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Abstract.—Single nucleotide polymorphisms (SNPs) are useful markers for phylogenetic studies owing in part to their
ubiquity throughout the genome and ease of collection. Restriction site associated DNA sequencing (RADseq) methods
are becoming increasingly popular for SNP data collection, but an assessment of the best practises for using these data in
phylogenetics is lacking. We use computer simulations, and new double digest RADseq (ddRADseq) data for the lizard
family Phrynosomatidae, to investigate the accuracy of RAD loci for phylogenetic inference. We compare the two primary
ways RAD loci are used during phylogenetic analysis, including the analysis of full sequences (i.e., SNPs together with
invariant sites), or the analysis of SNPs on their own after excluding invariant sites. We find that using full sequences rather
than just SNPs is preferable from the perspectives of branch length and topological accuracy, but not of computational time.
We introduce two new acquisition bias corrections for dealing with alignments composed exclusively of SNPs, a conditional
likelihood method and a reconstituted DNA approach. The conditional likelihood method conditions on the presence of
variable characters only (the number of invariant sites that are unsampled but known to exist is not considered), while
the reconstituted DNA approach requires the user to specify the exact number of unsampled invariant sites prior to the
analysis. Under simulation, branch length biases increase with the amount of missing data for both acquisition bias correction
methods, but branch length accuracy is much improved in the reconstituted DNA approach compared to the conditional
likelihood approach. Phylogenetic analyses of the empirical data using concatenation or a coalescent-based species tree
approach provide strong support for many of the accepted relationships among phrynosomatid lizards, suggesting that RAD
loci contain useful phylogenetic signal across a range of divergence times despite the presence of missing data. Phylogenetic
analysis of RAD loci requires careful attention to model assumptions, especially if downstream analyses depend on branch
lengths. [Conditional likelihood; ddRADseq; maximum likelihood; Phrynosoma; Phrynosomatidae; reconstituted DNA;
SVDquartets]

Restriction site associated DNA sequencing (RADseq)
has become a popular method for generating single
nucleotide polymorphism (SNP) data sets in non-model
organisms, because the method requires little to no
prior knowledge of the genome (Baird et al. 2008; Seeb
et al. 2011; Peterson et al. 2012). While the number of
RAD loci obtained can be large (Davey et al. 2011),
they are typically short (e.g., 50–300 base pairs) with
each locus having the potential to contain just one or
a few SNPs depending on the evolutionary distances
separating the samples. Individually, RAD loci are
incapable of resolving large gene trees since each one
contains a limited number of SNPs. This problem can
be circumvented by concatenating RAD loci into a large
supermatrix, either using the SNPs alone (Emerson
et al. 2010; Yoder et al. 2013) or using the entire
RAD locus (Wagner et al. 2013). Deciding whether
to include or exclude invariant sites from RAD loci
has ramifications for phylogenetic inference. Acquisition
bias is the result of nonrandom character sampling, and
in the context of SNP-based phylogenetics it is caused by
the omission of constant characters (i.e., invariant sites)
from the data matrix. Acquisition bias is problematic for
phylogenetic inference, because analyzing only variable

characters without correction can lead to branch length
overestimation and biases in phylogeny inference (Lewis
2001).

Likelihood methods for phylogenies using restriction
sites (Felsenstein 1992), later adapted for SNPs (Kuhner
et al. 2000) and discrete morphological data (Lewis 2001),
provide solutions for analyzing full sequences that are
reduced down to SNPs. To correct for the omission
of invariant sites, a conditional likelihood is computed
that conditions on the exclusive presence of variable
sites in the data. Lewis (2001) illustrated the importance
of correcting for acquisition bias using computer
simulations on a four-taxon tree by demonstrating that
branch lengths are overestimated dramatically when
this conditional likelihood correction is not utilized.
As a consequence of overestimating branch lengths,
the probability of reconstructing the correct topology
decreases (Lewis 2001). A recent simulation study
demonstrated these problems with SNP data, namely,
that the exclusion of invariant sites introduces systematic
branch length biases and phylogeny reconstruction
errors (Bertels et al. 2014). In this study, we investigate
how acquisition bias correction models applied to SNP
data perform in relation to analyses of full sequences
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FIGURE 1. Phylogeny for Phrynosomatidae. Topology and clade names follow Leaché and McGuire (2006); Wiens et al. (2010, 2013);
Nieto-Montes de Oca et al. (2014); Leaché et al. (2015); Leaché and Linkem (2015). Species numbers are shown in parentheses.

(i.e., SNPs and their flanking invariant sites), and in
the presence of allelic dropout (ADO), which can be
extensive with RAD loci (Arnold et al. 2013).

We implemented two new acquisition bias correction
models in RAxML v.8 (Stamatakis 2014) that are intended
for analyses of DNA sequences composed exclusively of
SNPs. The first is a conditional likelihood method that
is equivalent to the Lewis (2001) Mkv model for binary
data, which we extend for the DNA alphabet. For DNA
sequence data, it differs from the one-parameter Mkv
model, because the variable sites can evolve according
to a GTR matrix with five free rate parameters. The
conditional likelihood method does not consider the
known number of invariant sites that are missing from
the data matrix, even if they have been purposefully
removed. The second method is a reconstituted DNA
approach (Kuhner et al. 2000; McGill et al. 2013) that
explicitly specifies the number of invariable sites that are
known to be missing from the alignment. The number of
invariant sites can be specified for each base separately
(i.e., A vs. C vs. G vs. T), or as the total count of all
four types of invariant sites. The reconstituted DNA
method is straightforward to apply to RAD loci, since the
number of invariant sites at each locus is observed and
easy to calculate, but high-throughput SNP genotyping
methods that only interrogate prescreened SNPs
(Thomson 2014) provide no information on invariant
sites, which makes the conditional likelihood method a
useful alternative. The new acquisition bias correction
models that we developed in RAxML are provided in
more detail in the Supplementary Material available
on Dryad at http://dx.doi.org/10.5061/dryad.t9r3g.
Apart from describing the equations we also provide
some implementation details such that they can easily
be integrated into other likelihood-based (maximum
likelihood; ML and Bayesian) tools.

