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Abstract

Objective: Magnetic resonance spectroscopy (MRS) provides an exceptional opportunity for the study of in vivo
metabolism. MRS is widely used to measure phosphorus metabolites in trained muscle, although there are no published
data regarding its reproducibility in this specialized cohort. Thus, the aim of this study was to assess the reproducibility of
31P-MRS in trained skeletal muscle.

Methods: We recruited fifteen trained men (VO2peak = 4.760.8 L min21/5868 mL kg21 min21) and performed duplicate
MR experiments during plantar flexion exercise, three weeks apart.

Results: Measures of resting phosphorus metabolites were reproducible, with 1.7 mM the smallest detectable difference in
phosphocreatine (PCr). Measures of metabolites during exercise were less reliable: exercising PCr had a coefficient of
variation (CV) of 27% during exercise, compared with 8% at rest. Estimates of mitochondrial function were variable, but
experimentally useful. The CV of PCr1/2t was 40%, yet much of this variance was inter-subject such that differences of ,20%
were detectable with n= 15, given a significance threshold of p,0.05.

Conclusions: 31-phosphorus MRS provides reproducible and experimentally useful measures of phosphorus metabolites
and mitochondrial function in trained human skeletal muscle.
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Introduction

Magnetic resonance spectroscopy (MRS) is unmatched in its

ability to measure tissue biochemistry in intact humans without the

need for invasive procedures or the administration of potentially

harmful radioactive isotopic tracers. In particular, it has been used

extensively to monitor 31-phosphorus (31P) metabolites in both

cardiac [1] and skeletal muscle [2]. Due to the large volume and

easy accessibility of the skeletal muscles of the human leg, 31P-MR

spectra can be acquired from a localized volume of leg muscle with

excellent temporal (.1/s) resolution. Thus 31P-MRS can be used

to measure steady-state concentrations of high-energy phosphorus

metabolites in resting skeletal muscle and phosphorus metabolite

kinetics during exercise and recovery in a single experiment. It has

long been known that the kinetic constants during work transitions

provide an insight into the energy metabolism of the exercising

(and recovering) muscle (cf [3]). Therefore resting phosphorus

metabolites, and their kinetics during transitions from exercise to

rest, have been widely used to assess muscle energetic status and

energy metabolism, both in healthy subjects [4,5,6,7,8] and in

patients with a wide range of diseases [9,10,11,12,13]. Indeed, in

many cases MRS may well provide the only accurate in vivo

measure of metabolites with rapid turnover in humans and

experimental animals.

There have been two recent reports on the reproducibility of
31P-MRS measurements in healthy untrained human skeletal

muscle [14,15]. These recent papers added to an existing body of

work using a range of experimental approaches that are

summarized in Table 1. Results from these diverse approaches

have been quite consistent in showing that 31P-MRS is generally

very reproducible, although one of the more comprehensive

studies [14] seemed to suggest that estimates of mitochondrial

function (made using kinetic data) are less so, at least compared

with measurements of resting phosphocreatine concentration. In

addition, the reproducibility studies that have been conducted

using repeated testing in a single subject [16,17,18], although

helpful in uncovering measurement or intra-individual variability,

are unable to detect either systematic bias or population-

dependent (inter-individual) variability.

Investigators in other fields have found that there are differences

(both improvements and decrements) in the reproducibility of
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experimental methods when applied to exercise-trained subjects as

opposed to untrained controls [19,20]. As with sedentary or

moderately active subjects, 31P-MRS is widely used to measure

phosphorus metabolites and kinetics in the muscles of trained

subjects, yet Table 1 shows that there are no published data

reporting directly on the reproducibility of the method in this

specialized cohort. However, what data there are suggest that both

the inter- and within-subject variability of 31P-MRS indices of

mitochondrial function may differ markedly in athletes; for

example, recently published data suggest that the coefficients of

variation of several estimates of mitochondrial oxidative rate differ

more than sevenfold between sedentary and endurance-trained

subjects [21]. Thus, the aim of this study was to assess the

reproducibility of MRS measures of 31-phosphorus metabolism in

trained human skeletal muscle. We hypothesized that, despite

differences in oxidative capacity between a trained and an

untrained cohort, 31P-MRS would continue to provide reliable,

repeatable and useful measures of muscle biochemistry in vivo.

Methods

Ethics Statement
The Central Oxfordshire Research Ethics Committee approved

this study and fully-informed written consent was obtained from all

subjects. All protocols were conducted in accordance with the

Declaration of Helsinki.

These data were acquired as part of a larger study. We recruited

fifteen trained men from the Oxford rowing crews. We chose

rowers for our study based on their participation in an aerobic

sport that requires significant recruitment of the plantar flexion

muscles of the lower leg [22]. Standard MR contraindications

were excluded by history and physical examination. Peak aerobic

capacity ( �VVO2peak) was measured as described in detail elsewhere

[23,24]. Ventilatory threshold was calculated according to the V-

slope method [25], using software supplied for use with the

Metamax system (Metasoft 3, Cortex, Biophysik, Germany).

