, i.e.
Aij ¼ Ai�j and Bij ¼ Bi�j , able to interpolate between all the expected phases. The

two degenerate eigenvalues of H are given by E2
q ¼ ϵ2q � jΔqj2, with ϵq and Δq the

Fourier transform of the functions appearing in Eq. (8). By minimizing the ground-

state energy E0 ¼ ∑q Eq � ϵq

� �
þ ε0 with respect to the variational parameters ϵq,

Δq and λ, one obtains the saddle-point equations:

1 ¼ 1
2N

∑
q

ϵq
Eq

; ð9aÞ

ϵp ¼ λþ 1
2N

∑
q
Jp�q

ϵq
Eq

� 1

 !
; ð9bÞ

Δp ¼ 1
2N

∑
q
Jp�q

Δq

Eq
; ð9cÞ

with Jq the Fourier transform of Jij. These equations provide the full momentum
dependence of the functions ϵq and Δq. The actual number of unknowns increases
with the range of the interaction. In fact, for short-range interactions, the
momentum dependence can be found analytically, and only a few parameters are
left to be computed self-consistently. For long-range interactions, instead, the full
momentum dependence needs to be found numerically. Equation (9a, b, c)
amounts to a system of 2N+ 1 coupled non-linear equations, with N the total
number of sites. To find the roots of these equations, we used a trust region solver

as provided by the Julia NLSolve library, with the accepted residual norm set to
10−8. The error of the numerical solution for a finite system of N sites is, therefore,
negligible compared to the extrapolation to the thermodynamic limit. Determining
ξOðLÞ by a least-squares fit resulted in relative errors between 0.5 and 2%, which we
consider to be sufficient for the analysis performed here. The root-finding
algorithm is accelerated by exploiting vectorization for the evaluation of the saddle-
point equations where possible, and by parallelization via OpenBLAS.

Implementation details. Here, we provide additional details to the set-up
described in the main text. The vector potential can be written as

Aðr; tÞ ¼ ΩLuLφLðrÞeiωLt þ ∑
‘¼k;?

N ‘u‘a‘φ‘ðrÞ þ h:c:; ð10Þ

where Ω2
L and ωL denote the laser intensity and frequency, respectively. Here u and

φ(r) are the polarization vector and the mode wavefunction. For the cavity modes,
labelled by ‘= ∥,⊥, the wave function is normalized over the finite volume Vc and
N ‘ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=2ω‘ϵ0ϵr

p
, where ω‘ is the mode fundamental frequency and ϵ0, ϵr are the

vacuum and relative permittivity of the material, respectively.
We assume that that the mode wavefunctions φ(r) does not vary significantly

over the extent of the Wannier functions. By tuning the polarization vectors u to
selectively couple the orbitals as in Fig. 1, and by performing the rotating-wave
approximation, the resulting paramagnetic Hamiltonian term is given by Eq. (4),
with

ρ‘bb0 ¼
eN ‘

m
φ‘u‘ � hwibjpjwib0 i: ð11Þ

The expression for ρLbb0 can be obtained from the previous equation by replacing
N ‘ with ΩL.

The diamagnetic part of the Hamiltonian (3) reads, after neglecting higher-
order electron-photon processes of the type cy3c3ðaþ ayÞ and cy3c3a

ya:

Hint,dia ¼ ∑
‘¼?;k

δ‘ a
y
‘a‘ þ∑

i
δ3 cyi3ci3; ð12Þ

plus a term linear in the cavity fields, which vanishes as the laser and cavity
wavefunctions are orthogonal. The shifts

δ‘ ¼
e2

m
Ve N 2

‘ jφ‘j2; ð13aÞ

δ3 ¼
e2Ω2

L

m
jφLj2 þ ∑

‘¼?;k
e2N 2

‘

2m
jφ‘j2; ð13bÞ

renormalize the energies of the cavity modes and of the third band, respectively. By
assuming that the band detuning jeΔ3j is much larger than the coupling strengths
and the cavity detunings eΔ‘, the third band can be adiabatically eliminated, leading
to Eq. (5) in the main text, including an additional term B0 ∑iS

z
i , with

B0 ¼ jρL13j2=eΔ3. This effective classical magnetic field breaks explicitly the SU(2)
symmetry, but it is much smaller than the spin exchange and therefore it can be
safely neglected.