We evaluate the accuracy of SNP-based measures
of topology, branch lengths, and support measures
using simulations and empirical double digest

RADseq (ddRADseq) data for lizards in the family
Phrynosomatidae. These new data are used to
investigate the ability of RAD loci to resolve clades
across a wide range of timescales, from recently diverged
species within horned lizards (genus Phrynosoma) to
deeper evolutionary relationships within the family that
approach 40–60 Ma (Wiens et al. 2013). Many aspects of
the phrynosomatid phylogeny are essentially “known”
based on concordance across previous phylogenetic
analyses of morphology and molecular data (Wiens
et al. 2010; Leaché et al. 2015; Leaché and Linkem 2015;
Fig. 1), which makes this a useful clade for exploring the
performance of empirical ddRADseq data. However,
the phylogenetic relationships at the base of Phrynosoma
and the Sceloporinae have proven difficult to resolve
with smaller multilocus data sets (Leaché and McGuire
2006; Wiens et al. 2010; Nieto-Montes de Oca et al. 2014).
In addition to comparing topologies estimated with full
sequences or SNPs under various acquisition correction
models, we characterize the branch length and bootstrap
support biases produced by data assemblies containing
varying levels of missing data. The majority of our
comparisons are focused on the implementation of
new acquisition bias corrections that are intended for
concatenated data, but we also conduct species tree
analyses using a coalescent approach.

MATERIALS AND METHODS

Data Simulation
We used computer simulations to investigate the

effects of acquisition bias and ADO on phylogenetic
inference with SNPs using the new acquisition bias
corrections implemented in RAxML. We simulated gene
trees and RAD loci using the MCCOAL program (Rannala
and Yang 2003). We simulated 50 data sets containing
10 species and 1000 unlinked loci (Fig. 2). The mutation
rates were allowed to vary across loci according to

http://dx.doi.org/10.5061/dryad.t9r3g
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FIGURE 2. Species tree topology used for the simulation of RAD loci
with (ADO). The pattern of ADO is illustrated for the first 100 of 1000
loci (black=present, white=ADO). For this example, the data assembly
required there to be at least 8 out of 10 sequences per locus (min. ind.
= 8) for the locus to be included in the alignment (i.e., the maximum
amount of missing data at any locus is 20%).

a gamma distribution with � = 1. This is a realistic
assumption given that genes evolve at different rates,
and that ADO should be more prevalent at loci that
evolve more quickly (Huang and Knowles 2014). We
also conducted simulations without rate variation to
determine whether or not rate variation produces branch
length differences between analyses with and without
acquisition bias corrections. The gene trees were used
to simulate DNA sequences along the branches of the
genealogies using the Jukes–Cantor (JC) substitution
model (Jukes and Cantor 1969), which is currently
the only model available in MCCOAL. The species tree
population sizes (�) were set to 0.01 and the root height
(�) parameter was set to 0.04. These values were chosen to
approximate the levels of sequence divergence observed
in our empirical ddRADseq data, which are equivalent
to 1% sequence divergence within populations, and
4% sequence divergence from the root of the tree
to any random tip, or a maximum of 8% sequence
divergence from tip to tip via the root. The average
sequence divergence (uncorrected p-distances) among
the 10 species in the simulation was approximately 4%.

We simulated ADO by treating the first 12 bp of
each 51 bp locus as a restriction site, and removed
any allele that contained a mutation in that region in
comparison to the ancestral sequence simulated at the
root of the tree. Alleles containing mutations at the
restriction site were removed from the data set and
replaced with N characters to represent missing data
(i.e., “N” characters for the entire locus). We chose 12
bp to correspond to the combined length of the two
restriction enzyme recognition sequences used in our
empirical ddRADseq study (see below). The remaining
39-bp loci were concatenated and used for phylogenetic
inference using four approaches. First, we ran RAxML
on the full sequences (i.e., variable and invariant sites
included; referred to as “full sequences”) under the
JC model. The inclusion of invariant sites in the full
sequence analysis made the use of an acquisition bias

correction obsolete. It is important to note that even
loci that lack any variable sites should remain in the
analysis of full sequences, since removing those loci
would introduce acquisition bias. Second, we removed
the invariant sites and analyzed the concatenated SNP
data without acquisition bias correction (= uncorrected
model; -m GTRGAMMA --JC69). The concatenated
SNP data included all variable sites (and not just a
single randomly chosen SNP from each RAD locus)
and no invariant sites (referred to as “SNP data”).
Third, we analyzed the SNP data with acquisition bias
correction using the conditional likelihood method
(-m ASC_GTRGAMMA --JC69 --asc-corr=lewis).
Finally, we analyzed the SNP data using the
reconstituted DNA corrections after obtaining
a tally of the number of each of the four
invariant sites (-m ASC_GTRGAMMA --JC69 --asc-
corr=stamatakis), or with the total count of all
invariant sites (-m ASC_GTRGAMMA --JC69 --asc-
corr=felsenstein). For analyses of the simulated
data sets that lacked rate variation, we used the JC model
and disabled among site rate heterogeneity using the -V
command in conjunction with -m GTRCAT --JC69,
which invokes inferences under a simple JC model.

To explore the consequences of ADO on phylogeny
estimation using different acquisition bias corrections,
we estimated phylogenies for three different assemblies
that varied the levels of missing data. The amount of
missing data was adjusted by specifying the minimum
number of individuals (min. ind.) that were required to
have data present at a locus for that locus to be included
in the final matrix. For example, a min. ind. of 8 excludes
any locus containing <8 individuals with data (Fig. 2).
We included a total of 10 species in our simulations, and
produced 3 data sets with the min. ind. parameter set
to either 4, 6, or 8. This parameter introduces a trade-off
with respect to the number of SNPs in the alignment and
the amount of missing data; maximizing the number of
SNPs also increases the amount of missing data (Wagner
et al. 2013).

