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A cross-sectional study to 
characterize local HIV-1 dynamics 
in Washington, Dc using next-
generation sequencing
Keylie M. Gibson  1*, Kamwing Jair2, Amanda D. castel2, Matthew L. Bendall 1, 
Brittany Wilbourn2, Jeanne A. Jordan2, Keith A. crandall  1,3, Marcos pérez-Losada  1,3,4 & 
the DC Cohort Executive Committee†

Washington, DC continues to experience a generalized HIV-1 epidemic. We characterized the 
local phylodynamics of HIV-1 in DC using next-generation sequencing (NGS) data. Viral samples 
from 68 participants from 2016 through 2017 were sequenced and paired with epidemiological 
data. Phylogenetic and network inferences, drug resistant mutations (DRMs), subtypes and HIV-1 
diversity estimations were completed. Haplotypes were reconstructed to infer transmission clusters. 
Phylodynamic inferences based on the HIV-1 polymerase (pol) and envelope genes (env) were 
compared. Higher HIV-1 diversity (n.s.) was seen in men who have sex with men, heterosexual, 
and male participants in DC. 54.0% of the participants contained at least one DRM. The 40–49 
year-olds showed the highest prevalence of DRMs (22.9%). Phylogenetic analysis of pol and env 
sequences grouped 31.9–33.8% of the participants into clusters. HIV-TRACE grouped 2.9–12.8% of 
participants when using consensus sequences and 9.0–64.2% when using haplotypes. NGS allowed 
us to characterize the local phylodynamics of HIV-1 in DC more broadly and accurately, given a 
better representation of its diversity and dynamics. Reconstructed haplotypes provided novel and 
deeper phylodynamic insights, which led to networks linking a higher number of participants. Our 
understanding of the HIV-1 epidemic was expanded with the powerful coupling of HIV-1 NGS data with 
epidemiological data.

Despite recent reductions in HIV-1 prevalence in Washington, DC from 2.5% in 20131 to 1.8% in 2018, the 
United States (US) capital is still experiencing a generalized HIV-1 epidemic – as defined by the World Health 
Organization2–4. There were 340 newly diagnosed cases in DC in 2018, and the DC rate is five times higher than 
the national rate3. Blacks, men, men who have sex with men (MSM), and heterosexuals (HRH) account for the 
majority of people living with HIV-1 (PLWH) in DC2,3. However, ~20% of the newly diagnosed persons had an 
unknown risk for transmission in both 2016 and 20172,3. Furthermore, the leading group (33.3%) of newly diag-
nosed cases was between the ages of 20–29 years old3. This same age group had the highest percentage (27.5%) of 
drug resistance mutations (DRM) at diagnosis, suggesting broader spread of HIV-1 drug resistant variants and 
potential concern for future therapeutic options, especially if these mutations are against first line antiretroviral 
(ART) drugs for newly infected individuals. With blacks and young adults being the most impacted groups of 
individuals for HIV-1 in DC, understanding the current HIV-1 phylodynamics can provide informative data to 
guide programs that prevent and reduce the incidence of HIV-1. Moreover, identifying potential transmission 
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clusters amongst individuals in DC and their associated epidemiological features may help infer otherwise 
‘unknown’ transmission modes and provide insight for more targeted prevention and intervention strategies.

In 2011, the DC Cohort, a longitudinal observational NIH-funded cohort study of PLWH who are receiving 
care at clinical sites in DC, began enrollment. As of 2018, the Cohort has enrolled approximately 10,000 PLWH2. 
By capitalizing on the longitudinal study of the DC Cohort, phylodynamics (i.e., the study of how epidemio-
logical, immunological, and evolutionary processes act and potentially interact to shape viral phylogenies5) can 
provide insights into HIV-1 infection in DC. Analyzing sequence data can detect new variants within the popu-
lation, identify population structuring and associations with risk factors, and, in combination with demographic 
information, predict areas of interest to direct public health efforts.

The great power and resolution of Next-Generation Sequencing (NGS) technologies are changing phylody-
namics research. NGS is used for active infectious disease surveillance6, detection of circulating drug resistant 
variants7,8, and inference of HIV-1 transmission clusters. High variation among viral strains of RNA viruses such 
as HIV-1 are a result of high mutation rates, large population sizes, and short generation times9. NGS can detect 
mutations present in less abundant strains (<1%)8. Such rare mutations are particularly relevant in the context 
of the evolution of drug resistance, since they may facilitate viral adaptation leading to treatment failure10,11. 
Moreover, sequence variants (or haplotypes) can be reconstructed from NGS sequencing reads. Viral populations 
may contain a pool of different variants that are resistant to different antiretroviral drugs12,13 and also help the 
virus to evade the immune system14. Reconstructing the haplotypes present in a viral sample and assessing their 
phylodynamics may show additional or different transmission clusters present between individuals or identify a 
few HIV-1 strains that are dominating the HIV-1 viral population15–17. The use of powerful NGS technologies to 
study the HIV-1 epidemic at local levels (e.g., Washington, DC) may generate deeper insights into the ongoing 
HIV-1 dynamics. Near full length sequences and amplicon sequences that span entire HIV-1 genes are becom-
ing more prevalent with this advanced technology18,19. Some studies have indicated that pol is less informative 
than env for phylogenetic resolution20. As env evolves at a faster rate than pol19,21, env has shown to be useful in 
determining the recency of HIV-1 acquisition22 and could provide more resolution to infer active or recent trans-
mission clusters than pol.

This study applies NGS to a subset of newly and previously diagnosed participants in the DC Cohort to char-
acterize the recent (2016 and 2017) local phylodynamics of HIV-1 in Washington, DC. Towards this general 
aim, we 1) estimate the diversity of HIV-1 in Washington, DC, 2) determine the circulating drug resistant muta-
tions, 3) identify and evaluate potential transmission clusters with consensus sequences and their association with 
epidemiologic and clinical factors, and 4) predict HIV-1 haplotypes for each sample and assess their potential 
for detecting transmission clusters. The number and size of transmission clusters may vary across HIV-1 gene 
regions12,15,23–25, hence in this study we also compared phylodynamic inferences based on the polymerase and 
envelope HIV-1 genes.

Results
Sample and phenotypic characterization. Our sampling included PCR products from 68 partici-
pants in the DC Cohort. Most of the study participants resided in Washington, DC (Table 1). The majority were 
non-Hispanic black (82.4%) and male (69.1%), with 52.9% of participants being non-Hispanic black males. The 
majority of participants were infected through heterosexual sexual contact (39.7%) followed closely by MSM 
sexual contact (35.3%). A total of 76.4% of the patients were on an ART drug regimen at the time of blood sam-
ple collection. The demographics of our subsample of DC Cohort participants reflects a similar composition of 
PLWH in DC3,4 but includes slightly more participants infected through heterosexual contact and non-Hispanic 
Blacks, and a lower proportion of participants on ART than the overall Cohort sample.

