
RESEARCH ARTICLE

A novel bacteriocin from Enterococcus faecalis

478 exhibits a potent activity against

vancomycin-resistant enterococci

Uraporn Phumisantiphong1, Kanokrat Siripanichgon1, Onrapak Reamtong2,

Pornphan Diraphat1*

1 Department of Microbiology, Faculty of Public Health, Mahidol University, Bangkok, Thailand,

2 Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University,

Bangkok, Thailand

* pornphan.dir@mahidol.edu

Abstract

The emergence of multidrug-resistant enterococci (MDRE) and particularly vancomycin-

resistant enterococci (VRE) is considered a serious health problem worldwide, causing the

need for new antimicrobials. The aim of this study was to discover and characterize bacteri-

ocin against clinical isolates of MDRE and VRE. Over 10,000 bacterial isolates from water,

environment and clinical samples were screened. E. faecalis strain 478 isolated from

human feces produced the highest antibacterial activity against several MDRE and VRE

strains. The optimum condition for bacteriocin production was cultivation in MRS broth at

37˚C, pH 5–6 for 16 hours. The bacteriocin-like substance produced from E. faecalis strain

EF478 was stable at 60˚C for at least 1 hour and retained its antimicrobial activity after stor-

age at -20˚C for 1 year, at 4˚C for 6 months, and at 25˚C for 2 months. A nano-HPLC electro-

spray ionization multi-stage tandem mass spectrometry (nLC-ESI-MS/MS) analysis showed

that the amino acid sequences of the bacteriocin-like substance was similar to serine prote-

ase of E. faecalis, gi|488296663 (NCBI database), which has never been reported as a bac-

teriocin. This study reported a novel bacteriocin with high antibacterial activity against VRE

and MDRE.

Introduction

Vancomycin-resistant enterococci (VRE) and multidrug-resistant enterococci (MDRE) have

emerged as hospital-acquired pathogen over the last three decades [1]. Among various entero-

cocci, Enterococcus faecalis and Enterococcus faecium are known to be the most common

causes of nosocomial infections, such as urinary tract infection, surgical wound infection,

pneumonia, endocarditis, bacteremia and meningitis [2]. They are intrinsically resistant to

many antimicrobial agents used in clinical setting and rapidly acquire resistance genes and

mutations [1, 3]. Enterococci can grow in a wide range of pHs and temperatures, high salt con-

centration and persist on non-living objects for weeks, allowing them to survive in hospitals

and extreme environments [4, 5]. Generally, vancomycin is reserved for certain serious
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infections, which are non-responsive to other antibiotic treatment. Since the first VRE case

report in Europe in 1980, the prevalence of VRE has increased dramatically in various coun-

tries [6, 7]. VRE can cause serious infections, especially endocarditis and bacteremia, in immu-

nocompromised patients or patients on treatment with antibiotics such as cephalosporins [8].

The search for new effective antimicrobial agents has become a global concern due to the

increasing prevalence of MDR-and VRE. In the past three decades, the process of new antibi-

otic discovery has slowed and only few antibiotics against VRE have been developed [9]. Fur-

thermore, some enterococci have evolved resistance to the most recent antimicrobial agents

such as quinupristin-dalfopristin, linezolid, daptomycin and tigecycline during therapy [3].

The number of antibiotics resistant enterococci has been continually rising while the number

of effective antibiotics has been declining.

Antimicrobial peptides (AMPs) have drawn attention as alternatives to conventional antibi-

otics. Bacteriocins are bacterial antimicrobial peptides that have been used in the food industry

for over 50 years and are generally recognized as safe (GRAS) [10]. They are also used to treat

bacterial infections and control antibiotic-resistant bacteria, either used alone or in combina-

tion with conventional antibiotics [11–13]. Bacteriocins kill target bacteria by several mecha-

nisms, including pore formation in the cell membrane, inhibition of cell wall- or protein

synthesis, and degradation of cellular DNA [14]. The rise in interest toward bacteriocins is due

to their potent inhibitory activities, the fact that they are safe for humans, their stability and

various modes of action. Furthermore, resistance toward bacteriocins has been rarely observed

[15, 16]. Bacteriocin producing bacteria have been isolated from plants, animals, food, water

and soil [17–21].

Although bacteriocins have been extensively studied, it was generally in regard to their

application in the food industry as preservative. In addition, there is a scarcity of reports about

the efficacy of bacteriocins against vancomycin-resistant and multidrug-resistant enterococci

clinical isolates. Therefore, the aims of this study were to discover and characterize bacterio-

cins active against clinical isolates of antimicrobial resistant E. faecium and E. faecalis.

Materials and methods

Sample collection and bacterial isolation

Bacterial isolates were collected from environmental water, laboratory environment and clini-

cal samples during July 2014 and April 2015 for bacteriocin-production screening. The water

samples were collected from Mahasawat Canal, Bangtal Canal, Chao Phraya River Bangkok

and Pasak River Saraburi, (S1 Table). The sample sources are communal water supplies, no

specific permissions were required for the samples collection. The environmental and clinical

samples were collected from the Faculty of Medicine Vajira Hospital, Navamindradhiraj Uni-

versity, Bangkok, Thailand with the approval by the institute’s Ethical Review Committee for

Human Research.