All post-processing of simulation files was
done using scripts that are available on github
(https://github.com/bbanbury/phrynomics-data). We
created a package in the R environment, Phrynomics,
that manipulates RAD loci by removing invariant
sites, evaluates missing data, and exports files
for RAxML, MrBayes, and SNAPP. These tools
are also accessible on a web-based graphical user
interface (https://rstudio.stat.washington.edu/shiny/
phrynomics/).

Taxon Sampling
The lizard family Phrynosomatidae is a diverse

group containing nine genera and approximately 148
species. This family originated in the New World and
has a broad distribution across North and Central
America from southern Canada to Panama, with most
diversity centered in the arid regions of Mexico and the

https://github.com/bbanbury/phrynomics-data
https://rstudio.stat.washington.edu/shiny/phrynomics/
https://rstudio.stat.washington.edu/shiny/phrynomics/
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TABLE 1. Species included in the study and a summary of the empirical ddRADseq data

Species Samples Inclusive Cladea Locib Retainedc Coveraged Polymorphice (%)

Phrynosoma asio 4 Phrynosomatini 30,833 9819 45.2 0.46
P. blainvillii 4 Anota 54,009 10,641 35.7 0.58
P. braconnieri 4 Brevicauda 34,139 10,349 40.5 0.50
P. cerroense 6 Anota 36,394 11,567 38.4 0.68
P. cornutum 4 Phrynosomatini 40,513 9542 29.7 0.50
P. coronatum 1 Anota 35,443 7596 17.5 0.67
P. ditmarsi 2 Tapaja 28,589 8944 40.0 0.37
P. douglasii 2 Tapaja 38,999 12,822 41.6 0.58
P. goodei 4 Doliosaurus 43,014 9013 38.7 0.62
P. hernandesi 5 Tapaja 30,337 9886 44.3 0.51
P. mcallii 4 Anota 43,656 11,572 35.5 0.54
P. modestum 2 Doliosaurus 43,762 9413 33.5 0.48
P. orbiculare 4 Tapaja 29,807 9041 33.6 0.55
P. platyrhinos 3 Doliosaurus 31,023 9167 52.2 0.53
P. sherbrookei 4 Brevicauda 38,365 7909 25.5 0.38
P. solare 3 Anota 31,030 9270 37.2 0.48
P. taurus 4 Brevicauda 28,361 8753 47.1 0.45
Callisaurus draconoides 2 Callisaurini 33,939 10,217 37.0 0.52
Cophosaurus texanus 1 Callisaurini 31,462 9801 38.1 0.47
Holbrookia maculata 1 Callisaurini 22,325 5241 25.4 0.62
Uma notata 1 Callisaurini 20,029 4483 37.0 0.67
Petrosaurus thalassinus 1 Sceloporinae 43,010 13,735 49.5 0.32
Sceloporus angustus 1 Sceloporinae 42,690 7194 32.1 0.34
S. gadoviae 1 Sceloporinae 23,373 7293 61.3 0.38
S. magister 1 Sceloporinae 29,427 8734 44.3 0.46
S. occidentalis 1 Sceloporinae 23,999 7697 48.0 0.25
Urosaurus bicarinatus 1 Sceloporinae 36,577 7875 65.8 0.58
U. ornatus 1 Sceloporinae 22,563 8958 106.2 0.59
Uta stansburiana 1 Sceloporinae 35,302 11,125 111.3 0.38
Gambelia wislizenii 1 Crotaphytidae 52,045 18,593 75.8 0.58

Note: Values shown for species with multiple samples are averages.
aClade names follow Leaché and McGuire (2006); Wiens et al. (2010); Nieto-Montes de Oca et al. (2014).
bNumber of loci after clustering reads with a 94% clustering threshold.
cLoci retained after passing coverage and paralog filters.
dMean depth of clusters.
eFrequency of polymorphic sites.

southwestern United states. The most recent common
ancestor of phrynosomatids is dated at approximately
55 Ma based on recent phylogenetic analyses (Wiens
et al. 2013), which places the clade within the time
frame of where simulation studies suggest that RAD
loci should provide accurate phylogenetic relationships
(Rubin et al. 2012; Cariou et al. 2013). We sampled
a total of 29 species, including one sample each for
Cophosaurus, Holbrookia, Petrosaurus, Uma, and Uta, two
samples for Urosaurus and Callisaurus, four samples for
Sceloporus, and 60 samples for Phrynosoma (representing
all 17 species and multiple samples for most species;
Table 1; Supplementary Material). Our sampling is
focused on Phrynosoma, and we consider this the ingroup
of our study. The remaining phrynosomatid species
are outgroups, and we included Gambelia wislizenii (a
non-phrynosomatid lizard) to root the trees.

Data Collection
We collected ddRADseq data using the Peterson et al.

(2012) protocol. For each individual, we extracted high-
molecular weight genomic DNA from liver or muscle

tissue using Qiagen DNeasy extraction kits (Qiagen
Inc.), checked the quality on agarose gels, and measured
concentration using a Qubit fluorometer. We digested
0.5 �g of genomic DNA with 20 units each of a rare cutter
SbfI (restriction site 5′-CCTGCAGG-3′) and a common
cutter MspI (restriction site 5′-CCGG-3′) in a single
reaction with the manufacturer recommended buffer
(New England Biolabs) for 4 h at 37 ◦C. Neither SbfI nor
MspI are sensitive to methylation, and thus efficiently
digest genomic DNA. Fragments were purified with
Agencourt AMPure beads before ligation of barcoded
Illumina adaptors onto the fragments. The custom
oligonucleotide sequences used for barcoding and
adding Illumina indexes during library preparation
are provided in the Supplementary Material. Using a
combination of eight unique barcodes and 10 Illumina
indexes allowed us to multiplex all samples into a
single sequencing lane. We produced 10 pools differing
by their Illumina index, each containing equimolar
amounts of up to eight uniquely barcoded samples.
The barcodes differed by at least two base pairs to
reduce the chance of errors caused by inaccurate
barcode assignment. The 10 pooled libraries were size-
selected (between 415 and 515 bp after accounting
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for adapter length) on a Blue Pippin Prep automatic
size fractionator (Sage Science). Precise size selection is
critical with ddRADseq, because it minimizes variation
in fragment size-based locus selection among libraries
(Puritz et al. 2014). The final library amplification used
proofreading Taq and Illumina’s indexed primers. The
fragment size distribution and concentration of each
pool was determined on an Agilent 2200 TapeStation,
and qPCR was performed to determine sequenceable
library concentrations before multiplexing equimolar
amounts of all 10 pools for sequencing on a single
Illumina HiSeq 2000 lane (50 bp, single-end run) at the
Vincent J. Coates Genomics Sequencing Laboratory at
UC Berkeley.