HIV-1 diversity in DC. We performed in-depth phylodynamic profiling of HIV sequences from 171 PCR 
gene products that passed quality thresholds, including 62 PR/RT, 62 int, and 47 env amplicons. The subtyping 
analyses showed that all of the participants belonged to subtype B; therefore, subsequent analyses included data 
from all participants. Our participants were dispersed amongst and showed a star-like pattern with other DC HIV 
PR/RT sequences (see Supplementary Fig. S1 online). The env(c) data showed higher nucleotide diversity (π) and 
Watterson genetic diversity (θ) than pol(c) (Table 2). Males had a higher diversity, though not significant, than 
females (haplotype diversity: PR/RT: p = 0.2039, int: p = 0.9571, env: p = 0.3404). Participants whose risk factor 
was IDU (n = 6) had 50% less diversity than those with MSM and HRH risk, though again not significant (haplo-
type diversity: PR/RT: p = 0.7323, int: p = 0.7861, env: p = 0.6560). Non-Hispanic black participants had a higher 
genetic diversity for the pol(c) gene than for the env(c) gene (Table 2). The average haplotype diversity when 
calculated with the number of reconstructed haplotypes by PredictHaplo showed that env had more haplotype 
diversity compared to PRRT and int (Table 3). The average number of haplotypes per participant was the same for 
PR/RT and int (2 haplotypes) and slightly higher for env (4). Four of the six participants that had a higher number 
of haplotypes reconstructed (7–12 haplotypes in one or more gene regions) also had a higher average haplotype 
diversity estimate of 0.634 (range: 0.392–0.777), while the other two had a very low average haplotype diversity 
estimate (0.032, range: 0.027–0.038). Participants with HRH and MSM risk factors were found to have an average 
of 3 reconstructed haplotypes, with haplotype diversities of 0.338 and 0.335, respectively.

Drug resistant mutations. The consensus concatenated gene regions (pol(c) and env(c); see Methods for defi-
nition of “(c)”, which in short stands for consensus) for each participant were used to evaluate the presence of Drug 
Resistant Mutations (DRMs) (Table 4). The PR gene from participants had the fewest DRMs (1), compared to RT 
(25) and int (11) genes. The majority of DRMs were NRTI, NNRTI, and RT surveillance DRMS (SDRMs). Together, 
they included 12 to 24 resistant participants and 15 to 44 total DRMs (9 to 19 unique DRMs). Finally, 34 participants 
(50.0%) showed at least one mutation and 24 (35.3%) showed at least two different DRMs. Of the ARV treatment naïve 
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Total N = 68

Age Range

20–29 yrs 7

30–49 yrs 31

50–69 yrs 30

Median Age (yrs, IQR) 46.3 (23.5, 66.8)

Race/Ethnicity

Non-Hispanic Black 56 (82.4%)

Non-Hispanic White 4 (5.9%)

Hispanic 5 (7.4%)

Unknown 3 (4.4%)

Sex at Birth

Male 47 (69.1%)

Female 21 (30.9%)

Gender

Male 45 (66.2%)

Female 21 (30.8%)

Transgender 1 (1.5%)

Unknown 1 (1.5%)

Country of Birth

US 59 (86.8%)

Non-US 6 (8.8%)

Unknown 3 (4.4%)

State of Residence

DC 55 (80.9%)

MD 10 (14.8%)

VA 3 (4.4%)

HIV-1 Risk Factor

MSM 24 (35.3%)

IDU 6 (8.8%)

HRH 27 (39.7%)

UNK 11 (16.2%)

Co-infectionsa

Syphilis 1 (1.4%)

Hepatitis B 1 (1.4%)

Hepatitis C 1 (1.4%)

Median Duration of Infection (yrs, IQR) 12.2 (5, 18)

Median CD4 count (cells/ul, IQR) 419.3 (69.5, 586)

Viral Load Range (copies/ml)b

<200 21 (30.9%)

200–399 5 (7.4%)

400–9,999 14 (20.6%)

>10,000 3 (4.4%)

Unknown 25 (36.8%)

ART Exposure

Experienced 61 (89.7%)

Naïve 7 (10.3%)

ART Regimen Type

Multiple-Class 50 (73.5%)

Dual-Class 2 (2.9%)

Unknown 16 (23.5%)

Amplicon Presence

Before Quality Filtering

   PR/RT 68 (100%)

   int 68 (100%)

   env 62 (91.2%)

After Quality Filtering

   PR/RT 62 (91.2%)

Continued
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participants, none were found to have a DRM present in the PR and RT genes, and only a single participant was found to 
have an IN Accessory DRM at amino acid 157. This treatment naïve individual with a DRM was a part of a transmission 
cluster for all genes except the haplotype V1V2 gene region. An overall DRM prevalence of 1.4%, 35.7%, and 15.7% 
was estimated for PR, RT, and int, respectively. The 40–49 year-olds in our study had the highest prevalence of DRMs 
(22.9%), while the 20–29 year-olds in our study did not show any DRMs. Overall, DRMs caused amino acid changes 
in only one codon position in PR, while 22 and 9 different codons positions changed in RT and int, respectively, when 
analyzing the consensus sequences. However, more codons were affected by an amino acid change in PR (5 codons) and 
RT (27 codons) when analyzing the haplotype sequences. On average, more DRMs and more unique DRMs were iden-
tified in the haplotype sequences (Table 4). Also, one young adult (20–29 years old) contained DRMs in RT, and one 
treatment naïve participant contained DRMs in RT. Slightly more participants had a haplotype sequence that showed 
at least one DRM (37 participants; 54.0%) and at least two different DRMs (30; 44.1%).

FUBAR analysis, which identifies nucleotide positions under positive selection, identified inferred two, three, 
and four codons under positive selection in the PR gene, RT gene, and int gene, respectively, when analyzing the 
consensus sequences (Table 4). Positively selected sites 37 and 57 were inferred by FUBAR for PR and sites 35, 
83, and 162 for RT. Amino acid positions 201, 216, 265, and 283 were found to be under positive selection for int. 
No codons overlapped between the FUBAR analysis and DRM analysis for any gene. None of the sites predicted 
by FUBAR are known resistance sites26, suggesting DRMs are fixed in the population. Additionally, FUBAR also 
found four codons under positive selection for the V1V2 and V3 genes (Table 4). These codon sites were 8, 15, 34, 
53 for V1V2 and 82, 90, 93, 106 for V3. Every IDU participant had a mutation in at least one of the sites predicted 
by FUBAR in the V1V2 and V3 genes. HRH (55.6%) and MSM (72.0%) participants had a high prevalence of sites 

Total N = 68

   int 62 (91.2%)

   env 47 (69.1%)

Table 1. Demographic and clinical characteristics for DC Cohort participants whose samples were sequenced 
and passed filtering criteria. aCo-infections were determined to be present within 30 days of sample collection. 
bViral load and CD4 count were determined for participant within 30 days of sample collection. MSM = men 
who have sex with men; HRH = heterosexuals; IDU = injection drug users; UNK = unknown.

