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Our approach, RosettaES, further automates, improves upon, 
and expedites de novo model building using 3–5-Å resolution 
cryo-EM data. Our method uses fragment-based sampling to 
enumerate a ‘pool’ of possible protein conformations that both 
possess physically realistic geometry and are consistent with the 
experimental density data. We use several strategies for pruning 
this set of solutions during sampling, ensuring the size of this 
solution pool is reasonable even when building segments with 
dozens of residues.

The RosettaES algorithm uses a ‘beam search’, in which a fixed-
size ensemble of partial structures is maintained throughout sam-
pling (Supplementary Fig. 1; see Online Methods). The method 
aims to complete a partial model guided by EM density. Missing 
segments are built iteratively; starting from residues immedi-
ately N- or C-terminal to a missing segment, putative solutions 
are spawned that add one additional residue and sample the con-
formation of the most recently placed three residues guided by  
backbone segments from high-resolution structures with similar 
local sequence. This ensemble is then pruned of models that are:  
(i) energetically unfavorable, (ii) inconsistent with the data, or  
(iii) too similar to another solution in the ensemble. Following this 
pruning, if the ensemble exceeds a predefined maximum size, then 
models are clustered so that the pool size does not exceed this limit.

For protein structures missing multiple interacting segments, 
individual segments are sampled and combined in a Monte Carlo 
assembly algorithm identifying internally consistent combina-
tions; if this fails additional rounds of search are performed 
in order to force increased diversity17. Finally, several features 
increase the stringency of ensemble selection: (i) an explicit pen-
alty on atomic models tracing discontinuous density, (ii) agree-
ment of a model to side-chain density, and (iii) identification of 
putative strand pairs when growing β strands (Fig. 1).

We benchmarked RosettaES on a set of nine proteins, each with 
missing segments of between 11 and 160 residues (Supplementary 
Table 1); we assumed the native structure of all other regions was 
known. We compared the performance of RosettaES to that of 
RosettaCM18 by reporting the high-accuracy version of the global 
distance test (GDT-HA)19—a measure that roughly reports the 
fraction of residues correctly placed—of each completed segment 
between the two approaches (Fig. 1a). RosettaES outperformed 
or matched RosettaCM across all residue ranges (Supplementary 
Table 1) and was able to generate and select accurate solutions up 
to 111 residues in length, including a 78-residue segment in FrhA 
(Fig. 1c). We also compared the performance of RosettaES with 
that of Buccaneer20, which accurately assigned (placed correct 
sequence within 2.0 Å) 16% of the total residues in the bench-
mark, while RosettaES accurately assigned 76% (Supplementary 
Table 2). We also find that the diversity of the final solutions 
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Accurate atomic modeling of macromolecular structures into 
cryo-electron microscopy (cryo-EM) maps is a major challenge, 
as the moderate resolution makes accurate placement of 
atoms difficult. We present Rosetta enumerative sampling 
(RosettaES), an automated tool that uses a fragment-
based sampling strategy for de novo model completion of 
macromolecular structures from cryo-EM density maps at 3–5-Å 
resolution. On a benchmark set of nine proteins, RosettaES was 
able to identify near-native conformations in 85% of segments. 
RosettaES was also used to determine models for three 
challenging macromolecular structures.

Accurate atomic models of macromolecular structures are inval-
uable for understanding the biochemical and cellular processes 
carried out by proteins. Recent advances in cryo-EM1,2 have led 
to a dramatic expansion in the number of structures that can be 
studied at high resolution. Though several reconstructions have 
been achieved at resolutions of 2.5 Å or better3, it is far more com-
mon to obtain resolutions between 3–5 Å.

At resolutions worse than 3 Å, model building is challenging and 
error prone. Semiautomated methods for atomic model building 
exist, but these methods are laborious and prone to user bias4,5 
Automatic model building methods have been developed for  
X-ray crystallography and work well for cryo-EM data up to 3.0-Å 
resolution, but such methods have difficulty registering sequence 
to backbone at lower resolutions6–9. Methods combining homology 
modeling with rigid-body docking and flexible fitting have also 
been developed but are limited to cases where a relatively accurate 
starting model is available10–13. Cryo-EM-specific methods have 
been developed for structure determination but similarly have dif-
ficulty correctly identifying sequence14,15. We previously developed 
a fully automated de novo method16 that does not have these restric-
tions; however, its algorithm for model completion required >70% 
of the protein be placed correctly, which limited its applicability. 
Here, we describe an approach that overcomes this limitation.
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serves as a good metric for assessing the accuracy of the solution 
set (Supplementary Fig. 2).