Data Assembly
We processed raw Illumina reads using the program

pyRAD v.2.1.7 (Eaton and Ree 2013). An advantage
of pyRAD is that it can assemble RAD loci for
divergent species using global alignment clustering,
which includes indel variation. This is accomplished
using the multiple sequence alignment programMUSCLE
(Edgar 2004). Several studies have shown that other de
novo data assemblers designed for processing population
genetic data are prone to genotyping errors, and that
new methods are needed to take these sources of
error into account (Davey et al. 2013; Mastretta-Yanes
et al. 2014). The potential sources of error inherent to
pyRAD data processing have not been explored in detail,
and although we did not conduct an examination of
pyRAD data processing here, we note that changing the
“threshold” parameters listed below do affect the final
locus counts (Pante et al. 2014) as well as the phylogeny
(Leaché et al. 2015).

We demultiplexed samples using their unique barcode
and adapter sequences, and sites with Phred quality
scores under 99% (Phred score = 20) were changed
into “N”’s, and reads with >10% “N”’s were discarded.
These filtered reads for each sample were clustered
using the program USEARCH v.6.0.307 (Edgar 2010) with
a clustering threshold of 88%, and then aligned with
MUSCLE. This clustering threshold was selected to reflect
the average uncorrected sequence variation observed
in phrynosomatid lizard nuclear genes (Leaché et al.
2015). Each locus was reduced from 50 to 39 bp after
the removal of the 6-bp restriction site overhang (the
restriction enzyme sequences are 12 bp, but only one
6-bp overhang is sequenced) and the 5-bp barcode.
As an additional filtering step, consensus sequences
were discarded that had either: (i) low coverage (<6
reads), (ii) excessive undetermined or heterozygous sites
(>3), or (iii) too many haplotypes (>2 for diploids).
The consensus sequences were clustered across samples
using the same procedure and thresholds. Finally, each
locus was aligned with MUSCLE, and loci with >10
samples sharing heterozygosity at a site were treated as
paralogs and discarded. The justification for this paralog
filtering is that if a site is heterozygous across some large

TABLE 2. Summary of ddRADseq data matrices for phrynosomatid
lizards

Average data overlap (%)d

Matrixa Loci Variable Missing (%)c Phrynosoma non-Phrynosoma
sitesb

s70 6 37 5.7 95 76
s65 27 174 9.5 88 61
s60 73 471 14.1 81 47
s55 160 1035 19.5 73 38
s50 300 1915 24.9 65 28
s45 526 3341 30.3 57 21
s40 904 5652 36.2 49 15
s35 1447 8843 41.7 42 11
s30 2219 13,232 47.2 35 9
s25 3327 19,152 52.9 29 6
s20 4954 27,195 58.8 23 5
s15 7506 38,539 65.3 17 3
s10 12,701 59,111 73.6 11 2
s5 25,709 101,937 83.7 6 1

aMinimum number of individuals (min. ind.) needed to retain a locus
(total number of samples is 74).
bIncludes all SNPs within a locus, which are presumed to be linked.
cPercentage of total data matrix cells with missing data.
dAverage percentage of SNPs shared across taxa for all loci.

number of species, then it is more likely to be a fixed
difference among paralogs that all those samples share
rather than a true heterozygous site that is shared among
species.

We exported 14 data sets that contained varying levels
of missing data, which were adjusted using the min. ind.
parameter. The empirical data included 74 individuals,
and we set the strictest limit on missing data to 70 (matrix
s70). Only six loci met this requirement, and the total
amount of missing data in these loci was low (5.7%;
Table 2). At the opposite extreme, matrix s5 required
that only five individuals had data at a locus, and this
matrix included over 25,000 loci and 83% missing data.
A summary of the final data sets is provided in Table 2.

Maximum Likelihood Phylogenies
We inferred ML phylogenies using RAxML. We

used the K80 model of nucleotide substitution
without rate heterogeneity for all 14 data sets
(-m GTRCAT -V --K80). This model of sequence
evolution was the best fit for the concatenated
ddRADseq data (using matrix s50), determined
using jModelTest (Darriba et al. 2012). For
each data set, we conducted ML analyses using
either full sequences or with SNP data. The
SNP data were analyzed using three models: (i)
uncorrected (-m GTRCAT -V --K80), (ii) conditional
likelihood (-m ASC_GTRCAT -V --K80 --asc
-corr=lewis), and (iii) reconstituted
DNA (-m ASC_GTRCAT -V --K80 --asc-corr
=stamatakis). For each analysis, branch support was
estimated using the automatic bootstrap convergence
function that calculates a stopping rule to determine
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when enough replicates have been generated (Pattengale
et al. 2010).

Comparisons of Branch Lengths, Topologies,
and Support Values

We extracted measures of total tree length from
results files (RAxML info files). For each phylogeny,
we compared individual branch lengths and support
values for taxon bipartitions that were shared (i.e., no
additional or missing tips) between the full sequences
and SNP analyses. We use the results from the
analysis of the full sequences as the basis for all of
our tree metric comparisons (as the true tree and
branch lengths are not known for the empirical data).
We extracted branch lengths and bootstrap values
directly from RAxML bipartition tree files (the tree
file containing the best scoring ML tree with branch
lengths and bootstrap values without branch labels).
We also calculated branch length differences in terms
of error (or relative bias) between the full sequences and
SNP analyses. For example, for each shared branch we
compared the relative bias of the uncorrected analysis
in relation to the full sequences analysis by dividing the
difference in branch lengths by the branch length from
the full sequences: [(uncorrected–full sequences)/full
sequences].