Diversity

DRMN S h π θ (W)

pol 68 702 68 0.051 0.079 40.0%

Risk Factors

MSM 24 450 25 0.051 0.070 33.3%

HRH 25 321 26 0.051 0.070 48.0%

IDU 6 138 6 0.034 0.034 66.7%

Sex

Male 47 583 49 0.049 0.075 53.2%

Female 20 408 20 0.051 0.066 45.0%

Race/ethnicity

Non-Hispanic Black 55 608 56 0.050 0.076 47.3%

Non-Hispanic White 4 150 4 0.060 0.060 50.0%

Hispanic 5 180 6 0.046 0.048 60.0%

env 47 489 47 0.228 0.202

Risk Factors

MSM 18 402 19 0.227 0.213

HRH 14 371 15 0.226 0.214

IDU 6 196 6 0.164 0.162

Sex

Male 35 475 37 0.234 0.218

Female 12 328 12 0.219 0.202

Race/ethnicity

Non-Hispanic Black 38 463 39 0.223 0.206

Non-Hispanic White 4 210 4 0.219 0.211

Hispanic 3 203 4 0.217 0.211

Table 2. Nucleotide diversity between the pol and env concatenated consensus sequences. Diversity 
(N = number of sequences, S = number of segregating sites, h = number of haplotypes, π = nucleotide diversity, 
θ = Watterson genetic diversity) rates. Total and relative (total/N) proportion (%) of HIV-1 strains including 
DRM. MSM = men who have sex with men; HRH = heterosexuals; IDU = intravenous drug users.
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Participant

PR/RT int env

Viral Load 
(copies/mL)

ARV 
Exposure ARV Regimen Type

Number of 
Haplotypes

Haplotype 
Diversity

Number of 
Haplotypes

Haplotype 
Diversity

Number of 
Haplotypes

Haplotype 
Diversity

8 NA NA 1 0 NA NA E 2 NRTI + 1 ENH + 1 INSTI

9 NA NA 5 0.066 11 0.038 476 E

12 1 0 4 0.727 2 0.393 77 E 2 NRTI + 1 NNRTI

13 NA NA 1 0 2 0.302 N

16 1 0 4 0.727 2 0.393 E

18 NA NA 1 0 NA NA 119,149 E

19 2 0.436 2 0.499 4 0.721 244 N

20 2 0.479 1 0 2 0.281 5,663 E 1 NRTI + 1 PI + 1 ENH

23 3 0.352 2 0.484 NA NA 927 E 2 NRTI + 1 ENH + 1 INSTI

25 1 0 1 0 NA NA E 2 NRTI + 1 ENH + 1 INSTI

26 2 0.452 2 0.466 NA NA N

27 1 0 1 0 NA NA 11 E 1 PI + 1 ENH

29 2 0.464 2 0.250 5 0.620 1 E 2 NRTI + 1 ENH + 1 INSTI

30 2 0.441 3 0.579 1 0 625 E

31 3 0.64 3 0.526 2 0.312 E 2 NRTI + 1 INSTI

32 2 0.146 2 0.339 2 0.498 E 2 NRTI + 1 NNRTI + 1 PI + 1 ENH

33 1 0 3 0.563 3 0.601 E 2 NRTI + 1 ENH + 1 INSTI

34 2 0.429 2 0.2 1 0 E 2 NRTI + 1 INSTI

35 2 0.385 1 0 3 0.446 E 2 NRTI + 1 INSTI

37 2 0.274 1 0 10 0.027 81 E

39 NA NA 1 0 NA NA E 2 NRTI + 1 ENH + 1 INSTI

40 2 0.494 4 0.692 3 0.623 E

42 1 0 2 0.215 2 0.445 13,979 E 2 NRTI + 1 ENH + 1 INSTI

43 1 0 7 0.833 NA NA 343 E

45 1 0 10 0.704 NA NA E 2 NRTI + 1 ENH + 1 INSTI

46 2 0.153 3 0.306 2 0.5 N

47 2 0.263 2 0.420 1 0 2,755 E 1 NNRTI + 1 PI + 1 ENH + 1 INSTI

49 2 0.455 1 0 2 0.324 282 E 2 NRTI + 1 ENH + 1 INSTI

50 1 0 2 0.344 3 0.624 576 E 2 NRTI + 1 PI + 1 ENH

51 1 0 1 0 3 0.593 E 2 NRTI + 1 PI + 1 ENH + 1 INSTI

52 2 0.439 1 0 NA NA E 2 NRTI + 1 PI + 1 ENH

54 3 0.583 1 0 2 0.491 412 E 2 NRTI + 1 PI + 1 ENH

55 1 0 1 0 2 0.384 E 1 PI + 1 ENH

56 12 0.392 3 0.641 NA NA 1,368 E 2 NRTI + 1 ENH + 1 INSTI

57 1 0 1 0 NA NA 12,786 E 2 NRTI + 1 ENH + 1 INSTI

58 1 0 3 0.590 4 0.659 1,281 E 2 NRTI + 1 ENH + 1 INSTI

59 3 0.572 1 0 4 0.705 581 E 2 NRTI + 1 INSTI

60 2 0.487 3 0.619 4 0.716 E 2 NRTI + 1 PI + 1 ENH

61 2 0.270 3 0.632 4 0.679 432 E

63 3 0.612 6 0.708 1 0 57 E 2 NRTI + 1 PI

64 5 0.759 3 0.576 4 0.697 E

65 2 0.492 2 0.441 3 0.186 E 2 NRTI + 1 PI + 1 ENH

66 1 0 2 0.490 5 0.602 32 E 2 NRTI + 1 ENH + 1 INSTI

67 NA NA 2 0.450 5 0.767 E 2 NRTI + 1 NNRTI

68 3 0.564 5 0.736 5 0.758 E 2 NRTI + 1 NNRTI

69 1 0 4 0.543 7 0.777 48 E 2 NRTI + 1 PI + 1 ENH

70 4 0.603 2 0.364 5 0.743 17 N

71 1 0 4 0.720 6 0.812 E 1 NRTI + 1 NNRTI + 1 INSTI

72 2 0.209 3 0.614 NA NA 353 E 2 NRTI + 1 NNRTI

73 1 0 3 0.660 2 0.414 E 2 NRTI + 1 ENH + 1 INSTI

74 1 0 5 0.779 4 0.037 1 E 2 NRTI + 1 ENH + 1 INSTI

75 1 0 3 0.533 7 0.663 E 2 NRTI + 1 PI + 1 ENH

76 1 0 1 0 5 0.777 432 E 2 NRTI + 1 INSTI

77 4 0.613 4 0.658 6 0.768 113 E 2 NRTI + 1 PI + 1 ENH + 1 INSTI

78 2 0.183 3 0.608 5 0.664 113 E 2 NRTI + 1 PI + 1 ENH

Continued
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under selection as well. Additionally, a total of 51.4% and 17.1% of the male and female participants, respectively, 
contained a mutation at one of these predicted sites. Furthermore, FUBAR analysis inferred four codons under 
positive selection in the PR and RT genes and nine codons for int from the haplotype sequences. These sites were 
64, 72, 77, and 93 for PR; 35, 85, 102, and 200 for RT; and 201, 206, 211, 218, 230, 256, 265, 283, and 285 for int. 
The only codon position predicted by FUBAR in the haplotypes was 230 for int, and it is associated with reduced 
susceptibility to integrase inhibitors (INSTI)27. Seven (4, 34, 41, 43, 44, 45, 64) and eight (22, 40, 84, 92, 93, 95, 
105, 111) codons were inferred to be under positive selection for V1V2 and V3 haplotype sequences, respectively. 
Interestingly, only a handful of inferred positively selected codons overlapped between the haplotype and consen-
sus sequences, those were at position 35 for RT; positions 201, 265, and 283 for int; 34 for V1V2; and 93 for V3.