The water samples were pre-filtrated using 0.8 μm cellulose nitrate membranes (Nalgene

Company, Rochester, USA) to remove large particles and then passed through 0.2 μm Supor

membranes to concentrate bacterial cells (Pall Corp, USA). The membranes were then cut and

immersed in Luria-Bertani broth (LB) (Merck, KGaA, Darmstadt, Germany) supplemented

with 10% fetal bovine serum and incubated with shaking at 37˚C for 4 hours (200 rpm, Innova

4300 incubator shaker, New Brunswick Scientific, Edison, NJ). The cultures were then isolated

on LB agar.

Environmental samples were collected from laboratory-bench-surfaces (10 cm2) in the hos-

pital using sterile moisten cotton swabs. Each sample was inoculated onto blood and MacCon-

key agar plates, and incubated at 37˚C overnight. Bacterial colonies of all morphology were

Bacteriocin against vancomycin-resistant enterococci

PLOS ONE | https://doi.org/10.1371/journal.pone.0186415 October 12, 2017 2 / 22

https://doi.org/10.1371/journal.pone.0186415


screened for bacteriocin production. The isolates from stool and rectal swab cultures with

Enterococcus-like morphology on blood agar were identified and screened for bacteriocin pro-

duction (S1 Fig).

Enterococcus faecalis ATCC 51299 and E. faecium ATCC 35677, as well as clinical isolates of

MDR-enterococci were used as indicators for antimicrobial activity.

Screening for E. faecalis and E. faecium inhibitors

The inhibitory activity against E. faecalis and E. faecium was preliminary detected using the

bacterial inhibition test. Briefly, the indicators were cultured in LB broth overnight at 37˚C.

Cell density was then adjusted to ~ 107 cells/ml using sterile normal saline solution and

swabbed onto the surface of LB agar plates. The tested bacterial isolates were cross streaked

onto the lawn of the indicators the plates incubated at 37˚C overnight. The zone of inhibition

was observed and measured.

Screening for bacteriocin production

The tested isolates that produced large inhibition zone against both indicators were selected to

screen for the production of bacteriocin by spot-on-lawn method [22]. Briefly, cell free super-

natants (CFSs) of the tested strains were prepared by growing one colony of each tested strains

in 10 ml of LB broth at 37˚C for 16–18 hours. The cultures were centrifuged at 11,000 x g, 4 ˚C

for 10 minutes (IEC Multi RF, Thermo Electron Corporation, USA) and the supernatant were

sterilized by passing through a 0.2 μm pore size filters (Acrodisc1 with Supor membrane, Pall

Corp., USA). The indicator lawns were prepared by adding each indicator to 3 ml of molten

LB medium at the final concentration of 107 cells/ml and overlaid on Muller-Hinton agar

plate. After solidification, 10 μl of each CFSs was spotted onto the indicator lawn, incubated at

37˚C overnight and the clear inhibition zone were observed.

Phage plaque assay

In order to confirm that the inhibitory activity was not due to bacteriophages, the phage plaque

assay was performed with some modification [23]. In brief, overnight cultures of tested isolates

were transferred (1:100) to fresh LB broth supplemented with mitomycin C (Ametycin1 and

TCI, Japan) to a final concentration of 1 μg/ml and incubated at 37˚C for 4 hours. The bacte-

rial cells were removed by centrifugation at 11,000 x g for 10 minutes and the supernatants

sterilized through a 0.2 μm filter membranes.

The indicators were cultured overnight and diluted with normal saline solution to a final

concentration of approximately 108 CFU/ml. One hundred microliters of the indicator strains

were either mixed with 10 μl of a mitomycin C-induced CFSs or 10 μl of a mitomycin C (con-

trol), and incubated at 37˚C for 30 minutes. The treated cells were added into 3 ml of molten

LB medium and overlaid on LB plate. The plates were incubated overnight at 37˚C and exam-

ined for plaque formation.

Bacteriocin production confirmation

Besides bacteriocins, some bacteria can produce organic acids, hydrogen peroxide (H2O2) and

other antimicrobial substances that inhibit growth of sensitive bacteria. To eliminate the possi-

bility of the interference from organic acids and H2O2, the CFSs were adjusted to pH 7 and

treated with catalase enzyme (1 mg/ml, Sigma Chemical Co., Dorset, UK) for 1 hour at 37˚C

before antimicrobial activity testing. The CFSs were tested against E. faecalis and E. faecium
using the agar well diffusion method [24].
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The indicator plates were prepared as described in the spot-on-lawn method. After drying,

6 mm wells were bored and filled with 50 μl of two fold serial dilution of the CFSs. Sterile MRS

broth was used as negative control. The activity was expressed in arbitrary unit (AU/ml), the

reciprocal of the highest dilution that inhibit the growth of the indicator strains [25]. The assay

done in triplicate for at least two independent experiments and the average value was reported.

Inhibitory spectrum of EF478 against MDRE and VRE

To determine the inhibitory spectrum of bacteriocin EF478, the antimicrobial activity of this

bacteriocin was evaluated against 68 clinical isolates of MDRE and VRE using the spot-on-

lawn method described above.

