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Abstract
Background Rapid on-site evaluation (ROSE) plays an important role during transbronchial sampling, providing an 
intraoperative cytopathologic evaluation. However, the shortage of cytopathologists limits its wide application. This 
study aims to develop a deep learning model to automatically analyze ROSE cytological images.

Methods The hierarchical multi-label lung cancer subtyping (HMLCS) model that combines whole slide images of 
ROSE slides and serum biological markers was proposed to discriminate between benign and malignant lesions and 
recognize different subtypes of lung cancer. A dataset of 811 ROSE slides and paired serum biological markers was 
retrospectively collected between July 2019 and November 2020, and randomly divided to train, validate, and test the 
HMLCS model. The area under the curve (AUC) and accuracy were calculated to assess the performance of the model, 
and Cohen’s kappa (κ) was calculated to measure the agreement between the model and the annotation. The HMLCS 
model was also compared with professional staff.

Results The HMLCS model achieved AUC values of 0.9540 (95% confidence interval [CI]: 0.9257–0.9823) in malignant/
benign classification, 0.9126 (95% CI: 0.8756–0.9365) in malignancy subtyping (non-small cell lung cancer [NSCLC], 
small cell lung cancer [SCLC], or other malignancies), and 0.9297 (95% CI: 0.9026–0.9603) in NSCLC subtyping (lung 
adenocarcinoma [LUAD], lung squamous cell carcinoma [LUSC], or NSCLC not otherwise specified [NSCLC-NOS]), 
respectively. In total, the model achieved an AUC of 0.8721 (95% CI: 0.7714–0.9258) and an accuracy of 0.7184 in the 
six-class classification task (benign, LUAD, LUSC, NSCLC-NOS, SCLC, or other malignancies). In addition, the model 
demonstrated a κ value of 0.6183 with the annotation, which was comparable to cytopathologists and superior to 
trained bronchoscopists and technicians.

Conclusion The HMLCS model showed promising performance in the multiclassification of lung lesions or 
intrathoracic lymphadenopathy, with potential application to provide real-time feedback regarding preliminary 
diagnoses of specimens during transbronchial sampling procedures.

Clinical trial number Not applicable.
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Introduction
Lung cancer is the leading cause of cancer death 
worldwide [1]. Accurate pathological subtyping is 
essential for guiding personalized therapy strategies, 
especially for small biopsies and cytology specimens 
from inoperable lung cancer patients [2]. Transbron-
chial sampling is the most common modality to obtain 
specimens of lung lesions and intrathoracic lymphade-
nopathy for the accurate diagnosis, and has proved to 
be safe and effective [3–6]. However, whether the spec-
imens obtained were satisfactory and sufficient was 
indeterminate during the procedure. If the specimens 
obtained fail to meet the needs for an accurate diagno-
sis, patients may need to undergo additional invasive 
examinations. To overcome this problem, rapid on-site 
evaluation (ROSE) has emerged as a crucial auxiliary 
technique for transbronchial sampling [7–10]. With 
ROSE, the specimen undergoes an immediate cytopa-
thologic evaluation, and the bronchoscopist receives 
feedback regarding specimen quality and preliminary 
diagnosis.

For ROSE, comprehensive evaluation of specimens 
is typically performed by experienced cytopatholo-
gists directly in the bronchoscopy suite. However, the 
widespread adoption of ROSE faces a significant chal-
lenge due to the shortage of cytopathologists, espe-
cially in areas with less medical resources. Meanwhile, 
the manual evaluation process is time-consuming and 
depends on the experience of cytopathologists [11]. 
With the development of artificial intelligence (AI), 
various methods have been proposed for automatic 
pathological image assessments [12–15]. Neverthe-
less, only a few studies have explored AI-aided ROSE 
for transbronchial sampling [16–19]. Besides, exist-
ing studies only focused on the differential diagnosis 
of benign and malignant, and none have investigated 
the classification of lung cancer subtypes. Moreover, 
it is essential to acknowledge that the diagnosis of 
lung cancer should not solely rely on image analysis. 
Recently, some researches have proved that AI models 
that combine medical imaging with serum biological 
markers can promote the accuracy of lung cancer sub-
typing [20, 21].