Transmission clusters. Transmission clusters were assessed by phylogenetic methods and HIV-TRACE, a 
genetic-distance based clustering method. Phylogenetic methods found support (>70% bootstrap or >0.95 poste-
rior probability) for 33.8% of the sequences associated with six transmission clusters in pol(c) and for 31.9% of the 
sequences associated with seven clusters in env(c) (highlighted in Fig. 1). All of the clusters were comprised of two 
to three sequences, except one cluster in pol(c) which had twelve sequences. Ten of the twelve sequences in the large 
pol(c) cluster contained a DRM within RT. Furthermore, 11 of the 12 sequences in this large cluster were included 
on the same sequencing run; therefore, we were unable to undoubtfully discriminate between laboratory artifacts or 
batch effects and HIV infection to interpret this transmission cluster. However, there were other samples from that 
same sequencing run that did not cluster with these twelve sequences and formed a dyad cluster. The most common 
DRM was T215C, which does not reduce NRTI susceptibility, and was found in eight of the twelve sequences.

HIV-TRACE grouped only a few sequences into two clusters for pol(c) (12.8%) and into a single cluster 
for env(c) (2.9%) (Fig. 2I). More transmission clusters were estimated with the haplotypes reconstructed from 
PredictHaplo (Fig. 2II, Table 5). For PR, RT, and int (genes also used in past DC HIV studies28,29), 82.1% of 
our participants were incorporated into transmission clusters. Unique to our dataset was the use of envelope to 
predict transmission clusters; 35.8% of our participants were included in V1V2 and V3 transmission clusters. 
Haplotypes were not concatenated for this analysis, but little overlap of cluster composition was found between 
gene regions. Often one participant’s haplotype would cluster with another participant in one gene region, but it 
would cluster with a different participant in a different gene region. Thus different gene regions displayed different 
transmission clusters that would not have been detected if one only analyzes a single gene. Clusters predicted in 
all gene regions were mainly composed of two participants (42 of the 55 total clusters). Likewise, the majority 
of the transmission clusters predicted by past DC HIV studies28,29 were comprised of two or three participants, 
regardless of the gene region, clustering estimation method, or haplotype/consensus construction approach.

Discussion
Collectively, our study aimed to characterize the local and recent phylodynamics of a subset of DC Cohort par-
ticipants from Washington, DC metro area living with HIV. By combining clinical and behavioral data with NGS 
data, we were able to identify transmission clusters across groups with different demographics and risk behaviors. 
Additionally, this study reconstructed sequence variants present within a participant (i.e., intra-host) and investi-
gated associations between the reported participant characteristics and transmission clusters.

Participant

PR/RT int env

Viral Load 
(copies/mL)

ARV 
Exposure ARV Regimen Type

Number of 
Haplotypes

Haplotype 
Diversity

Number of 
Haplotypes

Haplotype 
Diversity

Number of 
Haplotypes

Haplotype 
Diversity

79 1 0 1 0 2 0.396 E 2 NRTI + 1 INSTI

82 1 0 NA NA NA NA N

83 2 0.467 NA NA NA NA 554 E 2 NRTI + 1 NNRTI

85 2 0.351 1 0 2 0.477 183 E 2 NRTI + 1 INSTI

86 2 0.433 1 0 NA NA E 2 NRTI + 1 PI + 1 ENH + 1 INSTI

87 2 0.499 NA NA NA NA E 2 NRTI + 1 ENH + 1 INSTI

88 1 0 NA NA 1 0 37 N

90 3 0.534 2 0.498 3 0.540 8,914 E 2 NRTI + 1 PI + 1 ENH + 1 
CCR5 + 1 INSTI

91 1 0 2 0.003 NA NA 117 E 2 NRTI + 1 INSTI

93 2 0.446 1 0 NA NA 94 E 2 NRTI + 1 ENH + 1 INSTI

94 1 0 NA NA NA NA 145 E 2 NRTI + 1 PI + 1 ENH

97 5 0.718 2 0.455 5 0.782 E 2 NRTI + 1 INSTI

99 1 0 NA NA 1 0 184 E 2 NRTI + 1 ENH + 1 INSTI

Avg 2 0.265 2 0.357 4 0.470

Table 3. Haplotype diversity estimates from PredictHaplo results. A haplotype diversity of 0 indicates no 
diversity because only a single haplotype was reconstructed by PredictHaplo for the sample. Amplicons that did 
not pass the filtering thresholds for a sample are indicated by “NA”. ARV exposure is reported at time that blood 
sample was taken. N: Naïve, E: Experienced, NRTI: Nucleoside reverse transcriptase inhibitors, NNRTI: Non-
nucleoside reverse transcriptase inhibitors, ENH: enhancer elements, PI: Protease Inhibitor, INSTI: Integrase 
Strand Transfer Inhibitor, CCR5: Cysteine-Cysteine Chemokine Receptor 5.
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Our population genetic estimators indicate that HIV-1 env(c) is more genetically diverse than pol(c). Similar 
diversity estimates were found in other studies19,29–31. Our estimate of genetic diversity for pol(c) in DC (θ = 0.079) 
was lower than those reported for subtype B in Pérez-Losada et al.29 (θ = 0.084 and 0.090), but higher than those 
currently reported for the US subtype B sequences in Los Alamos HIV-1 database (θ = 0.075 for int; θ = 0.067 for 
PR/RT). This same trend was seen in env(c), where our DC HIV-1 genetic diversity (θ = 0.202) was greater than 
that reported for V1-V3 from Los Alamos HIV-1 database (θ = 0.168) across the US. Haplotype diversity esti-
mated from the PredictHaplo results also found env genes more genetically diverse than PR/RT and int.

Notably, there were interesting differences in diversity estimates among risk groups. Participants who were 
infected through injection drug use (IDU) were found to have about half of the diversity of MSM and HRH 
participants. This low diversity, potentially associated with low multiplicity of HIV-1 infection, is not unusual 
within IDU individuals32,33. In both pol(c) and env(c), males also showed higher genetic diversity, which could be 
attributed to half (51%) of the males in this study being infected through sex with other men (16% of the males 
had an unknown risk factor). Our measurements of HIV-1 diversity in HRH were also high and similar to those 
of MSM; however, we did not observe differences in HIV genetic diversity by race or ethnicity.

The HIV-1 subtype B epidemic in DC is highly diverse, and our results here agree with previous conclusions 
suggesting a mature epidemic29,34. High genetic diversity could result from risk groups intermingling and viral 
strains being exchanged and the transient nature of the DC metro area population. DC is an international stop for 
some, a temporary residence for others, and home for many. This constant influx of incomers could have a boost-
ing effect on the DC HIV-1 population by consistently introducing new viral strains into the pool. Treatment 
and vaccine development can be compromised by high genetic diversity. As HIV-1 continues to evolve and, as 
seen here, high genetic diversity levels are kept constant over time34, resistance to vaccines and ART drugs may 
increase, which could ultimately lead to treatment and prevention failures35.

A Drug Resistant Mutation (DRM) prevalence of 48.6–54.0% was detected in this subset of the DC Cohort, 
depending on use of consensus sequence or haplotypes. Lower DRM prevalence rates were previously reported 
for the DC area28,29,34,36 (17.3–37.9% between 1994 and 2016). A much higher rate (66%) was reported in a smaller 
study of ART treatment-naïve and experienced pediatric patients in Rhode Island37. DRM rates over 50% are 
also seen in large sequence databases in the UK and Switzerland29. Our study found fewer codons affected by a 
DRM and fewer DRMs in our participants than previous studies28,29 of the DC epidemic. We only found 32 and 
38 codons to be affected when analyzing consensus sequences and haplotypes, respectively, whereas Pérez-Losada 
et al.29 found 83 codons affected for subtype B, however that study contained 20 times more sequences than ours. 
Moreover, our study found three novel DRM sites that were not identified in either previous study: P145PAST (IN 
Major) and A128APST, Q146QH (IN Accessory).