Subsequent MR experiments, the details of which have been

published elsewhere [23,24,26], were performed twice, three

weeks apart. Subjects were instructed to maintain normal training

patterns for the two weeks prior to each measurement. Each

subject performed plantar flexion exercise in a Siemens Trio 3T

clinical MR system (Siemens, Erlangen, Germany), with a 6 cm

dual-tuned 31P and 1H surface coil placed under the widest part of

the right gastrocnemius. A special wooden housing was con-

structed to ensure that coil positioning was consistent and

repeatable. Positioning was further refined through the use of

scout images. Prior to the acquisition of 31P MR time-series data,

three baseline scans were acquired to allow calculation of

correction factors for partial saturation due to the short repetition

time (TR) in the main acquisition, and for nuclear Overhauser

enhancement (NOE). The acquisition parameters for the 31P time-

series were TR 500 ms, TE 0.35 ms, bandwidth 2000 Hz, 10

averages, 512 data points, excitation flip angle 25u and 10

rectangular NOE pulses, with pulse duration 10 ms, inter-pulse

delay 10 ms and excitation flip angle 180u. The MR exercise

protocol was: 5 min rest, 5 min very light exercise (warm-up),

7 min recovery, 5 min at 5 W, 7 min recovery, 5 min at 6 W,

5 min recovery. Exercising values are the means of the last

minutes of bouts 2 and 3. Figure 1 shows a typical set of spectra,

acquired at 5-second intervals during the recovery phase.

Spectra were processed using jMRUI version 2.2 [27] and

quantified using a non-linear least squares algorithm [28]. The

resting ATP concentration was taken as 8.2 mM [2]. The

chemical shift of the inorganic phosphate (Pi) peak, relative to

phosphocreatine (PCr), was used to determine intracellular pH.

Intracellular [ADP] was calculated making the standard assump-

tion that the creatine kinase reaction was at equilibrium, and

correcting for pH [29]. The halftime of PCr recovery after

moderate exercise (PCrt1/2) was determined by fitting a monexpo-

nential equation to the PCr recovery data. Figure 2 shows a typical

fit to experimental data. The maximum rate of mitochondrial

ATP synthesis (QMAX) was extrapolated from the end-exercise

[ADP] and corresponding rate of PCr resynthesis as in [30].

Technical issues caused a loss of data for calculation of QMAX in

a single subject. Thus n=14 for this and associated measurements.

Statistical analyses were conducted using PASW 18.0 (SPSS

Inc., Chicago, USA). Reproducibility was assessed using tech-

niques drawn from [31] and [32]. Heteroscedasticity was treated

as significant if the correlation between the means of the repeated

measures and the absolute difference between them was positive

and significant at p,0.05. In these cases, data were log

transformed. A paired t-test was used to assess test-retest bias.

The standard deviation of the differences was taken as an index of

test-retest variability. In addition to these traditional methods,

95% confidence intervals of the differences between means were

calculated. In the case of heteroscedastic data, 95% confidence

intervals were calculated for the log-transformed data. When

Table 1. Summary of published data regarding the reproducibility of 31P-magnetic resonance spectroscopy in skeletal muscle (in
chronological order).

Experimental
design Timing Cohort

Exercise modality/
muscle group Reference

Multiple test-retest 20 minutes between tests 1 healthy subject Isometric/thumb Miller et al. (1987) [17]

Single test-retest 1 month between tests 1 healthy female subject Isometric/calf Miller et al. (1995) [16]

Multiple test-retest ‘two different days’ 4 moderately active subjects Dynamic/calf Walter et al. (1997) [41]

Single test-retest 1 month between tests 7 healthy untrained females Isometric/calf Larson-Meyer et al. (2000) [37]

Single test-retest 1 week between tests 18 sedentary males (‘who complained of fatigue’) Dynamic/finger Bendahan et al. (2002) [42]

Multiple test-retest 24 hours 14 children Dynamic/thigh Barker et al. (2006) [43]

Multiple test-retest N/a 1 healthy subject Dynamic/thigh Van den Broek et al. (2007) [18]

Multiple test-retest 1 month/1 year between tests 11 untrained males+1 untrained female Dynamic/thigh Layec et al. (2009) [14]

Multiple test-retest ‘1–30 days’ between tests 12 healthy untrained males Isometric/thigh McCully et al. (2009) [15]

doi:10.1371/journal.pone.0037237.t001

31P-MRS Reproducibility in Trained Muscle
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‘antilogged’ these confidence limits are ratios, and are reported as

such. In the main text, data are reported as means (SD).

