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Genome wide association study 
of body weight and feed efficiency 
traits in a commercial broiler 
chicken population, a re-visitation
Wossenie Mebratie   1,2, Henry Reyer3, Klaus Wimmers   3, Henk Bovenhuis2 & Just Jensen   1

Genome wide association study was conducted using a mixed linear model (MLM) approach that 
accounted for family structure to identify single nucleotide polymorphisms (SNPs) and candidate genes 
associated with body weight (BW) and feed efficiency (FE) traits in a broiler chicken population. The 
results of the MLM approach were compared with the results of a general linear model approach that 
does not take family structure in to account. In total, 11 quantitative trait loci (QTL) and 21 SNPs, were 
identified to be significantly associated with BW traits and 5 QTL and 5 SNPs were found associated 
with FE traits using MLM approach. Besides some overlaps between the results of the two GWAS 
approaches, there are considerable differences in the detected QTL. Even though the genomic inflation 
factor (λ) values indicate that there is no strong family structure in this population, using models 
that account for the existing family structure may reduce bias and increase accuracy of the estimated 
SNP effects in the association analysis. The SNPs and candidate genes identified in this study provide 
information on the genetic background of BW and FE traits in broiler chickens and might be used as 
prior information for genomic selection.

Genome wide association studies (GWAS) are commonly used to identify single nucleotide polymorphisms 
(SNPs) and candidate genes associated with quantitative traits. GWAS have revealed important regions associated 
with production, reproduction and disease resistance traits in chickens1–7.

One of the essential elements in GWAS is a powerful statistical method that can be employed to identify 
genetic associations in unbiased fashion8. Methods that model population structure by estimating the covariance 
due to genetic relatedness between individuals has been reported to perform better in terms of detecting true 
associations than models that ignore population structure9–12.

Kennedy et al.13 reported that using general linear model (GLM) analysis when relations between animals 
exist, results in an inflated F-test. Consequently it is likely to find an excess of spurious genotype effects when 
actually no genotype effect exists13. In this situation, the use of mixed-model procedures under an animal model 
treating single-gene effects as fixed effect and accounting for family relations can provide an exact F-test of asso-
ciated hypotheses and unbiased estimates of genotype effects13,14.

Population structure mainly refers to population stratification and cryptic relatedness15. Population stratifica-
tion is the presence of systematic differences in allele frequencies between subpopulations in a population due to 
different ancestry between study subjects16. Unrecognized population stratification can lead to both false positive 
and falsenegative findings and can obscure the true association signals if not appropriately corrected17,18.

Cryptic relatedness refers to the phenomenon that some members of a study sample (population) might be 
related beyond what can be inferred from the pedigree, in which case their genotypes are not independent of the 
population frequencies19. Because population based association studies assume individual independence of study 
samples, cryptic relatedness may make these statistical tests less reliable and reduce the robustness and efficiencies 
of the studies15,17.
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Methods modeling population structure, family structure and cryptic relatedness are expected to per-
form better than models that ignore these complexities11,15. Mixed models offer a practical and comprehensive 
approach for simultaneously addressing confounding due to population stratification, family structure and cryp-
tic relatedness9,10,19.

This study aims to identify potential loci and candidate genes associated with body weight (BW) and feed 
efficiency (FE) traits in a commercial broiler line genotyped with 60 k SNP chip using mixed linear model (MLM) 
approach that accounts for family structure and compare the results with general linear model (GLM) approach 
that does not take family structure in to account.

Materials and Methods
Ethical statement.  Samples were collected from a commercial flock under the guidance of the local com-
mittees for the care and use of animals following the Cobb-Vantress Inc. Animal Welfare Policy. In addition, the 
experimental protocol was carried out in accordance with the approved guidelines for safeguarding good scien-
tific practice at the institutions in the Leibniz Association.