We quantified topological differences between
the full sequences and SNP analyses (uncorrected,
conditional likelihood, and reconstituted DNA)
using Robinson–Foulds (RF) distances (Robinson and
Foulds 1981) calculated in the Phangorn v.1.99-7
package in R (Schliep 2011). We used symmetric
RF distances, which exclude branch lengths, and
thus focus solely on topological comparisons. The
RF distances were divided by the total number of
branches to obtain relative RF values. We scripted all
post-analysis comparisons using custom R scripts to
ensure reproducibility and to avoid errors. These scripts
and the associated functions are available on GitHub
(https://github.com/bbanbury/phrynomics-data).

Species Tree Estimation
We used the program SVDquartets v.1.0 (Chifman

and Kubatko 2014) to estimate a species tree using the
RAD loci. The method infers the relationships among
four species at a time (=quartets) under a coalescent
model. The reduction of the species tree inference
problem down to quartets makes the method well suited
to RAD loci that contain high levels of missing data
with few shared loci among all species. Operationally,
the method works in two steps. First, quartets are
randomly sampled from the data matrix, and for each
quartet the singular value decomposition (SVD) score is
calculated to evaluate the optimal or “true” relationship
for the sampled quartet (Chifman and Kubatko 2014).
Second, a quartet reconstruction program is used to

infer the species tree. Uncertainty in relationships is
quantified using nonparametric bootstrapping (Chifman
and Kubatko 2014).

We applied SVDquartets to three data matrices, s5,
s25, and s50. For each data matrix, we randomly sampled
100,000 quartets from the 74 sampled individuals. The
quartet programQuartet MaxCutv.2.1.0 (Snir and Rao
2012) was used to infer the species tree from the sampled
quartets. We used nonparametric bootstrapping with
100 replicates to measure uncertainty in bipartitions.
The bootstrap values were mapped to the species tree
estimated from the original data matrix usingSumTrees
v.3.3.1 (Sukumaran and Holder 2010).

RESULTS

Data Simulation
We examined the accuracy of acquisition bias

corrections in response to different levels of missing
data using simulated data containing 1000 loci (Fig. 3a).
For the simulations with the least missing data (min.
ind. = 8), the analysis of full sequences, and SNPs with
acquisition bias correction (conditional likelihood or
reconstituted DNA), provided tree length (TL) estimates
that were close to the true TL (true TL = 0.264).
For the same SNP alignment, the uncorrected model
overestimates the TL over 4-fold (Fig. 3a). This result
coincides with the original Lewis (2001) study; the
uncorrected model overestimates branch lengths in
comparison to the corrected model. We have extended
this result to SNP data using a DNA-based model,
and show that using full sequences or a corrected
model (i.e., with acquisition correction) can provide
similar TL estimates when there is little missing data.
However, increasing the amount of missing data results
in increasing TL overestimation for the uncorrected
model and for the conditional likelihood method,
although the effect is not as profound for the latter
(Fig. 3a). The reconstituted DNA approach only slightly
underestimated TL with increasing levels of missing
data (Fig. 3a).

We examined the properties of simulated RAD
loci containing different amounts of missing data to
determine the contribution of loci that contain high
levels of missing data towards combined phylogenetic
analyses. For instance, how accurate are phylogenetic
trees estimated with loci containing 60% missing data?
Topological discordance, as measured by relative RF
distances, increases with the amount of missing data
at a locus (Fig. 4a). Similarly, the branch length
estimation error also increases with the amount of
missing data (Fig. 4b), and bootstrap values decrease as
well (Fig. 4c). Loci with missing data do not necessarily
contribute phylogenetic signal to particular depths of a
phylogenetic tree. Instead, the simulated data suggest
that missing data limits the ability of a locus to accurately
estimate shorter branches (Fig. 4d). Concatenating loci
with missing data together with complete loci, which is
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a)

b)

FIGURE 3. Tree lengths estimated using acquisition bias
correction are sensitive to allelic dropout. Simulations (a) and empirical
data for phrynosomatid lizards (b) show similar patterns. The tree
length is overestimated by the conditional likelihood correction and
underestimated by the reconstituted DNA correction. The true tree
length for the simulation is 0.264. Simulations without locus rate
variation (a) show similar patterns to those that include rate variation.

the common practise for RAD loci, does not appear to
negatively impact any of the measures of phylogenetic
accuracy that we examined.

Empirical ddRADseq Data
One lane of Illumina HiSeq2000 sequencing produced

46,173,267 reads that could be demultiplexed and
assigned to the 74 samples included in our analysis.
The samples each had >147,000 reads (mean = 712,301),
and the number of loci retained after quality filtering
exceeded 4483 (mean = 9542) and had high sequencing
coverage >17.5 × (mean = 46×) (Table 1).

The characteristics of the 14 data matrices produced for
this study are outlined in Table 2. Despite the recovery of
thousands of loci for each sample (Table 1), no shared loci
were recovered across all 74 samples. More shared loci

are recovered after reducing the min. ind. parameter, but
decreasing this threshold introduces more missing data
(Table 2). For example, matrix s70 (requiring 70 of the 74
samples to have data at each locus) contains only 5.7%
missing data, but only contains six loci and 37 variable
sites (Table 2). Conversely, matrix s5 (requiring only five
of the 74 samples to have data at each locus) is composed
of 83.7% missing data, but contains >25,700 loci and
>101,900 variable sites (Table 2). The average number
of SNPs shared among ingroup samples exceeds the
number of SNPs shared among the outgroup samples
(Table 2).