RosettaES rebuilds multiple interacting segments by independ-
ently sampling and combining, iterating the process as necessary 
until a set of nonclashing solutions is found. Resulting nonclash-
ing models are then refined and ranked using Rosetta. Using the 
benchmark set described above, we ran the full assembly process— 
in this case not assuming other segments were known a priori— 
with models ranging from 20–80% complete. In four cases  
(FrhA, FrhB, FrhG, and TMV), the final backbone r.m.s. devia-
tion (Cα atoms only) was ≤2 Å from the deposited model; in one 
case (TRPV1), RosettaES produced a nonclashing atomic model 
about 3.6 Å from the deposited model. In the remaining cases 
(BPP1, VP6, STIV, and T20S), which all contained large β sheets, 
RosettaES produced a solution matching the deposited model for 
most (but not all) missing segments (Supplementary Table 3).

We also had previously applied RosettaES in determining the 
structures of three very challenging proteins. The first included 
domains C and D of the mouse hepatitis virus (MHV) spike pro-
tein at 4.0-Å resolution21. The MHV spike protein is a homotrimer 
comprising ~1,300 residues per protomer, the bulk of which was 
solved using homology modeling and de novo fragment docking. 
However, only 30 of the 180 residues comprising domains C and 
D could be assigned using de novo fragment docking. Starting 
from this 30-residue fragment, we completed an atomic structure 
using RosettaES and tracing in parallel. The top-scoring RosettaES 
models were visually selected and refined22–24. RosettaES was car-
ried out in multiple steps; the 154-residue C terminus of domain D  
was poorly converged when run to completion, so it was instead 
broken into two separate runs of 125 and 29 residues, where the 
best model after refinement of the first run served as a seed for 
the second. Comparing this model with a manually traced model 
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Figure 1 | Accuracy of RosettaES compared with that of RosettaCM. (a) A comparison of RosettaES to RosettaCM reporting GDT-HA over the backbone 
+ Cβ atoms on a benchmark set of single missing segments extracted from the deposited model. Length of the segment is colored such that longer 
segments appear a darker red. The x- and y-axes correspond to the GDT-HA of the model compared with the deposited structures under two conditions. 
The closer the GDT-HA is to 1, the more similar the structures. Values above the solid line indicate a more accurate solution with RosettaES than 
RosettaCM. (b) The GDT-HAs over the backbone + Cβ atoms of all the atomic models in the benchmark set as features (discontinuous penalty, two-tier 
filtering, side-chain density, and sheet sampling) are added. (c) The deposited structure of FrhA (PDB 4ci0) shown in the cryo-EM density map, with 
the starting model in blue and the removed region in red. Residues 187–265 (highlighted in red) were removed in the benchmark. (d) The top-scoring 
solution generated by RosettaCM, shown in yellow. (e) The top-scoring solution generated by RosettaES, shown in green. (f) Minimal backbone trace of 
the deposited model (in red) compared with the one produced by RosettaES (green). The two have a 1.9-Å backbone and Cβ r.m.s. deviation.

http://www.rcsb.org/pdb/explore/explore.do?structureId=4ci0
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revealed significant topological differences between the two. The 
RosettaES model displays several key features that suggest it is 
correct: three disulfide bonds accounted for by the density and 
the observation of extra density corresponding to a glycosylated 
asparagine residue. The recent determination of the orthologous 
HCoV-NL63 (ref. 25) and HKU1 (ref. 26) spikes confirm our 
model (Fig. 2a–f; PDB 3jcl).