Birds and phenotypic data.  Phenotypic data were obtained from Cobb-Vantress broiler breeding com-
pany. A total of 5000 male broilers fed standard commercial broiler chicken diet based mainly on maize were 
raised from hatch to five weeks of age. Only males were studied in this experiment since selection intensity in 
males is considerably higher than that of females in broiler breeding programs. At the age of 36 days, birds were 
weighed (BW36) and the heaviest 1000 birds were selected for feed efficiency (FE) experiment and put in individ-
ual cages. At the age of 39 days (BW39), birds entered to a 7 day FE experiment and final body weight (BW46) was 
recorded at the end of the experiment. Total feed intake (FI) was recorded from individually caged birds during 
the experiment. Body weight gain (Gain) was calculated as the difference between final body weight (BW49) and 
start weight (BW39). Feed conversion ratio (FCR) was calculated as the ratio of feed intake to body weight gain. 
After data cleaning, 848 BW and FE records were used for further analysis.

Genotyping and quality control.  Blood samples from the branchial vein were collected in anticoagu-
lant tubes for DNA extraction. Extraction of genomic DNA was performed using Qiagen 96-well extraction kit 
(Qiagen, Hilden, Germany). DNA from a total of 864 samples were genotyped using the Illumina 60 K SNP chip 
(Illumina, San Diego, CA, USA). The Illumina 60 K SNP chip contains 57636 SNPs that are distributed across 
29 autosomes (chromosome 1 to 28 and chromosome 32), two linkage groups (LGE 64 and LGE 22 C19 W28_
E50C23), and two sex chromosomes (Z and W) using chicken genome assembly Galgal4. In this study only male 
broilers were examined so only genotypes from the Z sex chromosome were included. Plink software was used 
for quality control of the genotypic data20. SNPs with low call rates (<95%), minor allele frequency (MAF < 0.03) 
and Hardy Weinberg equilibrium (HWE) P-value (<0.0001) were excluded. After quality control a total of 43914 
SNPs were retained for GWAS analysis.

Genome wide association analysis.  Genome wide association analysis was performed for BW traits 
(BW36, BW39, BW46) and for traits from the FE test (FI, Gain and FCR) using GCTA21. The genomic relationship 
matrix (GRM) was constructed using methods from Yang et al.22. The P-values were adjusted by Bonferroni cor-
rection based on linkage disequilibrium23. The effective number of independent SNPs of autosomes were defined 
by the independent pairwise option in plink20. A total of 19416 independent SNPs were identified and the 5% 
genome wide significance threshold was adjusted to -log10 (P-value) = 5.60. The threshold P-value for suggestive 
significant association that allows one false positive association per GWAS was adjusted to -log10 (P-value) = 4.3. 
Genomic inflation factor (λ), was calculated using the R package GenABEL with “median” option24.

Manhattan plots of genome wide association analysis and quantile-quantile (QQ) plots were created using 
the qqman package in R software25. The annotated genes that were closest to the top SNPs were identified using 
Ensembl and NCBI. The reported top SNPs or “lead SNPs” are SNPs which have the highest -log 10 (P-value) 
among the significant SNPs which are in linkage disequilibrium (LD) with each other in 1 Mb windows. Base 
pair positions of SNP markers were updated to the latest version of the chicken genome assembly Gallus-gallus-5 
(Galgal5).

For FI and Gain, the following linear mixed model was used:

= + β + β + +µ my x Zu e (1)i 1

For FCR and BW traits the following linear mixed model was used:

= + β + +µ my Zu e (2)i

Where, y is a vector of BW or FE observations, μ is the mean term, β is the SNP effect for marker i, m is a vector 
of SNPs for the ith SNP genotype indicator variable coded as 0, 1 or 2, β1 is the regression coefficient (the effect of 
start weight on FI and Gain that accounts for differences in start weight), x is a vector of start weights (BW39), u 
is a vector of random polygenic effects i.e. The effect of all QTL except those on the chromosome where the can-
didate SNP is located, e is a vector of random residuals. The variance of u was re-estimated each time when a 
chromosome was excluded from calculating the genetic relationship matrix. Z is the incidence matrix for the 
random effect. The variance co-variance structure for the random effects were assumed to be normally distributed 
with mean 0 and variance; var (u) =  σG g

2 and var (e) =  σI e
2. Start weight was included in the model as covariate for 

FI and Gain in order to account for differences in start weight for these traits. The genomic relationship matrix of 
this broiler population indicated that there are only small number of half sibs and full sibs in the data26, therefore 
maternal effects were not included in the model.
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Comparison of MLM and GLM approaches.  The results of the present study were compared with the 
results of the GLM analysis by Reyer et al.5 which does not take family structure in to account, using the following 
model.