Results

The subjects (n=15) were aged 22 (1) years, weighed 82 (9) kg

(Table 2). They had a peak aerobic capacity of 4.7 (0.8) L min21

(58 (8) mL min21 kg21) and a ventilatory threshold of 75 (12) % of

peak power, confirming their trained status.

Table 3 summarises the results of our analysis, giving the means

and standard deviations of the first and second measures in each

case, accompanied by the grand coefficient of variation (CV)

where applicable. For example, muscle phosphocreatine content

was measured as 30 (3) mM on the first visit and 29 (2) mM on the

second; the CV for this measurement was 8%. Figure 3 shows the

group means (and standard errors) for phosphocreatine concen-

tration in recovery from dynamic exercise.

Table 3 also shows the results of our tests of heteroscedasticity,

as recommended by Nevill and Atkinson [32]. In two cases

(exercising [Pi] and Qmax) there was convincing evidence of

heteroscedasticity (i.e. a significant positive correlation between the

absolute magnitude of the difference between two observations

and their mean). These data were log-transformed and tested for

heteroscedasticity again. In both cases the heteroscedasticity was

resolved.

We looked for test-retest bias (for example, instrument drift or

a learning effect) using a paired t-test comparing the first and

second measurements. Table 3 shows that there was no significant

test-retest bias in any of the measures taken. The standard

deviation of the differences between the first and second measures

(‘Error (SD of diff.)’ in Table 3) is an index measurement

Figure 1. Stacked plot showing 31-phosphorus magnetic resonance spectra acquired at 5-second intervals from the calf muscle of
a single trained subject in recovery from dynamic exercise.
doi:10.1371/journal.pone.0037237.g001

Figure 2. Typical experimental data (phosphocreatine concen-
tration, normalised to resting values, in recovery from dynamic
exercise) and a monoexponential function (solid line), fitted as
described in Methods.
doi:10.1371/journal.pone.0037237.g002

Table 2. Subjects’ characteristics (n= 15).

Age (y) 22 (1)

Mass (kg) 82 (9)

Absolute VO2peak (L min21) 4.7 (0.8)

Relative VO2peak (mL min21 kg21) 58 (8)

Ventilatory threshold (%) 75 (12)

doi:10.1371/journal.pone.0037237.t002

31P-MRS Reproducibility in Trained Muscle
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variability (as described in detail by Bland and Altman [31]). We

extended this approach by calculating the 95% confidence

intervals for the differences between the first and second measures.

These confidence intervals give the minimum limits for the

detection of changes at a significance threshold of p,0.05. For

example, in our trained cohort of fifteen, an increase in resting

muscle [PCr] of .0.5 mM or a decrease of .2.9 mM would have

been significant at the p,0.05 level. In the case of log-transformed

data these confidence limits were antilogged to provide a 95%

confidence ‘ratio’. For example, in our cohort an increase in

exercising [Pi] of .24% or a decrease of .6% would have been

significant at p,0.05.

In all cases the 95% confidence intervals were not symmetrical

due to nonsignificant bias. If one assumes that bias was not present

(as the data suggest) then the confidence intervals can be corrected.

Thus a change in resting muscle [PCr] of 61.7 mM ((0.5+2.9)/2)
could be reasonably assumed to be detectable at p,0.05 using our

methods and with n=15. Likewise, the minimum detectable

change in exercising [Pi] would be 615%.

Discussion

We studied the reproducibility of 31P-MRS indices of muscle

metabolism in a trained cohort, for the first time (to our

knowledge). We found that measures of resting metabolites were

the most repeatable, with CVs of 8% (PCr) and 17% (Pi).

Exercising metabolites were more variable (27% (PCr) and 47%

(Pi)). Finally, measures of mitochondrial function such as PCr1/2t,

while highly variable (CV=40%) were still experimentally useful

providing a relative detection threshold of ,20% (n=15, p,0.05).

Training (and recovery) stimulates adaptive physiological

changes that vary widely in their timing. Thus it seems reasonable

to suggest that the coefficients of variation of a range of

physiological parameters measured in athletes may be different

to those in sedentary subjects. This hypothesis has led researchers

in other areas to specifically study the effect of exercise training on

the reproducibility of various experimental methods [19,20].

Bingisser et al. 19 found that there were significant differences in

reproducibility between measures taken in trained vs. untrained

subjects, with the trained subjects being more homogenous and

thus more reproducible in the measures that were studied.

Likewise, Heitkamp and colleagues 20 studied the reproducibility

of the lactate threshold in trained vs. untrained women. Once

again, measurements in the trained women were somewhat more

reliable.