Estimate of interaction strength and range. We consider a THz laser (ωL= 100
THz) with intensity Ω2

L ¼ 10MWcm−2, with a small detuning from the cavity fre-
quency Δ⊥=Δ∥= 10−2 THz. The compression factor of the cavity is assumed to be
Λ= 10−5. The detuning from the third band is Δ3= 1 THz, thus satisfying the con-
dition Δ3≫Δ⊥. We estimate the matrix as follows: hwi1jpjwi30 i � mω13hwi1jrjwi30 i,
with ω13=ωL+ΔL and hwi1jrjwi30 i ¼ 10A, the same order of magnitude of a typical
lattice spacing. Using the formulas derived in the text, one then estimates a long-range
interaction with strength γ ~ 100 K.

We also provide an estimate of the values of α. To this end, we evaluate the
explicit form of Γ(rij) as reported in the text below Eq. (7). For simplicity, we
assume Δ⊥= Δ∥ ≡ Δ and ω⊥= ω∥ ≡ ω. The Rabi-like couplings gq inherits the
momentum dependence from the normalization of every mode, i.e.

gq / ðω2 þ ðcqÞ2Þ�1=4
. Accordingly, the cavity-mediated exchange is given by:

ΓðrijÞ / ∑
q

e�iq�rijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 þ ðcqÞ2

p
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
c þ ðcqÞ2

q
� ωLÞ

: ð14Þ

The corresponding integral is computed numerically, and the results shown in
Fig. 4 over a range of 50 lattice sites, for different values of the cavity detuning. The
values of α obtained are reported in the figure.

Heating effects. A possible advantage of our scheme is that it does not rely on the
laser being resonant with any electronic or phononic excitation, with the only
tradeoff of a decreasing coupling strength as the detuning increases. Exploiting the
variability of the detuning, as well as the knowledge of the relevant excitation
modes of the quantum material and the cavity, resonances can be avoided and
heating is pushed to later times. This said, we can on the other hand consider the
worst-case scenario, where heating does efficiently take place, and estimate the
amount of it, following ref. 52. As a paradigmatic material, we consider RuCl3,
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which features orbital pseudospin, and whose low-temperature properties have
been intensely studied46. In order to estimate the heating of the material surface
due to the external laser, we evaluate the energy density deposited by the laser using
the formula:

ϵðzÞ ¼ ð1� RÞ F
dp

e
� z

dp ; ð15Þ

with z the depth in the sample, R ~ 0.05 the material reflectivity at the laser fre-
quency considered, i.e. 100 THz (cf. ref. 53), dp the penetration depth, chosen of an
order of micrometres and F is the excitation energy density. In order to achieve
lasing in the desired frequency range, a short-pulse protocol can be used. By
considering pulses of ~10 ps, and maximal laser intensity of 10 MW cm−2, we
require F ¼ 10�5 J cm−2. In order to estimate the increase in temperature due to
the deposited energy density ϵ(z), we assume that thermalization time is fast, and
use the following relation:

ϵðzÞ ¼ 1
Vm

ZT f ðzÞ

T0

CpðTÞdT; ð16Þ

where Vm= 53.32 cm3 mol−1 is the molar volume of α-RuCl3, and Cp is the molar
heat capacity, for which we use the value fitted from the measurements of ref. 54,
and T0 is the initial temperature in the sample. For an initial temperature of
T0= 2 K, the rise in temperature as a function of z and for different values of the
penetration length dp are reported in Fig. 5 here. The estimated temperature
increase in the first layers is in between 5 and 20 K, depending on the penetration
depth. In order to understand the impact of heating on the candidate QSL phases, a
simple criterion compares the temperature increase with the gap (at least for the
gapped spin liquid phase, which we dubbed SL-I in the main text). Robustness of

the QSL phase then requires the temperature increase to be smaller than the gap,
whose scale is given by the material couplings and by the cavity-induced interac-
tion. For α-RuCl3, as discussed in the main text, interactions lie between 40 and
80 K. Accordingly, the heating induced by the laser is not expected to destabilize
the gapped QSL phase. For what concerns the gapless QSL phase (SL-II in the main
text), the previous argument is clearly inapplicable, and its robustness against
thermal fluctuations must be assessed using a more sophisticated approach, e.g. by
solving the saddle-point equations at finite temperature.

Code availability
The code that supports the plots within this paper is available from the corresponding
author upon reasonable request.
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