Acquisition Bias and Branch Lengths
We estimated phylogenetic trees for phrynosomatid

lizards with 14 data matrices that contained varying
levels of missing data (Table 2) using four approaches in
RAxML. The effects of acquisition bias on TL are shown
in figure 3b; the patterns are similar to the simulation
results, although the errors are more pronounced. The
uncorrected model produces the largest deviations in
TL in comparison to the estimates from full sequences,
and using the conditional likelihood method to correct
for acquisition bias also overestimates TL. The effect
is more pronounced for data sets that include more
missing data (Fig. 3b). The TL estimates obtained using
the reconstituted DNA correction are almost identical
to those from full sequences up to a point, but the
reconstituted DNA correction underestimates TL for
the data sets with the largest amounts of missing
data.

We compare individual branch length estimates from
the full sequences and SNP analyses in figure 5. Branch
lengths estimated with the uncorrected model and the
conditional likelihood method are longer compared to
the full sequences. The conditional likelihood method
overestimates branches by 100%. The reconstituted DNA
approach shows more variability in individual branch
length estimates in comparison to the full sequences,
and the general trend is to underestimate the longest
branches.

Relative branch length differences are not distributed
evenly across the phylogeny, and the degree of missing
data plays a role in the location of the biases
(Fig. 6). In comparison to branch lengths estimated
using full sequences, SNP estimates of branch lengths
are overestimated using the conditional likelihood
correction, and overestimation is more severe in the
ingroup. Once nearly 100K SNPs are present, and the
alignment contains 84% missing data, overestimation
is >500% for almost all branches (Fig. 6a). Branch
length biases are not as severe for the reconstituted
DNA correction (Fig. 6b). For example, most branches
are within 25% of the full sequences branch lengths.
However, the reconstituted DNA correction tends to
underestimate branches, and the problem is more severe
for the non-Phrynosoma taxa than within Phrynosoma
(Fig. 6b).
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a) b) c) d)

FIGURE 4. Properties of simulated RAD loci with different amounts of missing data. Loci that contain more missing data tend to result in
discordant topologies (a), increased branch length errors (b), and lower bootstrap support (c). Loci that contain less missing data provide higher
bootstrap support for shorter branches (d).

a) b) c)

FIGURE 5. Comparisons of branch lengths estimated from the empirical phrynosomatid lizard data. In comparison to the analysis of full
sequences (x-axis), branch lengths are overestimated when no acquisition bias correction is used (a), overestimated with the conditional likelihood
correction (b), and underestimated with the reconstituted DNA correction (c). Results are shown for the s50 data matrix, which contains 1915
variable sites.

a)

b)

FIGURE 6. Biases in branch lengths (BLs) on phylogenies for phrynosomatid lizards increase as the size of the data matrix increases.
Branch colors reflect the relative BL difference between the analysis of full sequences and the conditional likelihood correction (a), and the
reconstituted DNA correction (b). Positive values indicate longer branches under the acquisition correction model, and negative values indicate
shorter branches under the acquisition correction model. Branches with dashed lines indicate discordant bipartitions.
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FIGURE 7. Relative RF distances between phrynosomatid lizard
topologies estimated with full sequences versus topologies estimated
with SNPs with no acquisition bias correction (=uncorrected),
the conditional likelihood correction, and the reconstituted DNA
correction.

Acquisition Bias and Topologies
The relative RF distances between topologies

estimated using full sequences and SNPs are shown
in Figure 7. Topologies estimated with full sequences
and SNPs were more similar to one another (<10%)
when analyzing SNPs without a correction or with
the conditional likelihood correction compared to the
reconstituted DNA correction. The SNP topologies
estimated with the reconstituted DNA correction were
typically >10% different from the topologies estimated
using full sequences, and the variability in the relative
RF distances was high across the data sets (Fig. 7). The
topologies estimated with the smallest data set (s70)
produced the most discordant topologies (Fig. 7).

Acquisition Bias and Bootstrap Support
We compared the support values for all shared

bipartitions between the full sequences and SNP
analyses (Fig. 8). We should expect to see an unbiased
relationship between the support values that these
models provide for shared bipartitions. However, the
uncorrected model and the conditional likelihood
method both tend to provide higher bootstrap support
compared to full sequences. Some extreme outliers are
present in both comparisons. For example, a bipartition
that received 100% bootstrap in the uncorrected analysis
received 10% support from full sequences (Fig. 8a). The
reconstituted DNA method only slightly overestimates
bootstrap support for shared bipartitions (Fig. 8c).

Bootstrap support values for the major relationships
within phrynosomatid lizards are shown in Table 3. The
patterns of bootstrap support can be separated into three
categories. First, three clades receive strong support (i.e.,
>90%) across all analyses of all alignments, including
Phrynosomatini, Brevicauda, and Tapaja. Second, three
of the clades are not supported by these data,
including Anota, Doliosaurus, and Sceloporus. Finally,
three remaining clades (Sceloporines, Phrynosomatinae,

and Callisaurini) receive mixed support based on either
the analysis type or the size of the data matrix. The
bootstrap values estimated using the acquisition bias
corrections are sensitive to the size of the data set (and
amount of missing data), and they each show variation
in the bootstrap support for Phrynosomatinae and the
Callisaurini.

Phrynosomatidae Phylogeny
Summaries of the phylogenetic trees from analyses

of the 14 data matrices using full sequences and
SNPs are provided in the Supplementary Material.
The ML phylogenetic analysis of the largest data
matrix (s5) using full sequences is shown in Figure 9.
There is strong support for the major clades in
the family, including Sceloporinae, Phrynosomatinae,
Callisaurini, and Phrynosomatini. Within Sceloporinae,
Sceloporus is paraphyletic and includes Urosaurus.
Within Phrynosoma, all of the species are monophyletic,
except P. cerroense. Two of the four Phrynosoma
species groups are monophyletic, including Brevicauda
and Tapaja. Relationships within Phrynosoma that are
weakly supported (bootstrap <70%) include the initial
divergence within the genus, and the relationships
among the species belonging to Anota and Doliosaurus.