More recently, a study by Kuhnert and colleagues38 reported on the fitness of fourteen HIV-1 resistance muta-
tions, of which seven were detected in RT in our study. Three of the seven DRMs (codons: 41 L, 67 N, 184 V) were 
NRTI-related and the other four DRMs (codons: 103 N, 108I, 138 A, 181 C) were NNRTI-related. Six DC Cohort 
participants contained the 184 V DRM, which was found by Kuhnert et al.38 to have the highest transmission cost 
– i.e., the success (low transmission cost) or lack thereof (high transmission cost) of transmission of hosts infected 
by drug resistant strains. Because of this high cost to the virus, the mutation resulted in very short transmission 
chains despite evolving frequently under treatment failure38. Of the six DC Cohort participants, all were included 
in a cluster when using the haplotypes, but none of the participants clustered with each other. Additionally, this 
mutation was found to be persistent in the DC HIV-1 viral population since 200534. Previous studies showed 
that the most important NNRTI mutation currently is 103 N because of its connection to first-line treatment 
failure39–41; a quarter of our DC Cohort participants with one or more DRMs contained this mutation, which was 
also found to be at a low frequency in the DC HIV-1 viral population since 200534.

In treatment-naïve participants, both when using consensus sequences and haplotypes, we estimated a low 
prevalence rate of DRMs (14.3%). Similarly, low prevalence rates have been seen in the past in the US (42; 15% 
between 1999 and 2011) and even lower in treatment-naïve individuals in Europe (41,43–45; 10% between 2001 
and 2013). Moreover, we also found fewer DRMs in treatment-naïve participants compared to a recent study of 
PLWH in DC28 (22.5% between 1994 and 2013). Kassaye et al.28 also observed a downward trend of overall prev-
alence of DRMs over time in treatment-naïve individuals. Our results suggest a further decrease in overall prev-
alence of DRMs in the current DC HIV-1 epidemic. A lower prevalence of DRMs in surveillance versus targeted 
treatment-naïve studies could result from sampling design. A surveillance study of DC would likely provide the 
more accurate picture of DRM trends in the population.

Novel sites that continue to evolve in the DC epidemic and have not become fixed in the population are of 
serious concern for future drug therapy and conferring resistance to these drugs. More and different codons 
were predicted to be under positive selection in the haplotype sequences than the consensus sequences. FUBAR 
predicted sites in V1V2 are likely being impacted by the immune system, which the virus is actively trying to 
evade (diversifying selection). V3 is associated with co-receptor binding46; codons predicted here could be rising 
advantageous mutations by HIV-1 to adapt to the host cells’ response against the virus. Five codons (PR: 37, RT: 
35, and int: 201, 265, 283) were identified by both our study, in both haplotypes and consensus sequences, and 
Pérez-Losada et al.29 as sites under selection for subtype B. Since none of these sites corresponded to any known 
Stanford DRMs, these may be newly evolving resistance mutations in the DC HIV-1 epidemic. Given that all of 
our participants were on dual- or multiple-drug regimens, these sites may also be indicative of potential escape 
mechanisms by the virus in response to multiple-drugs treatments. Thus, these amino acid replacements are can-
didates for fitness testing with and without associated drugs to infer their ability to confer drug resistance, their 
relative fitness status in different environments, and their transmissibility across individuals.

Additionally, identifying transmission clusters is critical to recognizing groups who may be at risk of contract-
ing HIV-1 or who may already be infected but are not yet aware of their diagnosis. Phylogenetic studies suggest 
that transmission clusters greatly contribute to the spread of HIV-1 within the population47; therefore, identifying 
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high-risk groups, whether that is based on risk behavior or geographical location48, can help public health officials 
to better target prevention efforts and treatment options. The spread of infection is often associated with early 
HIV-1 infection47, consequently, molecular surveillance of the DC epidemic should continue in order to identify 
potential areas or clusters of transmission and, thus, help lower the HIV-1 incidence.

Towards this goal, we combined NGS sequence data with clinical characteristics to obtain a dynamic picture of 
the evolution of HIV-1 in the DC metro area. We detected high levels of clustering using haplotypes (32.8–64.2%, 
not including the V1V2 region), as also seen in other HIV-1 cohorts (24–65%)29,35,49–61. Other studies, including 
one completed with Sanger sequencing in DC28,31,36,52,62, however, have found lower levels of clustering (7–17%), 
in agreement with those reported here for the consensus sequence phylogenetic clusters (pol(c) and env(c)) and 
the V1V2 region for haplotypes (9.0%). Therefore, a more comprehensive understanding of HIV-1 transmission 
events in DC has been achieved when evaluating multiple genes together, rather than primarily focusing on poly-
merase genes that are typically screened for DRMs in clinical settings or used in investigations at the local health 
department level. By excluding envelope genes, informative transmission events can be missed, which could hin-
der community health prevention and intervention efforts. In an ideal setting, using all the genetic information 
available would be most favorable when investigating local HIV-1 phylodynamics.

In agreement with a recent study of HIV-1 transmission clusters in Chicago59, we also found association of risk 
factors within clusters. More HRH participants fell in our haplotype transmission networks compared to MSM, 
IDU, and participants with unknown risk (HRH = 23, MSM = 18, UNK = 11 each & IDU = 6). A total of 58.3% 
of the clusters that included an HRH participant also had an MSM participant. Likewise, a US study that included 
12 major US cities63 found transmission clusters that contained overlap between participants who were MSM 
and HRH. Mixing of risk types in HIV-1 subtype B transmission clusters has also been observed in Switzerland, 
Iceland, and Nordic European countries60,64,65. Contrarily, Kouyos et al.65 found segregation based on location 
among individuals who were included in a transmission cluster despite having overlapping risk factors. Risk 
groups may be mixing due to underreporting of risk behaviors or bisexual behavior65–67. This heterogeneity of risk 
groups in transmission clusters suggests that focusing on individuals within city areas (e.g., wards in Washington, 
DC) to concentrate resources and information may help in addressing the HIV-1 epidemic.

Otherwise, we were unable to determine the mode of transmission for the “unknown modes of transmission” 
group (16.2% of our sample). Nonetheless, our results suggest that the mode of transmission may not be as impor-
tant for prevention and intervention efforts as the location where transmission events are occurring. Likewise, 
Morgan et al.59 suggested not targeting efforts towards risk groups, but rather age groups, particularly younger 
people, in Chicago. The average age of the DC participants included in a haplotype transmission cluster was 46.6 
years of age. If DC’s younger population is being the most affected, as suggested by the new cases identified by the 
DC DOH in 2016 and 20171,3, taking a spatial dynamic approach to intervention with continued surveillance may 
help. Through surveillance studies, further adapted location-based prevention efforts can be employed.

Notably, our analysis has some limitations. We included only 68 participants of the approximately 10,000 
people enrolled in the DC Cohort3, whereas past studies conducted in DC included 700 (Kassaye et al.) and 1,500 
participants (Pérez-Losada et al.). However, the demographics in our sample size are similar to PLWH in DC3,4. 
As a prospective study conducted as part of an ongoing HIV-1 surveillance program associated with the DC 
Cohort, we capitalized on all the current cases that met our inclusion criteria (see Matierals and Methods: DC 
cohort). These past studies of HIV-1 diversity in Washington, DC were historical in nature and, therefore, had 
larger sample sizes available. Our study also applied a powerful next-generation sequencing approach instead of 
Sanger sequencing (previous DC studies), to characterize the current HIV-1 epidemic. With the implementation 
of NGS, mapping very diverse short reads to a reference genome poses alignment issues14, which can add diffi-
culty to downstream analyses. We circumnavigated this alignment issue by using HAPHPIPE, where the reads 

Gene
IN 
Major IN Access.