= + β + β +µ my x e (3)i 1

Where, y is the BW or FE observations, μ is the mean term, β is the SNP effect for marker i, m is vector of markers 
for the ith SNP genotype indicator variable coded as 0, 1 or 2, β1 is the regression coefficient (the effect of start 
weight on FI and Gain) that accounts for differences in start weight, x is a vector of start weights (BW39) for FI 
and Gain, and, e is the random residual. The variance of e is Iσe

2. Base pair positions of SNP markers in Reyer  
et al.5 were updated to the latest version of the chicken genome assembly, Gallus-gallus-5 (Galgal5) for easy com-
parison of the results with the current study.

Results
GWAS results for body weight traits.  Using MLM approach, the present study revealed 3 QTL which 
have suggestive significance association with BW36, 6 QTL with BW39 and 2 QTL with BW46 (Table 1). A total of 
11 QTL and 21 SNPs reached the suggestive significance level with BW traits. The top SNPs and candidate genes 
associated with BW36 are located on chromosome 12, 14, and 8 while the top SNPs associated with BW39 are 
located on chromosome 12, 14, 1 and 23. The top SNPs associated with BW 46 are located on chromosome 6 and 
1 (Table 1). Manhattan plots and QQ plots of body weight traits are shown in Figs 1 and 2, respectively. All the 
reported QTL in Table 1 are suggestive, no SNP reached the genome-wide significance level for BW and FE traits 
in the present study, which suggests that BW and FE traits are controlled by many genes, each with small effects. 
All of the reported top SNPs were found inside the candidate genes in an intronic region except SNP rs15652523 
associated with BW39, which is, located 2.52 Kb upstream of the candidate gene LOC107054392 (Table 1).

SNP, rs14042911, is one of the top SNPs (-log 10 (P-value) = 5.15) associated with BW36 which is located on 
chromosome 12. Due to the proximal position to the top SNP, PTPRG (protein tyrosine phosphatase, receptor 
type G) is proposed as candidate gene associated with BW36 (Table 1). PTPRG is a protein coding gene which is a 
member of the protein tyrosine phosphatase (PTP) family. In humans members of the PTP gene family are known 
to be signaling molecules that regulate a variety of cellular processes including cell growth and differentiation, 
mitotic cycle, and oncogenic transformation27. Moreover, SNPs, rs14073523 and rs16617885, located on chromo-
some 14 and 8, are top SNPs associated with BW36. CACNA1H (calcium voltage-gated channel subunit alpha1 
H); a protein coding gene and LOC107053920 (uncharacterized gene) are the proximal genes to the top SNPs, 
rs14073523, and rs16617885, respectively. Wang et al.2 identified QTL located on chromosome 14 associated with 
abdominal fat weight in chickens. The detected QTL for BW traits in the current study suggest that the genetic 
variance of BW was not exhausted after the pre-selection rather there are many genes with small effects left in the 
population. This is a remarkable finding relative to our expectation given the fact that this broiler line has been 
pre-selected for BW. Mebratie et al.26 also noted an increase in genetic variance of BW after several generations of 
selection in a commercial broiler chicken population.

This study also revealed 6 QTL located on chromosome 12, 14, 1 and 23, to have suggestive significance associ-
ation with BW39, 3 of them located on chromosome 12. SNP, rs10723005, is one of the top SNPs, associated with 
BW39 found on chromosome 12 which is located in an intron region of CCDC71 (coiled-coil domain containing 
71 recombinant protein). SNPs, rs316610173, and, rs15652523, which are located on chromosome 12 and SNPs, 

Trait Chromosome

Number of 
significant 
SNPs

Top SNP in 1 
MB window

Galgal5 
position (bp)

-log10 
(P-value)