The species trees estimated using SVDquartets are
largely similar to one another and to the expected
phylogeny in Figure 1, with a few notable exceptions
(Fig. 10). First, the relationships among the sand lizard
genera Callisaurus, Cophosaurus, and Holbrookia are not
consistent. The earless lizard genera Cophosaurus and
Holbrookia form a clade when the largest data matrix
is used, but Callisaurus and Holbrookia form a clade
with the other data matrices (Fig. 10). Second, the
relationships within Phrynosoma vary with different data
assemblies. The first split within Phrynosoma either leads
to P. cornutum, P. asio, or a clade containing six species
(Fig. 10), depending on the data matrix analyzed. None
of the species trees provide strong support for the initial
divergences within Phrynosoma. Finally, the species trees
do not support the monophyly of the genus Sceloporus,
and this is a result of S. angustus forming a clade with
either Urosaurus or Uta.

DISCUSSION

Collecting SNP data for non-model organisms is
becoming faster and easier with RADseq methods
(Cruaud et al. 2014; Puritz et al. 2014), but these
data are introducing new challenges to consider for
the application of SNPs to phylogenetic studies. SNPs
are useful markers for population genetic studies
and phylogenetic analyses of recently diverged species
(Brumfield et al. 2003; Liu et al. 2014; Spinks et al. 2014;
Streicher et al. 2014), and they can provide accurate
measures of population parameters (Kuhner et al. 2000;
Arnold et al. 2013). In terms of their phylogenetic utility,
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a) b) c)

FIGURE 8. Comparison of bootstrap support values from analyses of phrynosomatid lizards using full sequences versus SNPs with no
acquisition bias correction (a), the conditional likelihood correction (b), and the reconstituted DNA correction (c). Results are shown for the
largest data matrix (s5). On average, analyses of SNPs tend toward slightly higher bootstrap values.

TABLE 3. Bootstrap support for relationships within Phrynosomatidae

Clade Full sequence Uncorrected Conditional likelihood Reconstituted DNA Species tree

Sceloporinae 83/100/100 82/99/87 76/98/75 –/97/96 100/98/99
Phrynosomatinae 99/100/100 96/99/100 84/–/97 79/–/– 100/100/100
Callisaurini 98/100/100 96/99/100 84/–/97 79/–/– 82/89/92
Phrynosomatini 100/100/100 100/100/100 100/100/100 100/100/100 100/100/100
Anota –/–/– –/–/– –/–/– –/–/– –/–/–
Brevicauda 100/100/100 100/100/100 100/100/100 100/100/100 100/100/100
Doliosaurus –/–/– –/–/– –/–/– –/–/– –/–/–
Tapaja 100/100/100 99/100/100 100/100/100 99/100/100 93/99/99
Sceloporus –/–/– –/–/– –/–/– –/–/– –/–/–

Notes: Bipartitions that were absent are represented by a “–”.
Results are shown for three data matrices: s50/s25/s5.

some studies have suggested that RAD loci are capable of
providing accurate interspecific relationships for clades
as old as 40–60 myr (Rubin et al. 2012; Cariou et al.
2013). However, these studies obtained RAD loci in silico
from sequenced genomes, which might provide overly
optimistic results compared to empirical data collected
in a molecular lab. Our investigation of empirical
ddRADseq data for phrynosomatid lizards, together
with computer simulations, have helped us explore
biases in the phylogenetic analysis of RAD loci. The
decision to analyze full sequences versus stripping the
data down to SNPs is important, and we implemented
new acquisition corrections to aid the analysis of SNP
data.

Acquisition Bias Corrections
We developed two new acquisition bias correction

models that help, in part, to deal with the challenge
of analyzing alignments composed exclusively of SNPs.
The conditional likelihood correction can deal with
situations where the number of unsampled invariant
sites are unknown, and the reconstituted DNA method
explicitly incorporates the exact number of unsampled
invariant sites. For RAD loci, the latter approach
is more appropriate, since the invariant sites are
sequenced along with the SNPs. Current acquisition
bias corrections can effectively account for the lack of

invariant sites in an alignment, but they cannot correct
for missing data. One important refinement that should
improve the accuracy of the reconstituted DNA method
would be to designate ADO samples (which are missing
data, not invariant sites) versus samples that are missing
invariant sites. The current implementation adds the
same number of invariant sites to each sample without
accounting for missing data. This data reduction step
greatly decreases the number of distinct alignment
patterns in the data set, which has the benefit of reducing
run-times (Fig. 11), but it affects the topology (Fig. 7).
The addition of large amounts of invariant data to
the alignment is the likely cause of the branch length
underestimation and topological discrepancies that we
measured. Extending the acquisition bias corrections
to accommodate missing data to determine if this is
the cause of the differences in tree topologies that
we observed is nontrivial implementation wise, but
worthwhile to explore in the future.

Our empirical ddRADseq data for phrynosomatid
lizards suggests that stripping RAD loci of invariant sites
can lead to branch length overestimation if not modeled
correctly, and that acquisition bias correction can
alleviate some of this overestimation error. Analyzing
variable sites without any correction produces the
most extreme tree/branch length overestimation
(Lewis 2001), and we see this problem with simulated
and empirical data (Fig. 3). The two acquisition bias
corrections that we investigated, a conditional likelihood
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FIGURE 9. Phylogeny of phrynosomatid lizards based on an ML analysis of full sequences (matrix s5: 1,256,221 base pairs, 25,709 loci, and
101,937 variable sites). Bootstrap values are shown on the branches.
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a) b) c)

FIGURE 10. Species trees for Phrynosomatidae estimated using SVDquartets for data matrix s5 (a), s25 (b), and s50 (c). Bootstrap values (from
100 replicates) are shown on nodes.

a) b)

)

FIGURE 11. RAxML search times are faster for acquisition bias correction models, especially for larger data matrices (a), and the speed increase
is a result of removing thousands of distinct alignment patterns from the data matrix that are produced by the missing data (b). Compute times
exclude bootstrap calculations. All analyses were run on 16-core Intel E5-2650 CPUs with 32GB of RAM.