PR 
Major PR Access. NRTI NNRTI

PR 
SDRMs RT SDRMs PI TSMs

NRTI 
TSMs

NNRTI 
TSMs

DRM 
Codons

FUBAR 
Codons

Consensus

PR — — 0/0/0 1/1/1 — — 0/0/0 — 0/0/0 — — 1 2

RT — — — — 19/37/18 12/15/9 — 24/44/19 — 1/1/1 1/1/1 22 3

int 3/6/6 9/9/3 — — — — — — — — — 9 4

V1V2 — — — — — — — — — — — — 4

V3 — — — — — — — — — — — — 4

Haplotypes

PR — — 2/5/3 2/3/2 — — 2/5/3 — 0/0/0 — — 5 4

RT — — — — 27/100/19 15/39/13 — 30/117/22 — 3/3/2 1/3/1 27 4

int 3/6/5 7/13/1 — — — — — — — — — 6 9

V1V2 — — — — — — — — — — — — 7

V3 — — — — — — — — — — — — 8

Table 4. Drug Resistant Mutations. Number of participants/total mutations/unique mutations conferring 
resistance to antiretroviral drugs (IN Major to NNRTI TSMs) for genes int and PR/RT. DRM amino acid codons 
and codons under adaptive selection (FUBAR) are also listed. NRTI: nucleoside reverse-transcriptase inhibitors, 
NNRTI: non-nucleoside reverse-transcriptase inhibitors, SDRMs: surveillance drug resistant mutations, TSMs: 
treatment-selected mutations.
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were mapped against a tailored reference genome, thus resulting in higher alignment rates and fewer errors. 
Nonetheless, aligning very diverse reads still remains an issue. Although new sites under selection were identified 
using NGS, their clinical relevance as potential DRMs requires further validation. We also recognize that we used 
conservative genetic distance cutoff values for determining transmission clusters, which could result in lower 

Figure 1. Cladogram of the pol and env concatenated genes of Washington, DC showing sex, race/
ethnicities, and risk factors in rings. All phenotypes present are represented with different colors, see legend. 
All sequences were subtype B. Well-supported clades are depicted. MSM = men who have sex with men; 
HRH = heterosexuals; IDU = injection drug users; UNK = unknown; OTH = other. Numbers correspond to the 
de-identified participant.
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numbers of transmission clusters68; however, this conservative estimate reduced the number of false positive 
transmission clusters. Finally, due to the nature of predicting transmission clusters and the potential for missing 
individuals, we are not able to determine the direction of infection within the transmission clusters. We were also 
unable to rule out batch effects or laboratory artifacts accounting for any transmission cluster which participants 
were included in the same sequencing run.
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Figure 2. Cluster network (HIV-TRACE) of (I) consensus pol and env genes and (II) haplotypes reconstructed 
with PredictHaplo for PR, RT, int, V1V2 and V3 genes of Washington, DC participants by risk factor and 
race/ethnicity. Numbers correspond to the de-identified participant. Some participants have multiple HIV-1 
haplotypes.
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Gene 
region

Seq 
typea Cluster Nameb Nc

Sex Risk factord
Avg 
Agee DRMsf

Overlap between 
genes, same seq typegMale Female MSM HRH IDU UNK

pol Cons Tra_POL_a_7 7 6 1 1 3 2 1 42.3 71% 0%
pol Cons Tra_POL_b_2 2 1 1 1 1 0 0 37.1 50% 0%
env Cons Tra_ENV_a_2 2 1 1 1 1 0 0 48.6 100% 0%
PR Haps Tra_PR_a_9 9 6 3 2 4 0 3 42.5 44% 100%
PR Haps Tra_PR_b_3 3 2 1 1 1 0 1 58.0 67% 100%
PR Haps Tra_PR_d_3 3 1 2 1 2 0 0 44.0 67% 100%
PR Haps Tra_PR_e_2 2 2 0 2 0 0 0 34.5 50% 100%
PR Haps Tra_PR_f_2 2 2 0 1 1 0 0 38.8 0% 50%
PR Haps Tra_PR_g_2 2 2 0 1 0 0 1 40.5 50% 0%
PR Haps Tra_PR_h_2 2 2 0 0 0 1 1 49.9 100% 100%
PR Haps Tra_PR_i_2 2 2 0 1 1 0 0 39.6 0% 50%
RT Haps Tra_RT_a_12 12 8 4 3 7 0 2 43.4 67% 83%
RT Haps Tra_RT_b_3 3 2 1 1 2 0 0 44.2 67% 100%
RT Haps Tra_RT_c_2 2 2 0 1 0 1 0 44.7 50% 100%
RT Haps Tra_RT_d_2 2 2 0 1 1 0 0 50.7 100% 100%
RT Haps Tra_RT_e_2h 2 2 0 1 0 0 0 47.8 100% 100%
RT Haps Tra_RT_f_2h 2 2 0 0 1 0 0 59.2 100% 50%
RT Haps Tra_RT_g_2 2 2 0 1 0 1 0 45.8 0% 100%
RT Haps Tra_RT_h_2 2 2 0 1 0 0 1 46.5 100% 100%
RT Haps Tra_RT_i_2 2 1 1 1 1 0 0 47.7 50% 100%
RT Haps Tra_RT_j_2 2 1 1 0 1 0 1 55.4 100% 100%
RT Haps Tra_RT_k_2 2 0 2 0 1 0 1 63.7 50% 100%
int Haps Tra_INT_a_13 13 6 7 3 6 1 3 44.4 23% 85%
int Haps Tra_INT_b_6 6 5 1 2 4 0 0 42.5 83% 83%
int Haps Tra_INT_c_3 3 3 0 0 1 1 1 44.5 67% 67%
int Haps Tra_INT_d_3 3 2 1 1 0 1 1 43.0 33% 67%
int Haps Tra_INT_e_3 3 3 0 1 2 0 0 43.2 100% 100%
int Haps Tra_INT_f_2h 2 1 1 0 1 0 0 59.4 100% 100%
int Haps Tra_INT_g_2 2 2 0 1 0 0 1 51.0 100% 50%
int Haps Tra_INT_h_2 2 1 1 1 1 0 0 57.8 0% 50%
int Haps Tra_INT_i_2 2 2 0 1 1 0 0 40.2 100% 100%
int Haps Tra_INT_j_2h 2 2 0 1 0 0 0 43.2 50% 100%
int Haps Tra_INT_k_2 2 2 0 2 0 0 0 51.3 50% 50%
int Haps Tra_INT_l_2 2 2 0 0 0 1 1 55.9 100% 50%
int Haps Tra_INT_m_2 2 2 0 0 0 1 1 54.7 100% 50%
int Haps Tra_INT_n_2h 2 2 0 0 0 0 1 55.1 100% 50%
int Haps Tra_INT_o_2 2 1 1 0 2 0 0 39.7 50% 0%
int Haps Tra_INT_p_2 2 2 0 1 0 1 0 53.4 50% 100%
int Haps Tra_INT_q_2 2 1 1 0 2 0 0 52.6 50% 50%
int Haps Tra_INT_r_2 2 2 0 2 0 0 0 34.5 50% 100%
V1V2 Haps Tra_V1V2_a_2 2 1 1 1 1 0 0 52.5 50% 100%
V1V2 Haps Tra_V1V2_b_2 2 2 0 1 0 1 0 48.8 50% 100%
V1V2 Haps Tra_V1V2_c_2 2 0 2 0 2 0 0 51.7 100% 100%
V1V2 Haps Tra_V1V2_c_2 2 1 1 0 1 1 0 63.8 100% 100%
V3 Haps Tra_V3_a_5 5 4 1 3 2 0 0 42.1 60% 100%
V3 Haps Tra_V3_b_3 3 3 0 1 1 0 1 40.2 33% 100%
V3 Haps Tra_V3_c_2 2 1 1 0 2 0 0 45.7 0% 100%
V3 Haps Tra_V3_d_2 2 2 0 1 0 0 1 46.5 100% 100%
V3 Haps Tra_V3_e_2 2 1 1 1 1 0 0 38.7 50% 100%
V3 Haps Tra_V3_f_2 2 0 2 0 1 0 1 63.7 50% 100%
V3 Haps Tra_V3_g_2 2 1 1 0 1 0 1 43.8 50% 100%
V3 Haps Tra_V3_h_2 2 0 2 0 2 0 0 46.1 50% 100%
V3 Haps Tra_V3_i_2 2 1 1 0 1 1 0 42.5 50% 100%
V3 Haps Tra_V3_j_2 2 1 1 0 1 0 1 55.4 100% 100%
V3 Haps Tra_V3_k_2 2 1 1 1 0 1 0 40.9 0% 0%