Identification of bacteriocin-producing strain

The producing strain that showed the strongest inhibitory activity against E. faecalis and E. fae-
cium was identified by conventional method and the automated MicroScan, Walk-Away sys-

tem (Siemens Healthcare Diagnostics, USA) using 96 well gram-positive combination panels

(PC21). Results were interpreted using the Lab Pro program, version 3.01, following the Clini-

cal and laboratory Standards Institute guidelines [26]. The strain was further characterized by

MALDI-TOF-MS (autoflex™ speed MALDI-TOF/TOF, Bruker Daltonics, Germany) using

flexControl version 3.4. The obtained results were analyzed by comparing the raw spectra with

the spectra of the company’s library and expressed as score. The score ranged from 0 to 3 as

recommended by the manufacturer. Score values of>1.7 generally indicated relationships at

the genus level, and values of>2.0 generally indicated relationships at the species level. The

highest score was used for species identification.

Bacteriocin production optimization

The optimal condition for bacteriocin EF478 production was evaluated by varying culture

media, medium pH, and incubation temperature and culture length. Three growth media

namely Luria-Bertani medium (LB), De Man Rogosa Sharpe medium (MRS) and brain heart

infusion broth (BHI) (all were purchased from Merck, Darmstadt, Germany) were used for

comparison. After incubation at 37˚C overnight, the antimicrobial activity of the CFS derived

from each growing medium was tested against E. faecalis ATCC 51299 by agar well diffusion

method. The medium with the highest antimicrobial activity was selected for further tests.

Optimal pH for the production of bacteriocin EF478 was evaluated by adjusting culture

medium from pH 4 to pH 8 using 1 N HCL or 1 N NaOH. After inoculation and incubation at

37˚C overnight, the culture media were readjusted to pH 7 before being measured for its anti-

microbial activity against E. faecalis ATCC 51299.

To establish the optimal temperature for bacteriocin production, EF478 was inoculated in

the selected medium and pH and incubated with overnight shaking at 25˚C, 37˚C and 42˚C.

The CFS derived from each incubation temperature was examined for the antimicrobial activ-

ity. To study the kinetics of bacteriocin production, the EF478 was cultivated in the optimal

medium, pH and temperature. Aliquots of the sample were analyzed for the antibacterial activ-

ity at 0, 8, 16, 24, 32, 40, 48 and 56 hours after incubation.

Mitomycin C, a DNA damaging agent, has been used to induce several bacteriocin produc-

tion. Mitomycin C (Ametycin1, TCI, Japan) was added to the mid-log phase culture of the

EF478 at the final concentration of 0.25 mg/ml, 0.50 mg/ml and 1 mg/ml. After 4 hours incu-

bation, the CFSs were prepared and protein concentration determined by Bradford methods

(Bio-Rad Laboratories Inc., Hercules, CA, USA) [27]. Antimicrobial activity against E. faecalis
ATCC 51299 was determined by agar well diffusion method using non-induced supernatants
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as a control. All of the assays were done in triplicate for at least two independent experiments

and the average values were reported.

Susceptibility to enzymes, heat and pH treatment

The susceptibility of bacteriocin EF478 to proteolytic cleavage, enzymatic activities, heat treat-

ments and different pH levels was examined. The effect of 1 mg/ml of proteinase K, trypsin,

chymotrypsin, amylase and lipase (Sigma Chemical Co., Dorset, UK) on the bacteriocin activ-

ity was determined after co-incubation at 37˚C for 2 hours. The residual antibacterial activity

of the enzyme-treated bacteriocin was then measured against E. faecalis ATCC 51299 by agar

well diffusion method. CFS without enzyme treatment was used for comparison.

The heat stability of the bacteriocin EF478 was evaluated by exposing the bacteriocin to var-

ious temperatures (37˚C, 60˚C, 80˚C, 100˚C) for 30 min or autoclaved at 121˚C for 15 min.

The remaining antimicrobial activity against E. faecalis ATCC 51299 of the cooled samples was

tested by agar well diffusion method.

The effect of pH on the bacteriocin was assessed by adjusting the pH of the crude bacterio-

cin EF478 from 2 to 12 using either 1 N hydrochloric acid (HCl) or 1 N sodium hydroxide

(NaOH). After storage at 25˚C for 3 hours, samples were readjusted to pH 7 and the residual

antimicrobial activity determined by agar well-diffusion method. All of the assays were done

in triplicate for at least two independent experiments and the average values were reported.

Storage condition

Stability of the bacteriocin EF478 after storage at various temperature was determined. The

CFS aliquot of 1 ml aliquot tubes at three different temperatures (25˚C, 4˚C, and -20˚C). The

antimicrobial activities of stored aliquots and fresh CFS were compared by agar well-diffusion

method against E. faecalis ATCC 51299.

Concentration and purification of bacteriocin

Bacteriocin EF478 was size-fractionated and concentrated using Amicon Ultra 30K, 10K (Ami-

con, Millipore Co., Germany) and Macrosep 3K (Pall Macrosep1, USA), respectively. The con-

centrated protein from each fraction was resolved in SDS-PAGE with 12% (v/v) separating gel

and antibacterial activity was detected by gel overlay method. The active fraction was further

applied to reversed-phase chromatography using a LiChrolut RP-18 column (40–63 μm) (Merck

KGaA, Darmstadt, Germany). The protein sample was eluted with a linear gradient (20% to

80%) of Milli-Q water-acetonitrile containing 0.1% formic acid. The antimicrobial activity of

each purified fraction was examined against E. faecalis ATCC 51299.

Molecular mass and amino acid sequence determination

The protein band with antibacterial activity was cut and subjected to in-gel tryptic digestion.