The HCoV-NL63 spike protein has a similar architecture to that 
of the MHV spike25. In this 3.4-Å-resolution map it was possible  
to resolve residues in the C termini of the HCoV-NL63 spike 
protomers that are invisible in the reconstruction of MHV and 
difficult to place manually. RosettaES assigned residues 1,197 
to 1,224; and it explained the density better than a hand-traced  
model (data not shown). The accuracy of the atomic model we 
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Figure 2 | RosettaES enables structure determination in challenging cases. (a–f) Building domains C and D of the MHV coronavirus spike with RosettaES.  
(a) A 30-residue segment of MHV domain C was placed by Rosetta de novo fragment docking14. (b) The model completed by RosettaES (green) and a hand-
traced model (red). (c) The RosettaES-generated model shown in the cryo-EM density map. Large aromatic residues are shown as sticks. (d) A tube of density 
shown at the putatively glycosylated ASN 657 side chain. (e) Correct positioning of cysteines to form three unique disulfide bonds. (f) A recently determined 
structure of HKU1 spike protein (magenta, PDB 5i08) matches the topology obtained by RosettaCM (green; cysteines are highlighted in red). (g) Density for 
the C-terminal tail of HCoV-NL63. Docked in red is the partial model of HCoV-NL63 built using our structure of MHV as a template. (h) The final structure, 
after completion with RosettaES, attachment of glycans (shown in blue), and refinement. (i) Placement of Asp 1201 and Asp 1218 (green) and glycans 
(blue) in the density map. (j) Placement of tyrosine 1227 in the density map. (k) A symmetric homology model of the papaya mosaic virus (PDB 4DOX) 
docked into the reconstruction of the bamboo mosaic virus. The C termini in the core are missing from the model. (l) A close-up view of the asymmetric unit 
with the homologous structure shown in red. (m) The top-scoring models produced by RosettaES, shown in green, placed into the density map.

http://www.rcsb.org/pdb/explore/explore.do?structureId=3jcl
http://www.rcsb.org/pdb/explore/explore.do?structureId=5i08
http://www.rcsb.org/pdb/explore/explore.do?structureId=4DOX
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obtained is supported by several of its key features, including  
the position of two asparagines with corresponding glycan  
density and good agreement of several hydrophobic residues into 
density (Fig. 2g–j). 

A cryo-EM reconstruction of the flexible filamentous bam-
boo mosaic virus27 was consistent with a crystal structure of the 
homologous papaya mosaic virus but featured additional density 
corresponding to the termini (Fig. 2k,l); modeling with RosettaCM 
proved difficult, as this segment lacked regular secondary structure. 
RosettaES determined a well-converged ensemble of models con-
sistent with the 5.6-Å resolution density (Fig. 2m). As additional 
support for our assignment, a recent structure of the homologous 
pepino mosiac virus shows similar architecture for the terminus28.

RosettaES should expand the range of atomic models that can be 
determined to include long unidentified segments, extended pro-
tein loops, and β sheets. RosettaES outperforms other approaches; 
it can reliably generate atomic models on unassigned segments 
up to 50 residues and can occasionally generate accurate models 
over 100 residues in length.

The improved efficiency of RosettaES results from the use of 
experimental data to incrementally guide sampling. Its high per-
formance stems from the use of short three-residue fragments 
that can completely cover tripeptide conformational space 
(Supplementary Fig. 3; see Online Methods). Because a subset 
of fragments exists to generate an atomic model similar to the 
one deposited for any target in our benchmark, we can say with 
certainty that any failure to find an accurate atomic model occurs 
because the cap on the number of partial solutions is set too low. 
In some cases, a modest increase in cap size improves accuracy 
dramatically (Supplementary Fig. 4). Computational time scales 
linearly with this cap; a typical run for a 30-residue segment is 1.5 h  
on a 16-core machine (Supplementary Fig. 5).

There are several ways in which these failures due to insufficient 
exploration may be detected. When a segment is solved in the 
context of the rest of the protein, the convergence of the final solu-
tions provides a good indication of the accuracy of the final model 
(Supplementary Fig. 2). Additionally, when multiple segments are 
assigned, the lack of convergence to a nonclashing conformation 
suggests that greater sampling is needed. RosettaES should be a 
useful tool for automated model building in near-atomic-resolu-
tion cryo-EM maps; its potential is here exemplified by its success-
ful use in the determination of three novel protein structures.

Methods
Methods, including statements of data availability and any associ-
ated accession codes and references, are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
RosettaES uses a greedy conformational sampling strategy to 
assemble protein backbones consistent with local sequence and 
experimental density data. It uses a beam search, in which a fixed-
size ensemble of partial solutions is maintained throughout sam-
pling. Sampling attempts to model each residue one at a time; 
starting at the terminal residue adjacent to a missing segment, we 
perform a ‘growing step’ in which one residue is added, and the 
conformation of up to the previous nine residues is sampled. Each 
generated solution is evaluated against the experimental data and 
added to the ‘beam’—that is, the pool of partial models. Following 
each sampling step, the model pool is culled to contain at most  
M solutions (for most experiments described in this manuscript, 
M = 64 or 128). This process is repeated until all missing residues 
have been assigned.