In this study, we proposed a hierarchical multi-label 
lung cancer subtyping (HMLCS) model that combines 
whole slide images (WSIs) of ROSE slides and serum 
biological markers, with the purpose of achieving perfor-
mance comparable to cytopathologists in discriminating 
between benign and malignant lesions and recognizing 
different subtypes of lung cancer.

Materials and methods
Study design
This is a retrospective observational study. The over-
view of this study is illustrated in Fig.  1. Lung can-
cer is mainly divided into non-small cell lung cancer 
(NSCLC) and small cell lung cancer (SCLC). About 
80–85% of lung cancer cases are NSCLC, and the sub-
types of NSCLC include lung adenocarcinoma (LUAD), 
lung squamous cell carcinoma (LUSC), and some other 
types. To achieve better performance in classifying the 
lung cancer subtypes as mentioned above, we proposed 
the HMLCS model which could be divided into three 
modules: benign or malignant classification (B/M) mod-
ule, malignancy subtyping (M-sub) module, and NSCLC 
subtyping (NSCLC-sub) module. Specifically, WSIs of 
ROSE slides and paired serum biological markers were 
input to the HMLCS model. We first classified them as 
benign or malignant with the B/M module. The classifi-
cation stopped here if the output of this step was benign. 
Otherwise, the input was forwarded to the M-sub mod-
ule and was classified into three sub-categories: NSCLC, 
SCLC or other malignancies. Finally, if the output of the 
second step was NSCLC, we took one more step with 
the NSCLC-sub module to classify the input into three 
deeper sub-categories: LUAD, LUSC or NSCLC not oth-
erwise specified (NSCLC-NOS). WSIs of ROSE slides 
and paired serum biological markers were retrospectively 
collected and randomly divided into training, validation 
and test sets to develop and test our model. In addition, 
we conducted a comprehensive comparison between 
our model and professional staff (including cytopatholo-
gists, trained bronchoscopists and technicians) to further 
evaluate the performance of our model. This study was 
approved by the Ethics Committee of Shanghai Chest 
Hospital (No. KS2023), and the requirement for informed 
consent was waived. The study was performed in accor-
dance with the Declaration of Helsinki.

Data collection
The ROSE slides of patients with lung lesions or intratho-
racic lymphadenopathy who underwent transbronchial 
sampling in Shanghai Chest Hospital between July 2019 
and November 2020 were retrospectively collected. One 
of the following transbronchial sampling techniques was 
performed: transbronchial needle aspiration (TBNA), 
transbronchial lung biopsy (TBLB), and transbronchial 
biopsy (TBB). TBB was performed in endobronchial lung 
lesions, TBLB was performed in lung lesions invisible 
during bronchoscopy, and TBNA was performed in intra-
thoracic lymphadenopathy and central lung lesions adja-
cent to airways. During the procedure, the specimen was 
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stamped on glass slides for immediate ROSE. For speci-
mens from forceps, the specimens were picked up using 
tweezers and spread in concentric circles about 1 cm in 
diameter on the glass slides. For specimens from brushes, 
the brush tip was pushed out, and the specimens were 
smeared on the glass slides, forming a rectangle of about 
1  cm × 2  cm. For specimens from needles, the tissue 
was picked up using tweezers and spread in concentric 
circles, and one drop of the liquid specimen was placed 
on the glass slide and spread by pressing using another 
slide. The slides were air-dried and stained using a Diff-
Quik stain kit (Baso Diagnostics Inc., Zhuhai, China). 
The slides were immersed in solution A for 20–30 s and 
rinsed with phosphate-buffered saline (PBS), followed by 
immersion in solution B for 20–30 s and rinsed with PBS. 
Owing to the convenience of Diff-Quik staining, it finds 
extensive application in ROSE and allows for rapid dif-
ferentiation of benign and diverse malignancy subtypes 
(Fig. 2). The remaining specimens after ROSE slide prep-
aration were sent for pathological examinations.