Tryptic peptide sample were analyzed for amino acid sequences using maXis IITM ESI–QTOF

(Bruker Daltonics) coupled with an UltiMate 3000 nano-LC system (Dionex, Surrey, UK). The

peptide MS fragments were searched against the non-redundant National Center for Biotech-

nology Information GenBank database (NCBI, www.ncbi.nlm.nih.gov/) and Bacteria (Eubac-

teria) database using version 2.5.1.2 of the MASCOT search engine (Matrix Science, London,

UK, http://www.matrixscience.com). The search parameters were trypsin digest, monoisotopic

mass, and allowing a maximum of one missed cleavage. Peptide and fragment mass tolerance

were set as 1.2 Da and 0.6 Da, respectively. Variable modifications were set to carbamido-

methylation of cysteine and oxidation of methionine. The instrument type was specified as
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ESI-QUAD-TOF. Proteins matched with scores over 65 were considered to be significant (p<
0.05). Proteins were validated base on protein scores, peptides matches, and percent sequence

coverage.

DNA sequence of the bacteriocin gene

PCR amplification and nucleotide sequencing of the gene coding bacteriocin EF478 was car-

ried out. Genomic DNA of E. faecalis 478 was extracted using NucleoSpin1 Tissue kit

(Macherey-Nagel, Bethlehem, PA) according to the manufacturer’s recommendations. The

primers were designed based on the sequence that best matched the peptide mass fingerprint-

ing. The primers SP-EF478- forward: ATGAAAAAACGCCTGTTTGCGA and SP-EF478-reverse:

CGCGCTATGGCCCACAATwere synthesized by Sigma-Aldrich (SigmaAldrich Co., St. Louis,

MO, USA). The reaction mixture contained 100 ng of DNA template, 1x Phusion HF Buffer,

200 μM of each dNTPs, 500 nM of each primers, 1 U Phusion High-Fidelity DNA Polymerase

(Finnzymes Oy, Vantaa, Finland), and deionized water to a final volume of 50 μl. PCR were

performed using the following conditions: an initial denaturation at 98˚C for 2 minutes, fol-

lowed by 35 cycles of denaturation at 98˚C for 10 seconds, annealing at 64˚C for 30 seconds,

extension at 72˚C for 30 seconds, and a final extension at 72˚C for 5 minutes. Nucleotide

sequencing of the PCR product was accomplished by Solgent Co. Ltd. (Daejeon, South Korea).

The sequence was compared to the non-redundant nucleotide collection of the National

Center for Biotechnology Information (NCBI) databases using standard nucleotide BLAST

(BLASTN) (http://www.ncbi.nlm.nih.gov/BLAST). The sequence was also searched for homol-

ogy with bacteriocin published in databases, including BACTIBASE [28] and BAGEL [29].

Protein structure and function prediction

The E. faecalis serine protease WP_002367871 was used to compare with the EF478 bacterio-

cin. The PDB files and the ribbon structures were created using I-TASSER server [30–33] and

CCP4mg molecular graphics software [34], respectively.

Ethics statement

This study was approved by the Ethical Review Committee for Human Research Faculty of

Public Health, Mahidol University and Faculty of Medicine Vajira Hospital, Navamindrad-

hiraj University. The sources of water samples were communal water supplies, no specific per-

missions were required for water collection at these locations. The field studies did not involve

endangered or protected species.

Results

Antimicrobial activity of bacterial isolates

From all bacterial isolates, about 1.6% (165/10, 215) inhibited the growth of one or both indi-

cator strains (Table 1) with inhibition zone varying from 2 to 12 mm. The largest inhibition

zone (12 mm) was observed from a clinical isolate. Twenty isolates were selected to prepare

the CFSs based on their inhibitory activities against both indicator strains.

The twenty CFSs were examined for their inhibitory activity using the spot-on-lawn assay.

Only, 4 out of 20 CFSs exhibited potent inhibitory activity against the indicator strains. For

these 4 strains (EF 344, EF 349, EF 355 and EF478), the CFSs minimal inhibitory concentration

against E. faecalis ATCC 51299 and E. faecium ATCC 35667 was measured using agar-well dif-

fusion method. EF 355 and EF478 exhibited the highest activity (320 AU/ml) of the 4 isolates,

against both indicators (Table 2).
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The antimicrobial activity of both EF 355 and EF478 was then tested against 68 clinical iso-

lates of MDRE and VRE. EF478 was able to inhibit 28 from 68 (41.1%) clinical isolates,

whereas EF355 inhibited 26 of 68 isolates (38.2%). Therefore, we selected EF478 for further

study and characterization.

Characterization of the bacteriocin EF478

Protease susceptibility test was performed to confirm the nature of EF478 CFS. The antimicro-

bial activity of the CFS of EF478 was completely eliminated after proteinase K, trypsin and α-

chymotrypsin treatment. However, its activity was preserved after incubation with amylase

and lipase (Fig 1). The results indicated that the active compounds in EF478 CFS were protein-

aceous in nature, and that potential carbohydrate or lipid moieties were not important for the

bactericidal activity.

The bacteriocin EF478 maintained its antimicrobial activity over a 2 to 8 pH range, with a

maximum of 320 AU/ml against E. faecalis ATCC 51299 at pH 5–6. At pH 4 and 7, the activity

was reduced to 160 AU/ml whereas there was a significant reduction in the activity at pH 2.