SNP effect 
(SE) Proximal gene

Distance 
from gene

Body weight (36days) 12 8 rs13612706 12867052 5.03 −0.039 (0.009) PTPRG Within

Body weight (36 days) 14 1 rs14073523 5337950 4.89 0.036 (0.008) CACNA1H Within

Body weight (36 days) 8 1 rs16617885 1883743 4.79 −0.051 (0.012) LOC107053920 Within

Body weight (39 days) 12 1 rs10723005 11570033 4.89 −0.054 (0.012) CCDC71 Within

Body weight (39 days) 12 3 rs316610173 12931647 4.74 −0.047 (0.011) PTPRG Within

Body weight (39 days) 12 2 rs15652523 10278318 4.72 −0.043 (0.010) LOC107054392 2.52 Kb 
upstream

Body weight (39 days) 14 1 rs14073523 5337950 4.67 0.041 (0.010) CACNA1H Within

Body weight (39 days) 1 1 rs13880135 66076666 4.44 0.040 (0.010) SOX5 Within

Body weight (39 days) 23 1 rs16190017 3741996 4.38 0.043 (0.011) RSPO1 Within

Body weight (46 days) 6 1 rs315083186 7305184 4.94 −0.118 (0.027) LOC101748440 Within

Body weight (46 days) 1 1 rs314956606 61033904 4.39 −0.095 (0.023) ADIPOR2 Within

Feed intake 1 1 rs15384287 110928416 4.96 −0.111 (0.021) KDM6A Within

Body weight gain 8 1 rs16617885 1883743 4.43 −0.058 (0.013) LOC107053920 Within

Body weight gain 17 1 rs14098962 7902999 4.32 −0.054 (0.012) LOC107052218 Within

Feed conversion ratio 17 1 rs14098962 7902999 4.78 0.082 (0.019) LOC107052218 Within

Feed conversion ratio 6 1 rs14568465 6730175 4.30 0.073 (0.018) CTNNA3 Within

Table 1.  Top SNPs associated with body weight and feed efficiency traits using mixed linear model approach.
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rs14073523, rs13880135, and, rs16190017, located on chromosome 14, 1 and 23, respectively, are also found 
associated with BW 39 (Table 1). PTPRG, LOC107054435 (uncharacterized gene), CACNA1H, SOX5 (transcrip-
tion factor SOX-5) and RSPO1 (R-spondin 1) are candidate genes, with putative contribution to the variation in 
BW39. They are found proximal to SNPs, rs316610173, rs14073523, rs13880135 and rs16190017, respectively 
(Table 1). In humans, SOX5 is involved in the regulation of embryonic development and in the determination of 
the cell fate27 while RSPO1 gene in mice is involved in the rapid onset of crypt cell proliferation27.

Two QTL located on chromosome 6 and 1, showing suggestive significance association with BW46 were iden-
tified with MLM approach. SNP, rs315083186, located on chromosome 6 and, SNP, rs314956606, located on 
chromosome 1 were found significantly associated with BW46 (Table 1). The candidate genes associated with 

Figure 1.  Manhattan plots of genome wide association results for body weight traits using mixed linear 
model analysis. Chromosomes 29, 30 and 36 represent linkage groups LGE22C19W28_E50C23, LGE64, and 
chromosome Z, respectively. Red and blue lines indicate genome wide and suggestive significance thresholds, 
respectively.

Figure 2.  Quantile-quantile plots of body weight traits using mixed linear model approach.
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BW46 are LOC101748440 (uncharacterized gene) and ADIPOR2 (adiponectin receptor 2), which is a protein 
coding gene involved in fatty acid oxidation and glucose uptake in humans27. In the chicken QTL database28, 3 
QTL located on chromosome 12 and 2 QTL located on chromosome 12 are reported to be associated with BW36 
and BW46, respectively. One of the 3 QTL reported in the chicken QTL database for BW36 by Reyer et al.5 is 
overlapping with the identified QTL in the current study. However, the others are different QTL on the same 
chromosome, suggesting that chromosome 12 is potential chromosome for QTL associated with BW traits.