Only patients with a diagnostic transbronchial sam-
pling procedure were included in this study. A biopsy 
that resulted in a malignant or specific benign (e.g., 

tuberculosis, fungal infection, etc.) process was consid-
ered diagnostic. Biopsy specimens with non-specific 
benign findings were considered diagnostic only if: (1) 
the diagnosis was confirmed by a subsequent surgery, 
mediastinoscopy, or CT-guided biopsy; or (2) follow-
up imaging demonstrated stability or improvement of 
the lesion. All patients received follow up for at least 6 
months. Patients with non-diagnostic transbronchial 
sampling procedures were excluded. All specimens in 
this study had undergone immunohistochemistry exami-
nations. Specifically, cell block pathology of TBNA and 
histopathology of TBLB or TBB were confirmed by 
immunohistochemistry. Patients with unclear pathologi-
cal subtypes were excluded in this study.

The ROSE slides were scanned using the Digital Micro 
Image Analysis System (Shanghai Aitrox Technology 
Corporation Limited, Shanghai, China) with a ×20 objec-
tive lens to produce WSIs. The WSIs were saved by the 
Microscope Image Information System (Shanghai Aitrox 
Technology Corporation Limited, Shanghai, China) 
in SVS format. WSIs with insufficient scan clarity were 
excluded. Since not all specimens were used for ROSE 
preparation and the specimens were only stamped on the 

Fig. 1 Overview of this study. (A) The strategy of the HMLCS model. The HMLCS model can be divided into three modules: benign or malignant classifi-
cation (B/M) module, malignancy subtyping (M-sub) module, and NSCLC subtyping (NSCLC-sub) module. (B) The details of the HMLCS model. The WSIs 
were segmented to patches, and then the patches were encoded into features by a pre-trained network. For each module, the attention layer was utilized 
to calculate attention scores for each patch feature, and the features of patches within a WSI were aggregated according to attention scores. Finally, the 
aggregated feature was concatenated with five serum biological markers for the classifier to perform the classification. (C) The potential application of the 
HMLCS model. The HMLCS model could provide real-time feedback regarding primary diagnoses of specimens during transbronchial sampling. LUAD: 
lung adenocarcinoma, LUSC: lung squamous cell carcinoma, NOS: not otherwise specified, NSCLC: non-small cell lung cancer, SCLC: small cell lung cancer, 
ROSE: rapid on-site evaluation, WSIs: whole slide images
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slides during ROSE preparation, the diagnosis of ROSE 
slide and the diagnosis of corresponding transbronchial 
sampling procedure could be inconsistent. For example, 
a lung lesion was diagnosed as adenocarcinoma by trans-
bronchial sampling, but its ROSE slide could be negative. 
All WSIs were labeled by one experienced cytopatholo-
gist under the guidance of final diagnoses of transbron-
chial sampling procedures. To guarantee annotation 
accuracy, the annotation for one WSI was accepted only 
when it was consistent with the final diagnosis. Other-
wise, the WSI was excluded. The corresponding serum 
biological markers were also collected, including carcino-
embryonic antigen (CEA), soluble fragment of cytokera-
tin 19 (CYFRA21-1), squamous cell carcinoma antigen 
(SCC), neuron-specific enolase (NSE), and carbohydrate 
antigen 125 (CA125). Flowchart of data collection and 
splitting was shown in Fig. 3.