The activity was completely lost at pH above 10 (Fig 2).

EF478 CFS retained its activity after 1 hour at 60˚C, and was reduced to half (50%) and

12.5% after heating at 80˚C for 1 hour and 100˚C for 30 min, respectively. Its activity was abol-

ished by heating at 100˚C for 1 hour or following autoclaving (Fig 3).

The full antimicrobial activity of EF478 CFS was retained after storage for 1 year at -20˚C, 6

months at 4˚C, and 2 months at 25˚C (Fig 4). The remaining activity was 50% and 25% of its

initial value after storage at 4˚C for 9 and 12 months, respectively. At room temperature, its

activity decreased to 50% after 5 months and 25% after 7 months. The antimicrobial activity

was lost after storage at 25˚C for 10 months.

Table 1. Sources of isolated bacteria and number of isolates (%) that showed inhibition of indicator strains.

Sources No. of isolates Isolates with growth inhibition (%)

Total Antibacterial activity against

E. faecalis *ATCC51299 E. faecium *ATCC35667 Both

Water 9,900 81(0.82) 40 (0.40) 38 (0.38) 3 (0.03)

Environment 180 18 (10) 8 (4.44) 7 (3.89) 3 (1.67)

Clinical** 135 66 (48.89) 28 (20.74) 23 (17.04) 15 (11.11)

Total 10,215 165 (1.62) 76 (0.74) 68 (0.67) 21 (0.21)

*ATCC, American Type Culture Collection

**Stool and rectal swab samples

https://doi.org/10.1371/journal.pone.0186415.t001

Table 2. Antimicrobial activity of four CFSs against indicators E. faecalis ATCC 51299 and E. faecium

ATCC 35667 as measured by agar well diffusion assay.

Test isolates CFS activity (AU/ml) against

E. faecalis ATCC51299 E. faecium ATCC35667

EF344 80 80

EF355 320 320

EF349 160 80

EF478 320 320

AU/ml: arbitrary unit

https://doi.org/10.1371/journal.pone.0186415.t002
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Identification of the bacteriocin-producing strain

The bacteriocin-producing strain EF478 was isolated from stool samples. It was identified as

Enterococcus faecalis by Gram staining and biochemical tests and was confirmed using the auto-

mated MicroScan system (Siemens Healthcare Diagnostics) with Lab Pro software database

version 3.01 (Beckman Coulter, Sacramento, CA) and MALDI-TOF MS (Microflex, Bruker Dal-

tonics) associated flexControl version 3.4. The highest score obtained after comparison to the pre-

dicted protein database was 2.27 and matches Enterococcus faecalis 104575 LDW. In addition,

Kirby-Bauer disk diffusion tests showed that this strain was sensitive to antibiotics including gen-

tamycin, teicoplanin, and vancomycin, and resistant to ampicillin, ciprofloxacin and tetracycline.

Optimal condition for bacteriocin production by E. faecalis EF478

To optimize bacteriocin-production and antimicrobial activity, different suitable medium and

cultural conditions were tested. EF478 was grown in LB, BHI and MRS broths at 37˚C for 24

hours and CFSs from each medium were tested against E. faecalis ATCC 51299. MRS medium

showed the highest antimicrobial activity (640 AU/ml). Similar experiments were conducted

for optimal medium pH, culture length and temperature. The highest activity (640 AU/ml)

was found at pH 5 and 6, after 16–24 hours of culture at 37˚C (Fig 5A–5D).

Induction of bacteriocin EF478

Mitomycin C is commonly used to enhance the production of bacteriocins. We next measured

its ability to increase bacteriocin EF478 activity using the agar well diffusion. As shown in

Fig 1. Effect of enzymatic treatments on activity of the EF478 CFS.

https://doi.org/10.1371/journal.pone.0186415.g001
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Table 3, the antimicrobial activity of bacteriocin EF 487 doubled after addition of mitomycin

C (0.25 mg/ml) in to the culture medium. No further increase was observed for mitomycin C

concentration above 0.25 mg/ml, and no induction was observed below this concentration.

SDS-PAGE and antimicrobial activity testing

EF478 supernatant was then fractionated and concentrated using column with different pore

sizes. No antimicrobial activity was detected for the fractions with molecular weight below 10

kDa. However, potent antimicrobial activity was observed in the fraction above 10 kDa, and it

corresponded with the presence of a major band of ~ 45 kDa, as determined by SDS-PAGE

using protein standard (Fig 6).

Peptide mass fingerprint identification of bacteriocin EF478

The 45 kDa protein band was cut from SDS-PAGE gel and subjected to nLC-ESI-MS/MS

analysis to identify its amino acid sequence. The obtained peptide masses and fragmentation

spectra were compared with the protein sequence in Genbank NCBI database using BLAST.

Bacteriocin EF478 highest similarity was with a serine protease produced by E. faecalis (acces-

sion number gi|488296663, NCBI reference sequence: WP002367871.1). The amino acid

sequence included 452 residues, and the calculated molecular weight of 47,809 Da corre-

sponded to the mass (~45 KDa) measured by SDS-PAGE analysis (Fig 6). Moreover, 21 pep-

tides were matched, 19 of which were found in the genome database of E. faecalis, covering

43% of the total sequence (S2 Fig). The sequence and some characteristics of each peptide are

summarized in Table 4.