At each culling step conformations are selected to ensure only 
those that are physically realistic and in agreement with the data 
are carried forward. Additional filters are used to ensure that 
overly similar atomic models are removed. A final solution is 
selected based on the Rosetta energy augmented with a ‘fit to 
density’ energy term. Finally, in cases where multiple missing 
segments are present, partial solutions for each segment are sam-
pled, then Monte Carlo sampling is used to find a consistent set 
of segments (that is, a set of solutions that do not clash with each 
other and that agree with the experimental data).

Conformational sampling. Sampling is guided by protein 
fragments, generated using Rosetta’s fragment picker29, which 
finds high-resolution structures with similar local sequences.  
For benchmarking, all homologous proteins (psiblast E-value < 
0.05) were excluded from the search. We have found that the best 
performance results from the use of 100 three-residue fragments 
and 20 nine-residue fragments at each position; the three residue 
fragments accurately recapitulate the diversity of these regions, 
while the nine residue fragments help in modeling the n to n + 
4 hydrogen bond patterns in alpha helices. In each iteration a 
new residue is added to the expanding model, and an N-residue 
fragment manipulates the new residue and the (N – 1) residues 
preceding it.

After each fragment insertion, all residues added by RosettaES 
(and up to 15 residues on the ‘stem’) are first minimized using a 
low-resolution ‘centroid’ representation that models side chains 
with a single interaction center. The ensemble is then culled to 
at most twice the size limit of the ensemble (2 × M); each of the 
structures in the ensemble is then converted to an all-atom repre-
sentation and subjected to two rounds of side-chain minimization 
and repacking. Since the structures we evaluate are incomplete, 
we use a modified centroid energy that only includes terms for the 
Ramachandran and omega angles, van der Waals energies, short- 
and long-range hydrogen bonds, and fit to density. Following all-
atom refinement of the best 2 × M centroid structures, only the 
fit-to-density score from the all-atom model is used, in combina-
tion with the energetic terms from the centroid model; the best  
M structures are then selected from this pool.

For internal polypeptide segments, when fewer than ten resi-
dues remain to be placed, distance constraints are used to penalize 
conformations that cannot be closed. These constraints make sure 
that the backbone N and C termini are within 32 Å when they are 
ten residues apart; they decrease by 3 Å as the gap closes by one. 

They are also used in minimization, where a harmonic penalty is 
applied beyond this maximum allowed distance. The final mini-
mization (with no gap) uses a very tight 0.5-Å penalty.

Filtering the pool of structures. A key component of the 
approach is the filtering step, where all sampled structures are 
culled to at most M structures, with M being the user-defined cap 
on ensemble size at each step. The first step in filtering is remov-
ing conformations that are inconsistent with the data; this is done 
by removing all conformations that do not score at least 85% as 
well (using Rosetta energy plus fit-to-density energy) as the best 
solution of the beam. If this results in an ensemble pool that is still 
larger than the cap, then these solutions are then filtered in two 
passes; first, ‘nearly redundant’ conformations (pairs where every 
residue has <1.2-Å r.m.s. deviation) are merged, keeping the low-
est energy structure; next, all remaining structures are clustered 
with a 3-Å radius, with structures chosen from each cluster round 
robin. In this last step, models are chosen by energy, but two 
structures can be chosen from a single cluster until every cluster 
has one representative taken. Clustering in this way ensures that 
reasonable diversity is maintained throughout sampling.

In addition to the scoring terms described above, we have modi-
fied the score function in three ways, which helps to improve accu-
racy by penalizing incorrect conformations, effectively increasing 
the size of the ensemble pool. These terms are described below.

Continuous density penalty. The density energy calculated in 
Rosetta is based on the correlation between the density expected 
from the model and the experimental density. However, we found 
that, with the conformational sampling of RosettaES, solutions 
which jumped between distinct backbone paths in the density 
were not properly penalized. Therefore, we came up with a pen-
alty scheme that attempted to more strongly penalize paths that 
traveled through density discontinuities.

The ‘fast density’ scoring function in Rosetta30 computes the 
density score as the sum of per-atom scores—which are quickly 
computed by convoluting one atom’s density with the experimen-
tal map—and interpolating the resulting map to calculate scores. 
The normal density score Ed = Σiei is computed as the sum scores 
for all atoms. We can also compute a ‘local discontinuity’ score 
that considers the worst scoring atom k in a stretch from residues 
N – 8 to N + 8; a modified score Ed* computes the score for each 
atom as Σiek + 0.3(ei – ek); that is, we only take 30% of the score 
above the worst scoring atom in the local region. Finally, we use 
the ratio of Ed* to Ed to scale the (correlation-based) density score 
used by Rosetta.