Table 5. Characteristics of transmission clusters with HIV-TRACE and comparison between different genes. 
aCons = consensus; Haps = haplotypes. bCluster Name: The first part corresponds to method (HIV-TRACE), 
the second part corresponds to gene, the third part is an arbitrary letter to distinguish individual clusters, 
and the fourth part corresponds to the number of sequences belonging to the cluster (N). cNumber of unique 
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conclusions
This study showed that NGS and epidemiological data can be used to characterize the current phylodynamics of 
a subset of people living with HIV, enhancing our understanding of the diversity and local dynamics of the HIV-1 
epidemic in the DC area. HIV-1 diversity in DC is high and seems to remain stable over time. Furthermore, NGS 
of the envelope gene provided sufficient coverage to compare transmission cluster inference across HIV-1 gene 
regions14,20. Additional transmission clusters were identified when using HIV-1 intra-host haplotypes instead 
of consensus sequences, which led to networks linking a higher number of participants. Moreover, transmis-
sion clusters varied across genes, with each gene suggesting a different transmission story. Hence, using multiple 
HIV-1 genes or whole genomes is recommended to infer more reliable transmission clusters. Inferred clusters 
should then be linked to locations in DC to target transmission intervention efforts. Additionally, HIV-1 drug 
resistance was only found when using haplotypes in a single young adult in our cross-sectional sample of the 
cohort. Future studies should also focus on age groups and geographic regions rather than only risk factors. As 
the DC area maintains significant rates of HIV-1 infection, integrating present and past molecular data from 
previous studies conducted in DC in 201729 and 201328 will help to paint a comprehensive picture of the HIV-1 
transmission and evolution of drug resistance in this high prevalence urban U.S. city. Future HIV-1 phylodynamic 
studies should also include more participants, particularly young adults, and newly diagnosed persons to provide 
a comprehensive view of DRM prevalence in treatment-naïve individuals in the DC area. Studies revealing the 
severity of transmitted drug resistance in the DC population may provide physicians and public health workers 
with additional information to design more effective treatment plans for newly diagnosed individuals and inter-
vention strategies for targeted key populations.

Materials and Methods
ethics. Institutional Review Board (IRB071029) approval was obtained from The George Washington 
University IRB (which serves as the IRB of Record for eight of the participating sites), the DC DOH IRB, and 
the remaining site IRBs. Informed consent was obtained and documented prior to conducting study procedures. 
Sample collections from participants were performed in accordance with relevant guidelines and regulations.

Dc cohort. Participants from the DC Cohort were recruited for this molecular epidemiology sub-study from 
January 2016 through May 2017. Eligibility criteria included current DC Cohort enrollment, ≥18 years of age, 
HIV-1 diagnosis within prior 12 months of enrollment or detectable HIV-1 viral load of ≥1,500 copies/mL, abil-
ity to provide written informed consent, and completion of a behavioral survey; a total of 104 participants met 
the eligibility criteria. Blood samples were collected at the clinical sites and transported to George Washington 
University for processing, targeted amplification, library preparation and NGS. Sample sequences were paired 
with clinical and demographic data retrieved from the database from the DC Cohort (Table 1). Clinical and 
demographic characteristics collected included age, race/ethnicity, sex at birth, gender, country of birth, state of 
residence, zip code, HIV-1 risk factor, presence of co-infections (e.g., chlamydia, gonorrhea, syphilis, trichomoni-
asis, and Hepatitis B and C), duration of infection, CD4 count, viral load, ART exposure, ART regimen type, date 
of sample, and date of HIV-1 diagnosis. The paired data were de-identified and analyzed using the approaches 
described below.

next-Generation sequencing. Total RNA was extracted from each patient’s plasma sample, and cDNA 
synthesis followed. The QIAamp Viral RNA Mini Kit (Cat. #52904, Qiagen, Gaithersburg, MD) and the 
SuperScript™ IV First-Strand Synthesis System (Cat. # 18091050, Invitrogen, Carlsbad, CA) were used respec-
tively and according to manufacturers’ instructions. Multiple sets of HIV-1 specific primer pairs were used to tar-
get and amplify using polymerase-chain-reaction (PCR) the protease (PR), reverse transcriptase (RT), integrase 
(int), and envelope (env) HIV-1 genes (~43% of genome)36. Library preparation was completed with Nextera XT 
Library Prep (Cat. # 15032350, Illumina, Dan Diego, CA). Samples were then sequenced on eight runs on an 
Illumina MiSeq platform using the MiSeq v2 (300 cycles) chemistry (Cat. # MS-102–2002, Illumina). Both library 
prep and sequencing were completed according to the manufacturer’s instructions. All DNA sequence files are 
available from the GenBank database under SRA accession: PRJNA517147.

Sequence analyses. The raw sequence data for each patient were processed through HAPHPIPE (https://
github.com/gwcbi/haphpipe), a HAplotype reconstruction and PHylodynamics PIPEline for genome-wide 
assembly of viral consensus sequences and haplotypes69. Briefly, HAPHPIPE includes modules for quality trim-
ming, error correction, assembly, and haplotype reconstruction. We put the raw sequencing FASTQ files through 
quality control and quality trimming with Trimmomatic70. Error correction of the reads was completed with an 
earlier version of HAPHPIPE that used BLESS71, and the cleaned reads were mapped against the current HIV-1 
subtype B reference sequence HXB2 (Genbank accession: K03455)72. Through iterative refinement, the cleaned 
reads were then mapped back to the reference sequence generated in the mapping step with Bowtie273. This itera-
tive refinement step was completed twice, first using only a random subsampling of the reads (25% subsampling) 

participants within a cluster. dMSM = men who have sex with men; HRH = heterosexuals; IDU = injection drug 
users; UNK = unknown. eAverage age in years. fPercentage of participants within a cluster that contained one or 
more DRMs. gOverlap was only assessed between the concatenated consensus pol and env genes and between 
genes (PR, RT, int, V1V2, and V3) with transmission clusters generated with haplotypes. Reported as the 
percentage of unique participants within the cluster that are found in another cluster in a different gene within 
the same sequence type (consensus vs haplotype sequences). Overlap was not assessed between sequence types. 
hOne participant had a risk factor of other.
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and the fast-local mapping option to speed up the computational time, and second using all of the sequence reads 
and the very sensitive mapping option to further refine the individually crafted reference sequence. A consensus 
sequence was generated from the refined reference sequence, and a final refinement step was concluded with 
BLAST74 against this refined consensus sequence. The resulting sequences were filtered to include participants 
that contained a passing amplicon, defined as having > 95% of the amplicon covered by 10x or greater read cov-
erage. Amplicons that did not pass this filter were removed, and this subset was then used for subsequent phylo-
dynamic analyses (Table 1).