Fig 2. Effect of pH on antimicrobial activity of the EF478 CFS.

https://doi.org/10.1371/journal.pone.0186415.g002
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Identification of the bacteriocin gene

The PCR targeting the EF478 bacteriocin gene generated a single DNA fragment of expected

size (1,356 bp) (Fig 7). The nucleotide sequence has been submitted to the GenBank (NCBI/

Bankit/GenBank) and assigned the accession number KU641393 (S3 Fig). Its deduced amino

acid was 99.53% identity with E. faecalis serine protease accession number WP_002367871

(Fig 8), which confirmed the results of the nLC-ESI-MS/MS.

Fig 3. Effect of heat on antimicrobial activity of the EF478 CFS.

https://doi.org/10.1371/journal.pone.0186415.g003

Fig 4. Stability after storage of the EF478 CFS.

https://doi.org/10.1371/journal.pone.0186415.g004
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Predicted protein structure and function

The probable protein functions of the EF478 bacteriocin was predicted by identification of con-

served domains using NCBI conserved domain database (CDD) [35]. The CDD analysis revealed

that the EF478 bacteriocin contains two conserved domains: a CwlO1 domain (uncharacterized

N-terminal domain of peptidoglycan hydrolase CwlO) (E-value 3.82e-37) and a CAP superfamily

domain (cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins) (E-value

4.02e-10) (Fig 8). The PDB files and ribbon structures of EF478 bacteriocin and the E. faecalis ser-

ine protease WP_002367871 were created and compared (Fig 9A and 9B).

Fig 5. Optimization of bacteriocin-production by E. faecalis EF478. (A) Culture media (B) Medium pH (C) Incubation temperature (D) Incubation time.

LB, Luria-Bertani; BHI, brain heart infusion; MRS, De Man Rogosa Sharpe. AU/ml: arbitrary unit.

https://doi.org/10.1371/journal.pone.0186415.g005

Table 3. Total proteins concentration (measured by Bradford assay) in the culture supernatants after mitomycin C treatment [27].

Mitomycin C (mg/ml) Protein concentration (mg/ml) Antimicrobial activity

(AU/ml)

Non-induced 0.19 640

0.25 mg/ml 2.96 1,280

0.50 mg/ml 3.70 1,280

1 mg/ml 4.02 1,280

https://doi.org/10.1371/journal.pone.0186415.t003
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Discussion

The rapid emergence and spread of vancomycin-resistant enterococci is a threat to public

health globally, as vancomycin is often the last drug of choice for severe enterococcal infec-

tions. Hence, MDRE and VRE infections are medical challenge with poor prognosis, due to

the unavailability of appropriate drugs for treatment [36, 37]. In addition to antimicrobial

stewardship program to solve the MDR organisms (MDRO) as well as many preventive mea-

sures, public health research focused on identifying novel antimicrobial compounds against

MDROs. This study aimed to discover novel bacteriocins effective against clinical isolates of

MDR- E. faecium and E. faecalis, which are the two most common causes of MDRE infections.

A total of 10,215 bacteria isolated from water, hospital laboratory environment and clinical

samples were screened for their antimicrobial activity using bacterial inhibition, spot on the

lawn and agar well diffusion assays. Bacteriocins commonly inhibit the growth of bacteria that

are closely related to the producing strain. Therefore, we selected sampling locations where

enterococci are commonly present [19, 38–42]. Bacteriocins are usually produced in response

to an unfavorable environment; detection rate in the natural habitat would then be lower than

in clinical settings. In this study we found 165 isolates with antimicrobial property against two

indicator strains, i.e. E. faecalis ATCC 51299 (a high-level aminoglycoside and vancomycin-

resistant strain) and E. faecium ATCC 35677 (a vancomycin-susceptible strain). The overall

detection rate in our study (1.6%) was slightly low when compared with previous reports [19,

Fig 6. SDS-PAGE and antimicrobial activity analysis of EF478 CFS. (A): Coomassie blue staining from

SDS-PAGE of the concentrated CFS of EF478. (B): Inhibition zone on the indicator lawn from the unstained gel of

45 kDa fragment.

https://doi.org/10.1371/journal.pone.0186415.g006
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43, 44]. The highest proportion of antimicrobial-producing microorganisms was detected from

clinical isolates (48.8%), followed by environmental isolates (10%) and water isolates (0.82%).

Previous studies also reported that the highest proportion of bacteriocin-producing bacteria

(40%-60%) was found in clinical samples [39, 45, 46]. The detection of bacteriocin-producers

has been shown to be influenced by the method used, the sensitivity of the indicator strains to

the bacteriocin, the source of bacteriocin-producer [19, 47–49]. Therefore, we used 3 different

assays to detect as well as 2 different indicator strains to avoid method-based detection biased.

E. faecalis 478 isolated from stool sample showed the highest antimicrobial activity against

indicators and clinical MDRE and VRE samples. Previous studies have reported that bacterio-

cins produced by Enterococcus spp. have a broad spectrum of activity to a wide range of Gram-

positive bacteria [50–52]. The ability to produce bacteriocin might confer a selective advantage

in bacteria communities [14, 39]. As the human gastrointestinal tract (GI) flora is one of the

most dynamic and complex ecosystems, bacteriocin production could give bacteria a high

competitive advantage [53]. Enterococcus species are lactic acid bacteria (LAB) and have been

recognized as the most attractive bacteriocin-producers. They are used in food industry for

food preservation and in fermentation processes [17, 52]. Culture of these bacteria is very flexi-

ble and their bacteriocins are considerably active and stable [41].