GWAS results for feed efficiency traits.  In this study a total of 5 QTL and 5 SNPs that showed suggestive 
significance association with FE traits were identified using MLM approach. QTL located on chromosome 1 is 
found associated with feed intake while 2 QTL located on chromosome 8 and 17 are found associated with body 
weight gain. Two QTL located on chromosome 17 and 6 are found significantly associated with FCR. The top 
SNPs and proximal genes associated with FI, Gain and FCR are reported in Table 1. Manhattan plots and QQ 
plots of feed efficiency traits are shown in Figs 3 and 4, respectively.

QTL that contain SNP, rs15384287, located on chromosome 1 is found to be associated with feed intake 
(Table 1). The candidate gene associated with feed intake is KDM6A (lysine demethylase 6A). In line with this 
study, Yuan et al.7 reported a region on chromosome 1 that contains 8 SNPs which are significantly associated 
with feed intake in laying hens. Similarly, Mignon-Grasteau et al.29 reported four QTL associated with feed intake 
on chromosome 1 in chickens. Gao et al.30 and Tran et al.31 also reported QTL located on chromosome 1 to be 
associated with Gizzard weight in chickens which might have positive correlation with feed intake.

Two QTL located on chromosome 8 and 17 reached the suggestive significance level with body weight gain. 
SNP, rs16617885, located on chromosome 8 and SNP, rs14098962, located on chromosome 17 are found associ-
ated with body weight gain (Table 1). LOC107053920 and LOC107052218 are uncharacterized candidate genes 
associated with the trait which are found proximal to the significant SNPs, rs16617885 and rs14098962, respec-
tively. SNP, rs16617885, located on chromosome 8 is also found associated with BW36 with overlapping unchar-
acterized candidate gene, LOC107053920 (Table 1).

Two QTL located on chromosome 17 and 6 showed suggestive significance association with FCR. SNPs, 
rs14098962 and rs14568465, located on chromosome 17 and 6, respectively are found associated with FCR 
(Table 1). CTNNA3 (catenin alpha 3) and LOC107052218 (uncharacterized gene) are the candidate genes found 
proximal to SNPs, rs14098962 and rs14568465, respectively. SNP, rs14098962, located on chromosome 17 and 
candidate gene LOC107052218 are also found associated with body weight gain (Table 1). Yuan et al.7 reported a 
region on chromosome 17 which is significantly associated with residual feed intake (RFI) in laying hens. In the 
chicken QTL database28 different authors have reported different QTL on chromosome 1 to be associated with 
FI. Similarly QTL on chromosomes 6 and 17 were reported to be associated with FCR in the QTL database. The 
reported chromosomes are overlapping with the chromosomes associated with FI and FCR in the current study. 
However, the QTL regions are different except the QTL reported by Reyer et al.5 for FCR located on chromosome 
6 which were identified using Bayesian method of analysis for the same broiler line.

Comparison of results in MLM and GLM approach.  The results of the MLM analysis in this study were 
compared with the results of the GLM analysis by Reyer et al.5 (Table 2). There are some overlaps between the 
identified QTL and candidate genes for BW36 and FCR. However, for most of the BW and FE traits, the identified 
QTL and candidate genes were different suggesting that the two methods do not necessarily give similar results. 
Table 3 shows comparison of genomic inflation factor (λ) between MLM and GLM analysis. The λ values in both 
approaches are “benign” and not significantly different from each other suggesting that population stratification 
is not a strong concern in our data.

Reyer et al.5 have reported GWAS results for two BW traits (BW36 and BW46) and three FE traits (FI, Gain 
and FCR) using the same data. Table 2 shows the reported GWAS results of the BW and FE traits derived from 
a general linear model (GLM) by Reyer et al.5. The GLM analysis was replicated in this study to compute the λ 
values reported in Table 3 and we found similar significant SNPs and -log 10 (P-values) for all of the BW and FE 
traits as reported by Reyer et al.5 (Table 2). BW39 was not considered in the analysis of Reyer et al.5 but considered 
both in the replicated GLM analysis and the MLM analysis in this study.