Sequence data for each PCR amplicon (PR/RT, int, and env) were aligned individually using MAFFT with the 
L-INS-i algorithm75 in Geneious (ver. 9.1.6)76. Protease (PR) and reverse transcriptase (RT) were extracted from 
the PR/RT amplicon, and env was further divided into the variable regions: gp120 V1V2 (HXB2 coordinates: 
6615–6812) and gp120 V3 (HXB2: 6984–7349). PR, RT, and int were concatenated into the pol(c) gene region, 
and V1V2 and V3 were concatenated into the env(c) gene region. Concatenated gene regions will be distinguished 
from whole gene regions by adding “(c)” to the end of the gene name. Each gene (PR, RT, int, V1V2, and V3) was 
extracted from the amplicon data to fulfill different purposes: (1) remove any nucleotides belonging to other 
genes, for example the env PCR amplicon contained primer sequences, and therefore nucleotides belonging to the 
vpu gene region; (2) simulate amplicon sizes that could be covered end to end by paired-end reads to be consistent 
and comparable to future NGS studies with HIV-1 when using PrimerID or other local haplotype phasing tech-
niques8,77; and (3) account for differences in PCR performance between and within samples by extracting a com-
mon, high-coverage region. Therefore, missing data in this dataset were low, and often only due to amplification 
failure of an entire amplicon. Concatenating the genes into their respective gene regions (pol and env) retained 
variants in genes that are often studied, such as protease and reverse transcriptase for drug resistant mutations. 
It also allowed comparisons to past studies based on Sanger sequencing that used either parts of genes or whole 
genes. Our overall goal was to keep the integrity of the individual genes while using as much of the NGS data as 
possible.

Identification of subtypes and drug resistant mutations. HIV-1 subtype identification was com-
pleted for each concatenated gene region (pol(c) and env(c)) using the REGA subtyping tool (version 3)78,79. A 
total of 170 subtype reference sequences from the Los Alamos HIV-1 database (LANL; http://www.hiv.lanl.gov/) 
were included to assign the patient sequences to a particular subtype clade and validate the findings from REGA 
using phylogenetic methods described below. Drug resistant mutations were identified aligning the consensus 
concatenated gene nucleotide sequences with reference strains in the Stanford HIV Drug Resistance Database 
(https://hivdb.stanford.edu) using the HIVdb program80. Nucleotide positions under positive selection were iden-
tified using Fast Unconstrained Bayesian AppRoximation (FUBAR)81 in HyPhy82. Recombination in our HIV-1 
data was accounted for with GARD83,84.

phylogenetic analyses. Phylogenetic estimations were completed for each concatenated gene region. The 
best-fit model of molecular evolution85 was estimated for each pol(c) and env(c) from the data using jModel-
Test286 in CIPRES Science Gateway87. Amino acid positions corresponding to identified DRMs described above 
were removed prior to phylogenetic estimations to avoid potential bias due to selection. A maximum likelihood 
phylogenetic estimate using RAxML88 was made for each region with the 3 codon-position partitions89. The 
branch support for the RAxML phylogenetic trees was estimated with a bootstrap approach with 1,000 repli-
cates90. Bayesian trees were inferred using MrBayes91. Four Markov chains (one cold and three heated) were run 
for 8 × 108 generations sampling every 2,000 steps for each gene region, and each run was repeated twice. The 
output was analyzed in Tracer92 to assess convergence and mixing of the chains. Subtypes references for subtype D 
(GenBank accessions: K03454, AY371157, AY253311, U88824) and circulating recombinant forms CRF28,42-BF 
(GenBank accessions: FJ213781, FJ358521, FJ670529) and CRF10-CD (GenBank accessions: AF289548, 
AF289549, AF289550) were pulled from LANL and used as proper outgroups for the phylogenetic analyses93. 
Additional RT sequences from DC29 were included to observe how our data related to other DC sequences. We 
visualized the epidemiological data on the resulting trees with the Interactive Tree of Life (iTOL).

Haplotype reconstruction. For the identification of transmission clusters and testing for associations 
of clinical variables to transmission clusters, it is ideal to characterize within patient viral variation as indi-
vidual sequence variants (haplotypes) instead of combining all of the individual reads into a single consensus 
sequence94,95. Therefore, haplotypes for each patient were predicted from the sequence data using HAPHPIPE’s 
haplotype stages. Haplotype reconstruction was performed on each PR/RT, int, and env targeted PCR amplicons 
using PredictHaplo96. Each gene region (PR, RT, V1V2, and V3) was then extracted from the corresponding 
targeted amplicon and, using the methods described below, transmission clusters were estimated using the pre-
dicted haplotypes. No concatenation of the individual genes to form the regions pol(c) and env(c) was done with 
the haplotypes.

Identification of transmission clusters. Transmission clusters were assessed for each pol(c) and env(c), as 
well as for each of the gene regions with the haplotypes, using phylogenetic methods89,91 and the genetic-distance 
based clustering method HIV-TRACE97. Phylogenetic transmission networks were defined as clades with boot-
strap proportions ≥70 or posterior probabilities ≥95%. Genetic distance thresholds of 0.0129,62 and 0.0298 sub-
stitutions/site were used for pol and env in HIV-TRACE, respectively, to identify potential transmission events. 
Ambiguities were handled with the HIV-TRACE option “average” to avoid biases and false positives and min-
imum overlap was 1/genetic distance threshold and adjusted for size of amplicon, as recommended. Default 
settings were used for the remaining parameters. Transmission clusters were compared between gene regions.

https://doi.org/10.1038/s41598-020-58410-y
http://www.hiv.lanl.gov/
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Diversity estimation. Haplotype diversity (h), the number of segregating sites (S), nucleotide diversity (π), 
and Watterson’s genetic diversity (θ) (see99) were estimated for both the consensus pol(c) and env(c) regions per 
patient using DnaSP (ver. 6.11.01)100. Haplotype diversity (h), which takes into account the number of haplotypes 
and their relative frequencies, was also estimated from PredictHaplo results according to Nei and Tajima101. Both 
diversity estimates were used as the number of haplotypes estimated from DnaSP is representative of inter-patient 
diversity, whereas the number of haplotypes and haplotype diversity estimates from the PredictHaplo results are 
representative of intra-patient diversity. Significance for haplotype diversity between clinical variables was meas-
ured with the Wilcoxon rank sum test or Kruskal-Wallis test in R v 3.6.0102 using RStudio v 1.2.1335103.
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Affairs Medical Center.
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