Among the many well-known adaptive changes that follow from

high levels of physical activity, exercise training stimulates changes

in muscle gene transcription [33]. This may explain why muscle

oxidative enzyme activity can vary widely in trained or highly-

active humans compared with those who are sedentary [34], and

why the coefficients of variation of 31P-MRS estimates of

mitochondrial function can differ markedly in athletes compared

to controls [21]. Furthermore, within trained subjects the

peripheral training effect can vary dramatically even at the same

relative VO2 [35]. Consistent with this, the coefficients of variation

(CV) we observed in our trained cohort were larger than those

reported in untrained subjects [14]. For example, the CV of

resting [PCr] in our trained cohort was 8%, compared with 2.2%

reported by Layec et al. [14] and ,5% by Roussel and co-workers

[36]. Yet resting muscle pH, which one would not expect to vary

with training status, had a very similar CV in our trained cohort

vs. earlier studies in untrained subjects: the CV of resting muscle

pH was 0.2% in our hands and was reported as being 0.28% by

Layec et al. [14], 0.4% by Roussel et al. [36] and 0.1% by Larson-

Meyer and colleagues [37]. Given that the calculation of muscle

pH from 31P-MRS data utilises two independent peaks in a single

spectrum, this comparability between the two studies reinforces

that our data were of a similar quality to those earlier studies.

Yet despite the slightly greater variation, 31P-MRS in athletes

had excellent reproducibility when measuring intramuscular

phosphates. In the absence of significant bias, the smallest

detectable difference for a given n can be estimated from the

mean of the absolute values of the confidence intervals (as outlined

in Results). Using this approach, we estimate that changes in [PCr]

of ,2.1 mM (7%) could be detected in just 10 trained subjects.

Consistent with earlier studies, measures of mitochondrial

function were more variable. Coefficients of variation in our

trained subjects were .30% for both PCr1/2t and QMAX. This is

compared to coefficients of variation of ,20% for PCr1/2t [14,15]

13–30% for Qmax [14] in other studies. However, the measure-

ment of PCr1/2t in athletes is unfairly described by these statistics.

Although there was a high degree of inter-individual variation,

analysis of the differences (measurement 2– measurement 1)

suggested that changes of ,20% could be detected in 15 trained

subjects, an eminently feasible number for practical research,

particularly given that endurance trained individuals have a QMAX

that is close to double that of untrained individuals [38] and

exercise training can induce increases in mitochondrial function of

the order of up to 50% in the untrained elderly [39]. The

reliability of measurements of metabolite concentration during

exercise lay between those same measurements at rest and the

indices of mitochondrial function (Table 3). The increased

variation relative to resting measurements could be attributed to

several sources: First, despite heavy strapping and careful

experimental design, noise may been generated due to motion/

contraction of the target muscles. In addition, variations in aerobic

fitness/mitochondrial function and, possibly, ATP-economy of

contraction were likely to have contributed to increased variance

[40].

Figure 3. Phosphocreatine (PCr) recovery (normalised to
resting values) in trained human calf muscle after dynamic
exercise during two separate but identical tests. Values shown
are means6SEM.
doi:10.1371/journal.pone.0037237.g003
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One could argue that the lack of tight control over our subjects’

training schedules led to increased variability. However, our aim

was to assess reproducibility in this cohort under ‘normal’

conditions (i.e. without strict training control). Nevertheless, the

lack of any evidence for increased variability suggests that tight

controls may be unnecessary during magnetic resonance studies of

athletes.

There were three potential sources of variability in our data:

variability in the instrument, physiological variation and proces-

sing variability (for example, slight differences in the selection of

data used for curve fitting). Earlier studies have addressed these

issues by i. Duplicate acquisitions from the same subject under

identical conditions (i.e. in immediate succession, cf. [17]), ii.

Repeated measurements on the same individual at different times

(as in the present study) and iii. Duplicate processing of the same

data by the same experimenter on different occasions (as in [14]).

The existing work suggests that instrument variability and

processing variability contribute rather little to the overall

variability. Thus it seems reasonable to suggest that the bulk of

the variability we observed was physiological in nature. However,

these three sources of variability are difficult to separate entirely

(for example, a given instrument may operate with greater

variability across several days or months, but no living biological

matrix is unchanging across these timescales). For the present

study we chose not to separate these sources of variation as, in

practice, they are all present; our aim was to produce benchmark

data regarding the reliability of the method as a whole. One must

consider that our study used athletes whose training was not being

directly controlled by the experimenters. As such, variations in

training load or the timing of experimental acquisition relative to

training sessions may have introduced greater variability than in

a cohort where training was rigorously controlled.

To conclude, we studied the reproducibility of 31P-MRS

measures of muscle phosphorus metabolism in a cohort of trained

men. The coefficients of variation in this cohort appear to be

slightly larger than in earlier, similar studies that used untrained

subjects. However, these larger coefficients of variation appeared

to be the result of larger inter-individual variation, while test-retest

reliability remained good. Thus we found the method to be

reproducible and reliable enough for studies to be conducted using

relatively small numbers of trained participants, especially where

paired statistical comparisons will be used.
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