Using the GLM approach, Reyer et al.5 reported 2 QTL and 9 SNPs that reached the suggestive significance 
level, located on chromosome 12 and 14 which were associated with BW36. The reported top SNPs, rs13612706, 
rs14073523, and proximal candidate genes associated with BW 36 are consistent with the present study (Tables 1 
and 2). SNP, rs13612706, showed higher -log 10 (P-value) in the GLM analysis compared to the MLM approach, 
whereas SNP, rs14073523, was indicated by a higher -log 10 (P-value) in the MLM approach than the GLM 
approach (Tables 1 and 2). In both MLM and GLM approaches 8 SNPs located on chromosome 12 were found 
significantly associated with BW36 with overlapping candidate gene, PTPRG (Tables 1 and 2). All the reported 
QTL in Reyer et al.5 are those that reached the suggestive significance level (-log10 (P-value) ≥ 4.3). No QTL 
reached genome wide significance level (-log10 (P-value) ≥ 5.6) except QTL on chromosome 17 which is associ-
ated with FCR (Table 2).

Reyer et al.5 also reported 2 QTL and 2 SNPs associated with BW46 located on chromosome 8 and Z, 1 QTL 
and a single SNP associated with body weight gain located on chromosome 17, 1 QTL and 3 SNPs associated 
with feed intake located on chromosome 5, 19 and 26, which are not consistent with the present study (Table 2). 
Moreover, Reyer et al.5 reported 4 QTL and 5 SNPs which have significant association with FCR, 2 of them 
located on chromosome 17, 1 located on chromosome 4 and the remaining QTL located on chromosome 22 
(Table 2). Among the reported top SNPs associated with FCR, SNP rs4098962, located on chromosome 17 was 
found overlapping with the present study with higher -log 10 (P-value) in the GLM approach compared to the 
MLM approach. However, the reported candidate genes are different (Tables 1 and 2).
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For most of the BW and FE traits, the reported QTL in this study are not consistent with the reported QTL 
by Reyer et al.5. A total of 12 QTL and 20 SNPs associated with two BW (4 QTL and 11 SNPs) and three FE traits 
(8 QTL and 9 SNPs), were reported by Reyer et al.5 using the GLM approach (Table 2). By applying the MLM 
approach, the present study identified a total of 10 QTL and 17 SNPs, associated with the same BW (5 QTL and 
12 SNPs) and FE (5 QTL and 5 SNPs) traits (Table 1). Among the identified 10 QTL in the MLM approach only 2 
QTL associated with BW36 and FCR were found overlapping with the GLM approach while the 8 identified QTL 
were different from the ones reported in Reyer et al.5 for the same BW and FE traits.

Discussion
Body weight and feed efficiency traits are the most important economic traits in the poultry industry. Body 
weight is the live weight of birds at a given age and feed efficiency (FE) is the ability of birds to convert a certain 
input to a certain output (e.g. Kg of feed in to Kg of meat)32. Among the number of ways to asses feed efficiency, 
the most widely used are feed conversion ratio (FCR) and residual feed intake32.

We have performed GWAS for body weight and feed efficiency traits in a commercial broiler chicken popula-
tion using a MLM approach, taking family structure into account. The results were compared with the results of 
a GLM approach, which does not take family structure into account.

Reyer et al.5 also used Bayesian (Multi-marker) approach, which is more robust to population stratification33 
and reported more significant SNPs associated with BW and FE traits than the GLM approach. However, in this 
paper the results  were only compared with the single marker GLM approach which is comparable to the single 
marker MLM approach in the present study.

Xu et al.6 reported that chromosome 1 and 4 are the two critical chromosomes influencing growth traits particu-
larly body weight in chickens. In this study, SNPs on chromosome 1 were found to be associated with BW39 and 
BW46 while no significant SNP were found on chromosome 4 for any of the BW traits under study. Podisi et al.34  

Figure 3.  Manhattan plots of genome wide association results for feed efficiency traits using mixed linear 
model analysis. Chromosomes 29, 30 and 36 represent linkage groups LGE22C19W28_E50C23, LGE64, and 
chromosome Z, respectively. Red and blue lines indicate genome wide and suggestive significance thresholds, 
respectively.
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also reported two significant QTL for body weight at 12 weeks of age on chromosome 1 in broiler-layer cross 
female chickens.