Many of bacterial interactions and the subsequent signalings occur efficiently when cells

are in very close proximity [54]. Some bacteria can inhibit growth of target cells only through

direct cell contact. On the other hand, bacteriocin is secreted extracellularly to kill the suscepti-

ble targeted cells, which have specific receptor for the bacteriocin. The antimicrobial activities

of the CFSs from the selected isolates were determined using the commonly used methods i.e.

the spot on the lawn and agar well diffusion [55].

Table 4. Peptide fingerprinting report of EF478 using Mascot search engine.

Observed Mr(expt) Mr(calc) Score Peptide sequence

459.73 917.45 917.48 37 K.NQEISSLK.A

474.73 947.45 947.47 23 K.QSELNVMK.A

482.72 963.44 963.46 41 K.QSELNVMK.A + Oxidation (M)

600.78 1199.56 1199.59 30 R.DWEINPGITR.V

681.32 1360.63 1360.67 92 K.QLEATEAELETK.R

469.89 1406.65 1406.68 87 K.ASLALEQSSAESSK.A

704.33 1406.65 1406.68 86 K.ASLALEQSSAESSK.A

719.83 1406.65 1437.68 111 R.VGFGYSGSTIVGHSA.-

506.58 1516.73 1516.77 54 K.QLEATEAELETKR.Q

530.27 1587.79 1587.83 53 K.VKQLEATEAELETK.R

567.60 1699.80 1699.84 75 K.SEQLQQEITNLNQR.I

850.91 1699.80 1699.84 116 K.SEQLQQEITNLNQR.I

569.93 1706.77 1706.81 43 R.AAQVEAGGIPNDHWSR.G

854.39 1706.77 1706.81 23 R.AAQVEAGGIPNDHWSR.G

633.98 1898.93 1898.98 67 K.AKSEQLQQEITNLNQR.I

635.98 1904.92 1904.96 62 K.ASLALEQSSAESSKAGLEK.Q

697.33 2088.99 2089.04 32 R.VQAVSTIVSANNDLMQQQK.E+ Oxidation (M)

713.71 2138.10 2138.15 99 R.QSLGLRPVVWDAGLAASATAR.A

758.05 2271.15 2271.21 37 K.DPIPTPPPATGDVTLDALNVLR.Q

931.42 2791.25 2790.33 54 R.DVQVNGQSTTMLDAVLDADSVADAISR.V

936.75 2807.24 2806.32 68 R.DVQVNGQSTTMLDAVLDADSVADAISR.V + Oxidation (M)

Mr (expt) represented the molecular mass of peptide in experiment; Mr (calc) showed the molecular mass of peptide in calculation.

https://doi.org/10.1371/journal.pone.0186415.t004
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The spot on the lawn method was a simple, rapid and easy to detect the antimicrobial activ-

ity of large number of CFS samples. The possible interfering effects of organic acids, H2O2 and

bacteriophages were excluded by adjusting the supernatant to neutral pH, the addition of cata-

lase and by performing plaque assay, respectively.

Furthermore, the agar well diffusion assay used for quantification of the bacteriocin activity

also confirmed that the inhibition was not due to the presence of bacteriophages as they cannot

diffuse through the agar [56].

Fig 7. PCR amplification of E. faecalis EF478 bacteriocin gene. M: 1000-bp ladder plus, Lanes 1: PCR

product of bacteriocin gene.

https://doi.org/10.1371/journal.pone.0186415.g007
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The antimicrobial activity of CFS EF478 was inactivated by proteolytic enzymes, demon-

strating its proteinaceous nature. Therefore, CFS EF478 was considered a bacteriocin and

named bacteriocin EF478. Heat stability at 60˚C of bacteriocin EF478 was not as high as the

enterocin of E. faecalis BFE 1071 [57] (100˚C for 60 min) or anti-listerial bacteriocin of E. fae-
cium (100˚C for 30 min) [58]. The pH tolerance was between 2 to 8, with a maximal antimicro-

bial activity at pH 5 and 6 in MRS medium. This result was comparable to some lactic acid

bacteriocins presenting activities at the low pH values, of the gastrointestinal tract [59, 60].

The long-term stability of bacteriocin EF478 makes it an antimicrobial compound of interest.

Three commercial media, namely MRS, BHI and LB, were chosen to optimize EF478 pro-

duction, and MRS gave the highest bacteriocin EF478. MRS, BHI and LB contain similar

major ingredients for general growth requirements of enterococci including peptone, sucrose,

yeast extract and sodium chloride [61–64]. The major ingredients found in MRS but absent in

BHI and LB include potassium dihydrogen phosphate, magnesium sulfate, tween 80, sodium

acetate and manganese sulfate [65]. Potassium dihydrogen phosphate and magnesium sulfate

are pH buffering agents that control the pH of medium and provide cations used in its cell

metabolism [62]. The surfactant properties of tween 80 help prevents the aggregation of bacte-

riocin molecules and stimulates protein secretion [66–68]. Tween 80 has also been used as an

additive in the culture media of several LAB producing-strains to promote the cellular uptake

of nutrients [63, 66, 67, 69]. Sodium acetate has been shown to suppress the growth of many

bacteria competing with LAB. Manganese ions, a co-factor of the lactate dehydrogenase, are