Data preprocessing
The WSIs were tiled into patches of 224 × 224 pixels, and 
all background patches were discarded. To efficiently dis-
card all background patches, we converted patches into 
binary format, with white areas denoting valid cells and 
black areas denoting invalid background. Patches with 
white areas in their binary formats were retained, while 
the other patches were considered as background and 
discarded. Although each patch may be treated as an 
input, the feature dimension of 224 × 224 is computation-
ally too expensive as there may exist more than 150, 000 
patches for one WSI. To improve computing efficiency, 
we derived low-dimensional features of size 1024 for 
each patch for further steps.

Deep convolutional neural network
Like CLAM [12], a method that aims to do data-
efficient weakly-supervised learning for WSIs by 

embedding instances using a frozen encoder, we used 
the ResNet50 pre-trained on the ImageNet to extract 
low-dimensional features of patches. Then, for each 
WSI, we concatenated the extracted features of patches 
within a WSI as an input for the subsequent steps. 
This feature extraction procedure preserved both a 
local representation with low-dimensional features of 
each patch and a global representation with ensemble 
features of the whole WSI.

Attention module
The attention module aggregated the features of patches 
within a WSI to create WSI-level representations. Spe-
cifically, the attention module assigned one attention 
score to each patch to indicate its contribution to the 
WSI-level representation. We show such calculation in 
Eq. 1:

 
ai =

exp(freg (tanh(feati) � sigmoid (feati) ) )∑
N
j=1exp(freg(tanh (featj) � sigmoid (featj) ) )

 (1)

where ai  represents the attention score for patch i , 
feati  stands for the feature extracted by the pre-trained 
ResNet50 from patch i , and N  is the number of valid 
patches within the WSI. We mapped the feati  by a 
tanh  function and a sigmoid  function, respectively, and 
the mapped outputs were aggregated via dot product. We 
then applied a regression function on the result and nor-
malized it to [0, 1] by a softmax function. To make the 
equation easy to follow, we only show the calculation of 
one attention score here.

Classifier
Each module, namely the B/M module, the M-sub mod-
ule, and the NSCLC-sub module, was equipped with a 
dedicated fully connected layer serving as a classifier. 

Fig. 2 Typical cytological images of different benign and malignant lesions from rapid on-site evaluation slides staining with Diff-Quik (×200). (A) Granu-
lomatous structure with necrosis. (B) Pigment-laden macrophages. (C) Dense inflammatory background with neutrophil. (D) Anthracotic. (E) Lung adeno-
carcinoma. (F) Lung squamous cell carcinoma. (G) Small cell lung cancer. (H) Lymphoma
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To establish these classifiers, we initially aggregated 
the features of patches within a WSI by computing the 
weighted average based on the attention scores. It is 
noteworthy that, for each classifier, this feature fusion 
process was carried out independently to ensure that 
the attention score was learned in a focused man-
ner specific to the respective classifier. In addition, we 
also concatenated five serum biological markers (CEA, 
CYFRA21-1, SCC, NSE, CA125) with the aggregated 
feature for the classifier to perform the classification. 
In summary, we employed a fully connected layer as 
the classifier for each module and trained the classifiers 
using the WSI-level labels.

Training protocol
The detailed training parameters of our model were as 
follows: a batch size of 4, a learning rate of 1× e− 5, an 
epoch of 100, an input size of 224 × 224 × 3, and a patch 
size of 8. Cross entropy loss was used as the loss func-
tion. The development of the model was implemented 
using Python version 3.6 and PyTorch version 1.3 based 
upon Ubuntu 16.04 on a workstation with two Xeon 
E5-2650 CPU (12C24T) at 2.2 GHz (Intel), 192GB RAM, 
and eight NVIDIA GTX 1080 Ti GPUs with 12GB GPU 
memory (NVidia).

Comparison between the HMLCS model and professional 
staff
The diagnostic performance of the HMLCS model was 
compared with professional staff, including two senior 
cytopathologists specializing in chest diseases, two bron-
choscopists, and two technicians, on the same test set. 
The bronchoscopists and technicians were previously 
trained on ROSE regarding chest diseases. Professional 
staff independently made their predictions using the 
WSIs of ROSE slides and paired serum biological mark-
ers blinded to the final diagnoses.