Some of the BW and FE traits share consistent QTL and candidate genes. BW36 and BW39 share consistent 
region on chromosome 14 and candidate genes, PTPRG and CACNA1H, while BW46 does not share those can-
didate genes with BW36 and BW39. The effects of the lead SNPs with standard errors in parenthesis for BW36 
and BW39 were found to be 0.036 (0.008) and 0.041 (0.010), respectively. This might indicate that the effects of 
these genes are smaller on BW46 due to increasing importance of other genes for the trait, suggesting that the 
identified genes are age dependent and the two traits (BW36 and BW39) might be genetically correlated. Mebratie 
et al.26 have reported that the genetic correlation between BW at different ages increased as the distance between 
BW measurements decreased. This might be due to changes in the physiological system of the chickens with age. 
Indeed, Schaeffer35 states that there might be genes that “switch on” and “off ” at a certain age of an animal which 
could lead to changes in physiology and performance. Similarly, Carlborg et al.36 concluded that there are differ-
ent genes and gene actions involved in growth at different developmental stages.

BW36 and body weight gain share an overlapping region on chromosome 8 and consistent candidate gene, 
LOC107053920, with SNP effects −0.051 (0.012) and −0.058 (0.013), respectively (Table 1). This might suggest high 
positive genetic correlation between BW36 and body weight gain which is not surprising since body weight gain is a 
component of body weight. Furthermore, body weight gain and FCR share consistent QTL on chromosome 17 and 
candidate gene LOC107052218 (Table 1) with SNP effects −0.054 (0.012) and 0.082 (0.019), respectively.

Figure 4.  Quantile-quantile plots of feed efficiency traits using mixed linear  model approach.

Trait Chromosome
Number of 
significant SNPs Top SNP in 1MB window

Galgal5 
position (bp)

-log10 
(P-value) Candidate gene

Body weight (36 days) 12 8 rs13612706 12867052 5.31 PTPRG

Body weight (36 days) 14 1 rs14073523 5337950 4.42 CACNA1H

Body weight (46 days) 8 1 rs16617885 1883740 5.21 PTPRC,NR5A2

Body weight (46 days) Z 1 rs14753816 19805476 4.89 HTR1A

Feed intake 5 1 rs16266739 6549732 4.38 SPON1

Feed intake 19 1 GGaluGA001282 (rs313913143) 1878406 4.61 ENSGALG0000002830

Feed intake 26 1 rs15467593 539371 4.50 KDM5b

Body weight gain 17 1 GGaluGA117403 (rs312843163) 9904101 5.29 GPR144,NR5A1,NR6A1

Feed conversion ratio 4 2 rs14445503 31108872 5.04 HHIP

Feed conversion ratio 17 1 GGaluGA117403 (rs312843163) 9904101 6.57 NR5A1, NR6A1

Feed conversion ratio 17 1 rs14098962 7902999 4.86 RXRA

Feed conversion ratio 22 1 GGaluGA186837 (rs312757200) 4533949 5.07 ADRA1A

Table 2.  Top SNPs associated with body weight and feed efficiency traits using general linear model approach 
by Reyer et al. (2015). The position of SNPs is updated to the latest chicken genome assembly (Galgal5).
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This broiler line is pre-selected for BW (only heaviest birds were entered to the FE experiment) and under-
gone several generations of selection for feed efficiency. This phenomenon might affect the detection power of 
our GWAS and estimated SNP effect sizes since the genetic variance of BW and FE traits might be reduced due to 
the pre-selection and several generations of intense selection. Mebratie et al.37 have reported that the SNP based 
estimated genetic variance of BW (0–0.006 kg2) and FE traits (0.001–0.006 kg2) in this broiler population is very 
small with high standard error and among others, one of the reasons for the reported very small estimates of 
genetic variance was pre-selection of the broiler line for BW.