Fig 8. Amino acid sequence alignment of E. faecalis serine proteases WP_002367871 and the predicted

EF478, using CLUSTALW. Identical amino acids are indicated by asterisks. Conserved regions of uncharacterized

N-terminal domain of peptidoglycan hydrolase CwlO1 and CAP domains were highlighted with grey and red,

respectively. Substituted amino acid residues were highlighted (N to S, and N to G) in yellow.

https://doi.org/10.1371/journal.pone.0186415.g008
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provided by manganese sulfate [70]. The optimal condition for bacteriocin EF478 production

was observed after 16 hours of cultivation in MRS, at pH 5–6 and temperature 37˚C. Bacterio-

cin EF478 expression was also doubled by the addition of mitomycin C (0.25–1 mg/ml).

This bacteriocin was concentrated and separated using three different sizes of ultrafiltration

membrane spin-column and purified by reverse phase-chromatography. SDS-PAGE analysis

revealed that a major 45 kDa protein was solely responsible for the antimicrobial activity. The

band corresponding to bacteriocin EF478 was subjected to nLC-ESI-MS/MS analysis, and the

identified peptides corresponded to a serine protease from E. faecalis (accession number

WP_00236787). The molecular weight of the predicted protein was 47,809 Da, similar to the

molecular weight observed on the SDS-PAGE gel. Moreover, a 1,356 base pair gene encoding

the serine protease was amplified from the genomic DNA of E. faecalis 478. This finding

strongly confirmed the presence of a serine protease produced by E. faecalis 478.

Serine proteases in prokaryotes and eukaryotes are involved in diverse processes such as

digestion, blood clotting, immune responses, inflammation, cell signaling, pathogenesis, cell

adhesion, metabolism, protein degradation and post-translation modification [71–78]. Several

microorganisms secrete serine protease toxins, such as the subtilase-like serine protease of

Fig 9. Ribbon diagrams of EF478 bacteriocin and E. faecalis serine protease. WP_002367871: (A)

EF478 bacteriocin, (B) E. faecalis serine protease WP_002367871. The zoomed in region is the CAP

superfamily domain. There is only one amino acid difference between EF478 bacteriocin and E. faecalis

serine protease WP_002367871, but they have a big difference in their secondary structure and perhaps their

functions. α-helices (red), β-sheets (blue) and bulge (green).

https://doi.org/10.1371/journal.pone.0186415.g009
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E. coli [76], HtrA of Streptococcus spp. and E. coli [60, 62, 79, 80], elastolytic of Aspergillus fumi-
gatus [74], BmooSP of Bothrops moojeni [81], and Pro1 of Plasmodiophora brassicae. There-

fore, the EF478 protein identified here was likely to be Bacteriocin EF478.

The CDD analysis revealed that Bacteriocin EF 478 contained two putative conserved

domains: an uncharacterized N-terminal domain of peptidoglycan hydrolase CwlO (CWlO1)

domain and a CAP-superfamily domain. CwlO1 are autolysins with peptidoglycan hydrolases

(PHs) activity produced by bacteria. PHs usually contains a lysin motif that can interact with

peptidoglycans of various Gram-positive bacteria and therefore are commonly called lyso-

zymes [82]. CwlO plays significant role in the autolysis, cell growth, cell separation, and bio-

film formation of bacteria [83, 84]. The CAP protein superfamily contains three major groups

of proteins including the cysteine-rich secretory proteins (CRISPs), antigen 5 (Ag5), and path-

ogenesis-related 1 (PR1) and has been found in fungi, insects, reptiles, mammals and plants

[85–87]. The proteins in the CAP superfamily play key roles in important biological such as

the host defense, tumor suppression and fertilization [85, 88, 89].

All of the information suggested that bactericidal activity of the bacteriocin EF478

depended on the CwlO domain whereas the CAP domain played a role in protection of the

producer.

The deduced amino acid of bacteriocin EF478 was nearly identity (99.53%) with E. faecalis
serine protease accession number WP_002367871. There is only one amino acid difference

within the CAP domain, but they have a big difference in the predicted secondary structure.

As mentioned earlier that CAP domain function as immunity to the bacteriocin producer,

the change within this domain might be a critical. We analyzed 25 sequences of E. faecalis
serine protease from NCBI database and found that nearly all of them possessed the same

amino acid with the WP_002367871. Only one strain that share the same amino acid with

bacteriocin EF478 is the strain DD14 (accession number CP021161), which was reported as

bacteriocinogenic lactic acid bacteria. To date, there is a scarcity of new potent antimicrobial

agents for the treatment of VRE and MDRE. Serine protease from E. faecalis 478 is attractive

potential therapeutic agents for the treatment of VRE and MDRE. Bacteriocin EF478 was not

present in both bacteriocin databases, Bactibase and Bagel 3. Homology searches revealed

that the predicted bacteriocin EF478 was novel to this species. Finally, we have discovered a

novel bacteriocin from E. faecalis 478 with a potent antimicrobial activity against clinical

strains of VRE. Its high activity in a wide range of pH and temperature, resilience to heat and

storage stability make bacteriocin EF478 a promising candidate as an anti-MDRE and VRE

antimicrobial.
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