Statistical analysis
The difference of clinical data from different datasets was 
compared by Mann-Whitney U test. The receiver oper-
ating characteristic (ROC) curve and the area under the 
curve (AUC) were introduced as graphical representa-
tions to showcase the balance between true positive and 
false positive rates. In addition, the accuracy and Cohen’s 
kappa were calculated to assess the performance of the 
model and professional staff. We separately measured 
the agreement between professional staff and the annota-
tion, as well as the agreement between the model and the 
annotation on the test set. The kappa value is denoted as 
κ, and the formula is as follows:

Fig. 3 Flowchart of data collection and splitting. LUAD: lung adenocarcinoma, LUSC: lung squamous cell carcinoma, NOS: not otherwise specified, 
NSCLC: non-small cell lung cancer, SCLC: small cell lung cancer, WSIs: whole slide images
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, in which k is the number of categories, N is the number 
of datasets, and m is the number of experts.

The κ values were interpreted as follows: 0.00–0.20, 
poor agreement; 0.21–0.40, fair agreement; 0.41–0.60, 
moderate agreement; 0.61–0.80, substantial agreement; 
and 0.81–1.00, almost perfect agreement. The test statis-
tics were approximated by a normal distribution to cal-
culate the p-value and the 95% confidence interval (CI). 
p < 0.05 was considered statistically significant. Statistical 
analysis was carried out with MedCalc (Version 22.009, 
MedCalc Software Ltd, Belgium) and IBM SPSS Statistics 

for Windows, Version 25.0 (IBM Corp., Armonk, NY, 
USA).

Results
Clinical characteristics
A total of 811 WSIs and corresponding serum bio-
logical markers were included in this study, including 
benign lesions (n = 137), LUAD (n = 325), LUSC (n = 130), 
NSCLC-NOS (n = 17), SCLC (n = 135), and other malig-
nancies (n = 67). The detailed information is presented 
in Table  1. The results of biomarker values for different 
diseases are shown in Table S1 in the Supplementary 
Materials.

P values were calculated based on training and test 
groups. LUAD: lung adenocarcinoma, LUSC: lung 
squamous cell carcinoma, SCLC: small cell lung can-
cer, NSCLC: non-small cell lung cancer, NSCLC-NOS: 
non-small cell lung cancer not otherwise specified, TBB: 
transbronchial biopsy, TBLB: transbronchial lung biopsy, 
TBNA: transbronchial needle aspiration, IQR: interquar-
tile range, CEA: carcinoembryonic antigen, CYFRA21-
1: soluble fragment of cytokeratin 19, SCC: squamous 
cell carcinoma antigen, NSE: neuron-specific enolase, 
CA125: carbohydrate antigen 125.

Table 1 Clinical characteristics
Characteristics Total

(n = 811)
Training
(n = 481)

Validation
(n = 156)

Test
(n = 174)

P

Final diagnoses, n(%) 0.773
Malignant/Benign M-subtyping NSCLC-subtyping
Malignant NSCLC LUAD 325 (40.07%) 204 (42.41%) 54 (34.62%) 67 (38.51%)

LUSC 130 (16.03%) 78 (16.22%) 23 (14.74%) 29 (16.67%)
NSCLC-NOS 17 (2.10%) 10 (2.08%) 2 (1.28%) 5 (2.87%)

SCLC 135 (16.65%) 71 (14.76%) 32 (20.51%) 32 (18.39%)
Others 67 (8.26%) 36 (7.48%) 18 (11.54%) 13 (7.47%)