We have conducted GWAS using MLM approach, which takes in to account family structure and compared 
the results with the GLM approach by Reyer et al.5 which does not take family structure in to account. A number 
of studies38,39 have shown that methods that model family structure perform better than models that ignore fam-
ily structure. A widely used approach to evaluate whether confounding due to population stratification, family 
structure and cryptic relatedness exists is to compute the genomic inflation factor (λ), which is defined as the 
median χ2 (1 degree of freedom) association statistic across SNPs divided by its theoretical median under the 
null distribution40. Values of genomic inflation factor (λ) > 1 generally indicate population stratification or other 
confounders, such as family structure or cryptic relatedness19. Values of λ < 1.05 are considered “benign” regard-
ing power and type I error19,41, although inflation in λ is proportional to sample size.

Table 3 shows the λ values of BW and FE traits using the MLM approach in the present study and the GLM 
approach by Reyer et al.5. The genomic inflation factor values suggest that population structure is not a strong 
concern in our data and the values are not significantly different from each other in the two methods. Moreover, 
the genomic relationship matrix of individuals shows that there are only few half sib and full sib relations in the 
current data38 suggesting that family structure is not a strong concern. However, there is a slightly higher infla-
tion of λ values in the results of Reyer et al.5 compared to the results of the present study. This may suggest that 
although there is no strong family structure in the population, using MLM analysis that takes in to account the 
existing family structure may increase power to detect true associations than ignoring this kind of sample struc-
ture which may result spurious associations.

In a simulation study, Thornton et al.42 have noted that in the absence of markers with unusual allele frequency 
differences (markers with allele frequency differences that lie outside the expected distribution which could be 
caused by natural selection) using the genomic relationship matrix to account for both population and family 
structure can effectively control spurious associations under a variety of settings. Price et al.19 have also suggested 
that in studies where population stratification is not a very serious concern, an appealing and simple approach is 
to use mixed models.

For the commercial broiler chicken data used in this study, family structure is not a strong concern. However, 
as suggested by different authors14,19,42, we have used a MLM approach that takes in to account the existing family 
structure and revealed differences in the identified top SNPs and candidate genes associated with BW and FE 
traits compared with the GLM approach by Reyer et al.5. This strengthens the suggestion that, even though there 
is no strong family structure in the data, MLM approach that uses the genomic relationship matrix to account for 
the existing family structure may decrease bias and improve accuracy of the association analysis.

The results of this study might provide insight about the genetic background of body weight and feed effi-
ciency traits. Furthermore, the study emphasizes that GWAS using the two approaches (GLM and MLM) does not 
necessarily give similar results even with the absence of strong family structure in the data.

Conclusions
GWAS for BW and FE traits was performed in a commercial broiler chicken population. The present study has 
identified 11 QTL and 21 SNPs associated with BW traits and 5 QTL and 5 SNPs associated with FE traits. The 
results of this study provide insight on QTL and genes that are involved in the genetics of BW and FE traits 
in broiler chickens and can be used as fundamental information for genomic selection. Moreover, the MLM 
approach, which takes in to account the existing family structure by using the genomic relationship matrix, 
resulted in different QTL for most of the analyzed BW and FE traits compared to the GLM approach that ignored 
the existing family structure. Although, there is no strong family structure in this population, the use of MLM 
approach may increase power to detect true associations compared to the GLM approach that does not take fam-
ily structure into account as suggested by previous studies.

Trait
Lambda 
GLM SE

Lambda 
MLM SE

Body weight (36 days) 1.0812 9.921616e-05 1.0532 0.0001531706

Body weight (39 days) 1.0925 8.277596e-05 1.0423 8.860991e-05

Body weight (46 days) 1.0592 0.002739952 1.0057 0.0001031297

Feed intake 1.0429 8.538701e-05 1.0242 0.0001203372

Body weight gain 1.0022 6.283618e-05 0.9955 9.700197e-05

Feed conversion ratio 1.0513 0.0002345801 1.0258 0.0001107539

Table 3.  Comparison of lambda values with standard errors in general linear model (GLM) and mixed linear 
model (MLM) analysis.
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Data Availability
Data supporting this paper were obtained from Cobb-Vantress chicken breeding company. The phenotype and 
genotype data are available only upon agreement with Cobb-Vantress and should be requested directly from the 
breeding company.
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