β-sheet sampling. In order to form a proper β sheet correct 
hydrogen bond patterning must exist between complementary 
strands. When building a strand in a partial model in which the 
adjacent strand(s) is (are) missing, properly orienting hydrogen 
bond donors and acceptors is challenging. To handle this, we 
consider explicitly modeling adjacent strands during sampling. 
When in a β region of Ramachandran space, we consider an 
idealized four-residue complementary β strand on both sides of 
the four most recently placed residues. Strands are aligned in an 
antiparallel orientation with perfect hydrogen bond geometry. 
Grown strands that clash with any other atom in the model are 
removed, and any remaining strands are refined with the growing 
segment. Following refinement, if strands poorly match density (if 
any atom scores lower than 0.7ek, with ek defined in the previous  
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subsection), they are removed. Remaining strands are added 
to the energy of the respective partial model (the full Rosetta 
energy), and 50% of the density energy is added.

Side-chain density. Refinement is primarily carried out in Rosetta’s 
low-resolution ‘centroid’ mode, largely for reasons of speed, as  
all-atom refinement is slower, and the landscape is much more 
rugged, requiring significantly more optimization. However, a key 
disadvantage of this approach is that side-chain density—which is 
limited but present at these modest resolutions—is ignored. Thus, 
we have developed a strategy to use low-resolution modeling aug-
mented with all-atom fit to density.

Following low-resolution refinement, the ensemble is filtered to 
contain twice the number of structures allowed by the cap. These 
structures are then converted to all atom, and side-chain rotamers 
are discretely optimized and then minimized. The density score of 
the all-atom model is then used to replace the density score of the 
low-resolution model. To penalize side chain density discontinui-
ties, we use a strategy similar to that used for penalizing backbone 
density discontinuities: all atoms receive a score equal to the lesser 
of (i) the per-atom score or (ii) the score of the worst atom of Cβ 
or Cγ plus 30% of the difference between this and the per-atom 
score. This avoids giving a bonus to, for example, arginines plac-
ing their side chains in regions of unassigned backbone.

Multiloop assembly. When multiple missing segments are present 
in the atomic model (Fig. 1a), we subdivide the problem into 
two steps. First, for each segment (independently), we find the 
ensemble of plausible paths. Then, we find all sets of per-segment  
solutions that are consistent with each other. To do so, we have 
implemented a Monte Carlo search algorithm, referred to as 
Monte Carlo Assembly (MCA), which takes the results from each 
segment and attempts to find a nonclashing set. The energy of an 
assignment is the sum of individual density scores, scaled by seg-
ment size, plus all pairwise van der Waals (vdw) scores: 

E f w vdw f fi i vdw i ji j( ) ( ) ( , ) ( ),F = +∑ ∑dens 1

For all experiments, we use wvdw = 1.0. All pairwise scores are 
precomputed, and the Monte Carlo simulation is carried out for 
1,500 steps; with kT initially at 200 and halving every 250 steps.  
Each ‘move’ in the simulation replaces a single segment with 
another in the ensemble. 100 trajectories of MCA are performed, 
with a composite model being created for each, and the best scor-
ing is selected. If the sum of vdw energies of this solution is greater 
than 100, then additional rounds of sampling are carried out.

Tabu sampling. When building multiple loops, if no nonclashing 
solutions are found, we carry out additional sampling. However, 
this sampling is aware of the previous rounds’ sampling and tries 
to explore additional regions of conformational space. For these 
subsequent rounds, this sampling is used in the ensemble filter-
ing stage; when we select round robin from the 3-Å clusters, we 
limit only 10% of the cluster cap to clusters that were generated in 
previous rounds—all other structures are sampled from clusters 
that did not have a representative in previous rounds. Following 
this additional round of sampling, these new solutions are added 
to the previous pool, and assembly is attempted again.

Ensemble diversity. The convergence of the final ensemble  
provides a good indication of whether an accurate solution has 

(1)(1)

been sampled, with lower diversity suggesting that a correct 
solution has been found (Supplementary Fig. 2). To deter-
mine ensemble diversity for each new residue, the center of 
mass across the ensemble’s Cα positions is calculated; and 
then the r.m.s. deviation between the actual Cα positions and 
their respective centers of mass are calculated for all models in  
the ensemble.