Benign 137 (16.89%) 82 (17.05%) 27 (17.31%) 28 (16.09%)
Transbronchial sampling techniques, n (%) 0.501
TBB 146 (18.00%) 94 (19.54%) 28 (17.95%) 24 (13.79%)
TBNA 258 (31.81%) 138 (28.69%) 58 (37.18%) 62 (35.63%)
TBLB 407 (50.19%) 249 (51.77%) 70 (44.87%) 88 (50.58%)
Lesions, n (%) 0.681
Lung lesions 596 (73.49%) 366 (76.09%) 108 (69.23%) 122 (70.11%)
Intrathoracic lymphadenopathy 215 (26.51%) 115 (23.91%) 48 (30.77%) 52 (29.89%)
Serum biological markers, median (IQR)
CEA 4.09

(2.46–8.55)
4.63
(2.69–9.10)

3.47
(2.01–6.14)

3.68
(2.40–8.49)

0.086

CYFRA21-1 2.73
(1.92–4.05)

2.84
(1.93–4.43)

2.52
(1.75–3.15)

2.79
(1.95–4.53)

0.506

SCC 0.79
(0.55–1.10)

0.79
(0.57–1.10)

0.71
(0.50–1.08)

0.80
(0.59–1.33)

0.643

NSE 18.95
(13.92–24.62)

19.32
(13.77–24.21)

18.22
(14.21–25.23)

18.66
(15.13–28.62)

0.231

CA125 16.08
(10.31–33.67)

16.36
(10.97–33.48)

16.08
(9.67–33.50)

14.43
(10.40-36.24)

0.074
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Diagnostic performance of the HMLCS model
To evaluate the diagnostic performance of each classifi-
cation module, the confusion matrix and AUC of each 
module on the test set were calculated as shown in Fig. 4. 
For the confusion matrix, each column represents the 
number of WSIs in each predicted class according to 
the model, while each row represents the actual num-
ber of WSIs in each class according to the annotation. 
The B/M module achieved an AUC of 0.9540 (95% CI: 
0.9257–0.9823) in classifying malignant and benign cases 
(Fig. 4A). The M-sub module exhibited an AUC of 0.9126 
(95% CI: 0.8756–0.9365) in distinguishing subtypes of 
malignancies (Fig. 4B). The NSCLC-sub module obtained 
an AUC of 0.9297 (95% CI: 0.9026–0.9603) in classifying 
subtypes of NSCLC (Fig. 4C). In total, the HMLCS model 
achieved an AUC of 0.8721 (95% CI: 0.7714–0.9258) 
and an accuracy of 0.7184 in the six-class classification 
(benign, LUAD, LUSC, NSCLC-NOS, SCLC, or other 
malignancies) (Fig.  4D). Additionally, the predictions 
of the HMLCS model demonstrated substantial agree-
ment with the annotated labels, with a κ value of 0.6183 
(p < 0.0001).

We analyzed the performance of our model on lymph 
node and lung lesion data respectively. The HMLCS 
model achieved an AUC of 0.8347 (95% CI: 0.7882–
0.8606) and an accuracy of 0.6923 in the six-class clas-
sification on lymph node data, and achieved an AUC 
of 0.8961 (95% CI: 0.8616–0.9317) and an accuracy of 
0.7295 on lung lesion data. Although there were differ-
ences in imaging characteristics between lung and lymph 
node samples, such as the differences in background cell 

composition, the performance of our model on lung and 
lymph node data was similar.

To further analyze the significance of each component 
in our algorithm, we conducted comprehensive studies 
to assess the effect of individual elements. Initially, we 
trained hierarchical models using solely WSIs. The AUC 
for classifying malignant and benign was 0.9792 (95% CI: 
0.9127–0.9838), the AUC for classifying SCLC, NSCLC, 
and other malignancies was 0.8907 (95% CI: 0.8628–
0.9236), and the AUC for classifying LUAD, LUSC, and 
NSCLC-NOS was 0.8464 (95% CI: 0.8012–0.8829). Over-
all, the hierarchical model using solely WSIs achieved 
an AUC of 0.8067 (95% CI: 0.7489–0.8256) and an accu-
racy of 0.6494 in the six-class classification (Fig. S1 in the 
Supplementary Materials displays the ROC curve and the 
confusion matrix of the hierarchical model using solely 
WSIs). At most levels of classification, our method (using 
both WSIs and serum biological markers as the input) 
outperformed the model using solely WSIs, demonstrat-
ing the additional predictive power gained through the 
inclusion of serum biological markers. Additionally, to 
analyze the significance of our hierarchical classification 
approach, we attempted using a flat classification model 
instead of the hierarchical approach, where the six leaf 
classification labels were equally represented in the out-
put. The flat model achieved an AUC of 0.7967 (95% CI: 
0.7601–0.8333) and an accuracy of 0.4770 in the six-class 
classification (Fig. S2 in the Supplementary Materials dis-
plays the ROC curve and the confusion matrix of the flat 
classification model). Our method outperformed the flat 

Fig. 4 The diagnostic performance of the HMLCS model on the test set. The diagnostic performance of each module and the total model is presented. 
The first row displays the ROC curve with the AUC value, while the second row shows the confusion matrix with the accuracy and κ value. (A) The diag-
nostic performance of the B/M module. (B) The diagnostic performance of the M-sub module. (C) The diagnostic performance of the NSCLC-sub module. 
(D) The diagnostic performance of the total HMLCS model. P1 to P6 indicate the performance of two cytopathologists, two bronchoscopists, and two 
technicians, respectively. acc: accuracy, AUC: aera under the curve, LUAD: lung adenocarcinoma, LUSC: lung squamous cell carcinoma, NOS: not otherwise 
specified, NSCLC: non-small cell lung cancer, ROC: receiver operating characteristic, SCLC: small cell lung cancer
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model, underscoring the significance of our hierarchical 
classification approach.

Comparison between the HMLCS model and professional 
staff
To further evaluate the performance of the HMLCS 
model, we conducted a comprehensive comparison with 
professional staff, including two cytopathologists, two 
bronchoscopists and two technicians. Fig.  5 illustrates 
the Cohen’s kappa and accuracy analysis for the cyto-
pathologists (P1 and P2), bronchoscopists (P3 and P4) 
and technicians (P5 and P6) in relation to the annotated 
labels. In this analysis, we treated the problem as a simple 
six-class classification problem to calculate the κ value 
and the accuracy. Higher κ values of 0.7074 and 0.7422 
were found in P1 and P2, demonstrating substantial 
agreement between cytopathologists and the annotated 
labels. Moderate agreement was found in P5 (κ = 0.4483). 
Only weak agreement was shown in P3, P4, and P6, with 
κ values of 0.3443, 0.3514, and 0.3362, respectively. The 
accuracy analysis showed similar trends as depicted in 
Fig. 5C. In comparison, the κ value of our HMLCS model 
was 0.6183, which was comparable to cytopathologists 
and superior to trained bronchoscopists and technicians.

Discussion
In this study, a three-step model named HMLCS model 
was proposed to discriminate between benign and malig-
nant lesions and recognize different subtypes of lung 
cancer. A large-scale dataset containing 811. ROSE slides 
and paired serum biological markers from patients with 
lung lesions and intrathoracic lymphadenopathy was 
constructed to train and evaluate the model. The HMLCS 
model demonstrated promising performance, achiev-
ing AUC values of 0.9540, 0.9126, and 0.9297 in benign/
malignant classification, malignancy subtyping (NSCLC, 
SCLC, or other malignancies), and NSCLC subtyping 
(LUAD, LUSC, or NSCLC-NOS), respectively. In total, 
the HMLCS model achieved an AUC of 0.8721 and an 
accuracy of 0.7184 in the six-class classification task 
(benign, LUAD, LUSC, NSCLC-NOS, SCLC, or other 
malignancies). In addition, the κ value of the HMLCS 
model in relation to the annotated labels was 0.6183, 
which was comparable to cytopathologists and superior 
to trained bronchoscopists and technicians.