Ensemble size cap and run time. One key parameter of model 
building is the cap on ensemble size, which allows a tradeoff 
between run time and completeness of conformational sampling. 
For all experiments in the manuscript, a cap of 32 was considered. 
In addition, in one case where a cap of 32 failed to find a solution 
(a 65-residue segment in FrhG), we showed the performance as 
a function of increasing the cap size incrementally from 32 up to 
320. The results are shown in Supplementary Figure 4. In this 
case, which RosettaES failed to sample accurately with a cap of 
32 (r.m.s. deviation ≈ 3 Å), an increased ensemble size cap helps 
significantly: when the cap was set to 288 or greater, a model with 
r.m.s. deviation of 0.9 Å was sampled.

The typical run time for a missing segment of ~30 residues with 
the ensemble size capped at 32, and parallelized to 16 cores, is 
roughly 1.5 h. Supplemental Figure 5 shows that run time scales 
linearly with increasing beam size. Run times are reported for a 
single round of model building.

Map sharpening. To test how our method performed on 
maps of varying sharpness, we took the unsharpened map 
for the hCoV-NL63 and ran RosettaES on increasing levels  
of B-factor sharpening using Rosetta’s ScaleMapIntensities 
mover. The high-resolution cutoff was set to 3.4, and the  
low resolution was set arbitrarily high; fade_width was set  
to 0.2. Backbone and Cβ r.m.s. deviation was calculated in  
comparison to the deposited model. As shown in Supplementary 
Figure 6, while RosettaES performance was dampened at extreme 
values, performance was largely consistent over a wide range of 
sharpening values.

Data sets used. We used a previously generated benchmark set 
of nine proteins, for which 3–5-Å cryo-EM data and a deposited 
model were available14. The round 1 models of the Rosetta de 
novo density application were used as inputs for all benchmark-
ing except for comparison to alternate methods where the target 
segment was extracted from the deposited model in order to cre-
ate a fair comparison. For the bamboo mosaic virus, the initial 
model was a homology model built from the Papaya Mosaic Virus. 
For the Mouse Hepatitis Virus (MHV), the starting model was 
a fragment docked by the Rosetta de novo density application. 
For HCoV-NL63, the initial model was a homology model built 
from MHV.

Statistics. The high-accuracy version of the global distance test19 
was used to compare models. This test assigned a score to each 
atom pair based on their distance with the following criteria:

  distance < 0.5 Å; 4
  distance < 1.0 Å; 3
  distance < 2.0 Å; 2
  distance < 4.0 Å; 1
  distance > 4.0 Å; 0
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The final score is equal to the sum of the atom pair scores 
divided by 4N, where N is the number of atom pairs.

Figures were generated using UCSF Chimera31.

Code availability. This protocol and source code are freely avail-
able for academic use in weekly releases, after week 17 2017, of 
the Rosetta software suite found at https://www.rosettacommons. 
org/. Instructions for using RosettaES can be found in the 
Supplementary Protocol.

Data availability statement. The accession codes used are as fol-
lows: mouse hepatitis virus at 4 Å (EMDB 6526; PDB 3jcl), human 
coronavirus NL63 at 3.4 Å (EMDB 8331; PDB 5szs), and bamboo 
mosaic virus at 5.6 Å (EMDB 3020; PDB 5a2t).
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31.	 Goddard, T.D., Huang, C.C. & Ferrin, T.E. J. Struct. Biol. 157, 281–287 (2007).

https://www.rosettacommons.org/
https://www.rosettacommons.org/
https://www.ebi.ac.uk/pdbe/entry/emdb/EMD-6526
http://www.rcsb.org/pdb/explore/explore.do?structureId=3jcl
https://www.ebi.ac.uk/pdbe/entry/emdb/EMD-8331
https://www.ebi.ac.uk/pdbe/entry/pdb/5szs
https://www.ebi.ac.uk/pdbe/entry/emdb/EMD-3020
https://www.ebi.ac.uk/pdbe/entry/pdb/5a2t

	RosettaES: a sampling strategy enabling automated interpretation of difficult cryo-EM maps
	Main
	Methods
	Conformational sampling.
	Filtering the pool of structures.
	Multiloop assembly.
	Ensemble diversity.
	Ensemble size cap and run time.
	Map sharpening.
	Data sets used.
	Statistics.
	Code availability.
	Data availability statement.

	Additional information
	Acknowledgements
	References