Previous studies have only focused on the malignant 
and benign discrimination on ROSE slides using deep 
learning [16–19]. Accuracies of 84.6-95.5% were obtained 
in these studies. The accuracy of our model in malignant 
and benign discrimination was 89.08%, which was simi-
lar to previous studies. To our knowledge, this is the first 

Fig. 5 The diagnostic performance of professional staff on the test set. (A) Confusion matrixes of professional staff. (B) κ values of professional staff. (C) Ac-
curacies of professional staff. P1 and P2: two cytopathologists, P3 and P4: two bronchoscopists, P5 and P6: two technicians, LUAD: lung adenocarcinoma, 
LUSC: lung squamous cell carcinoma, NOS: not otherwise specified, SCLC: small cell lung cancer
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study to develop a deep learning model that can identify 
lung cancer subtypes, and promising performance in 
lung cancer subtyping was obtained. A large-scale dataset 
containing both lung lesions and intrathoracic lymphade-
nopathy was collected to train and evaluate the model.

The proposed HMLCS model addressed the lung can-
cer subtyping problem by a novel hierarchical framework 
with three modular classification levels: (1) a B/M mod-
ule that distinguishes benign and malignant lesions, (2) 
a M-sub module that subtypes malignancies into SCLC, 
NSCLC, and other malignancies, and (3) a NSCLC-sub 
module that further classifies NSCLC subtypes. To for-
malize hierarchical learning, the HMLCS model calcu-
lated independent attention scores at each level, ensuring 
the model allocated representational capacity based on 
each decision. According to our results, this cascading 
structure provided advantages over a single multi-class 
classifier. Dividing the problem into successive sub-mod-
ules allows focused learning on narrowly defined tasks, 
potentially capturing subtle differences obscured in a 
holistic approach.

The HMLCS model has the potential to provide real-
time feedback regarding preliminary diagnoses of speci-
mens during transbronchial sampling. If the lesion is 
likely to be malignant according to the patient’s history 
and preoperative examinations but the specimen is pre-
dicted to be benign by the HMLCS model, the specimen 
obtained may be unqualified, and the biopsy site should 
be adjusted and new specimens should be obtained. Oth-
erwise, if the lesion is likely to be malignant and the spec-
imen is also predicted to be malignant by the HMLCS 
model, the specimens are satisfactory. AI-assisted ROSE 
evaluation could help compensate for the shortage of 
experienced cytopathologists in the field and address dis-
parities in expertise among medical institutions. Further-
more, diagnostic results of the HMLCS model may be 
useful to facilitate an early clinical decision, especially for 
malignant results.

This study acknowledges certain limitations that war-
rant further investigation. First, this is a single-center ret-
rospective study. To evaluate the generalizability of our 
model, it is necessary to carry out a multicenter and pro-
spective research. Second, the dataset used in this study 
came from a specialized hospital, resulting in a high pro-
portion of lung cancer, especially LUAD. However, this 
phenomenon was reasonable in lesions scheduled for 
an invasive examination. In a future study, larger dataset 
including sizeable cases of different diseases should be 
collected to optimize our model. Third, although the per-
formance of our model was similar on lymph node and 
lung lesion data, the number of lymph node samples is 
not large enough (26.51% of the total dataset). The gen-
eralizability of our model on lymph node and lung lesion 
samples needs to be further validated. Finally, although 

the diagnostic performance of our model was promis-
ing, its clinical value needs to be assessed prospectively 
in real clinical scenarios.

Conclusion
In summary, by utilizing ROSE slides and serum bio-
logical markers as the input, our HMLCS model dem-
onstrated cytopathologist-level diagnostic performance 
in benign and malignant discrimination and lung cancer 
subtype classification for lung lesions and intrathoracic 
lymphadenopathy. The HMLCS model could be a useful 
tool during transbronchial sampling procedures, provid-
ing real-time feedback regarding preliminary diagnoses 
of specimens to the bronchoscopist.
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