and the reconstituted DNA approach, both help reduce
overestimation problems (Fig. 3). These acquisition
bias corrections provide more accurate branch length
estimates for alignments containing less missing data,
but biases increase as the alignments become larger with
more ADO (Fig. 3). The conditional likelihood method
overestimates branch lengths, while the reconstituted
DNA approach slightly underestimates them. The
degree of branch length overestimation varies across
the phrynosomatid phylogeny, and branch lengths
are overestimated by 500%, or underestimated by
50% (Fig. 6). Branch length estimation errors of this
magnitude will have negative impacts on downstream
comparative analyses that utilize branch length
information. For example, nonrandom lengthening
of branches across the phylogeny can skew node
densities across the tree and mislead diversification
analyses (Burbrink and Pyron 2011). Researchers
intending to use branch length information from SNP
phylogenies for divergence dating, diversification

studies, or comparative analysis should be cautious
when using acquisition bias corrections, and should
conduct analyses using different assemblies of the data
to determine if estimates are sensitive to the number
of SNPs and the amount of missing data. Users of
software pipelines that automatically assemble RAD
loci and generate phylogenies (Bertels et al. 2014; Lee
et al. 2014) should be careful to verify that the proper
models are being used for phylogeny estimation, since
default settings may not be appropriate for data sets
composed entirely of SNPs.

Missing Data and ADO
Empirical RAD loci contain large amounts of missing

data, and this problem is more pervasive for distantly
related species due to ADO (Arnold et al. 2013). The
amount of missing data in the final data matrix is a
variable that is controlled by the user, and while setting
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a low tolerance for missing data will maximize data
overlap, this comes at the cost of retaining far fewer loci
(Wagner et al. 2013). Thus, the number of SNPs acquired
is positively correlated with missing data. Relying on the
data assemblies that minimize missing data contained
relatively few SNPs, and those matrices produced the
most discordant phylogenies (Fig. 7), probably as a
result of having too few characters to resolve the tree
(Brandley et al. 2009). The alignments containing the
most SNPs produced the most similar topologies for the
full sequences, uncorrected, and conditional likelihood
models, but these latter approaches also suffer from
the most severe branch length and bootstrap value
overestimation. Conversely, the reconstituted DNA
method provided the most accurate branch lengths
and bootstrap values, but the topologies were the most
dissimilar compared to topologies from full sequences
(Fig. 7).

We expect that there is a strong pattern of average rate
differences for matrices of different size. It is possible
that RAD loci that are sequenced across the majority
of samples are also the most slowly evolving, since
these loci lack mutations at restriction sites. Conversely,
incompletely sampled loci are more likely to be fast
evolving and therefore will be missing sequences from
divergent lineages (Huang and Knowles 2014). Rate
differences could produce a pattern of missing data
resulting from ADO that is strongly nonrandom with
respect to taxonomic position and rate of evolution.
This specific pattern of missing data can lead to
biases in inferred branch lengths and, if sufficiently
extreme, topology errors (Lemmon et al. 2009). These
problems make the selection of the “best” assembly a
difficult problem, since the decision is likely to be a
balance between obtaining a large number of SNPs and
minimizing missing data. The choice has ramifications
on the final topology, branch lengths, and bootstrap
support values (Table 3, Fig. 10).

We used our simulated data to characterize the utility
of RAD loci containing different levels of missing data
and found that as the amount of missing data at a locus
increases, the bootstrap support decreases (especially
for short branches), topological accuracy decreases, and
branch length estimation errors increase (Fig. 4). A
recent study by Huang and Knowles (2014) suggested
that RAD loci containing high levels of missing data
have the advantage of increasing the bootstrap support
for shallow divergences. Our simulations suggest that
RAD loci with high levels of missing data increase the
support for relatively long branches on the phylogeny
(Fig. 4d), and not just shallow divergences. The typical
procedure for compiling RAD loci entails concatenating
loci with different levels of missing data together with
more complete loci in a cumulative fashion instead of
analyzing loci with large or small amounts of missing
data on their own. Although the concatenation approach
does lead to higher bootstrap support, we think that
it is important to realize that RAD loci containing
high levels of missing data are the most error-prone
(Fig. 4).

Simulation studies using full sequences have shown
that the addition of missing characters to a data matrix
can lead to inaccurate bipartitions that are strongly
supported, and that it is difficult to distinguish these
misleading results from real signal (Lemmon et al.
2009). We addressed the question of whether RAD
loci with high levels of missing data produce strongly
supported spurious results using our empirical data
for phrynosomatid lizards by estimating phylogenetic
trees for loci containing different levels of missing data.
We estimated a phylogenetic tree in RAxML using
only those loci with 90–95% missing data, and the
phylogeny provides 100% bootstrap support for at least
five incorrect clades that contain outgroup and in-
group species (results not shown). We also tracked
the support values for several focal clades of interest
in the phrynosomatid phylogeny to investigate the
sensitivity of bootstrap values to the size of the data
matrix (Table 3). The general pattern that emerges is
that concatenating more RAD loci, which at the same
time increases the amount of missing data, increases
bipartition support. This result is not surprising, since
large matrices that contain high levels of missing data
tend to produce strong bootstrap support in empirical
phylogenies (Emerson et al. 2010; Eaton and Ree 2013;
Wagner et al. 2013) and in simulation (Huang and
Knowles 2014). We are skeptical about the high levels of
support provided by concatenated RAD loci given that
concatenation of multilocus data almost always returns
high statistical support (Rokas and Carroll 2006; Salichos
and Rokas 2013; Simmons and Goloboff 2014) instead
of reflecting the true levels of support or incongruence
inherent to the data (Seo 2008; Kumar et al. 2012; Salichos
et al. 2014).

Phrynosomatidae Phylogeny
The ddRADseq data presented here do not provide

a definitive phylogeny for phrynosomatid lizards. The
topology changes with different numbers of RAD
loci, and the bootstrap support varies across data
sets as well (Table 3, Fig. 10). The analysis of full
sequences with the largest concatenated data set (Fig. 9)
supports many of the accepted relationships for the
family (Fig. 1), but important ambiguities remain.
The relationships within Sceloporinae are congruent
with estimates from previous studies (albeit with
low support), although these data do not support
the monophyly of Sceloporus. In general, the longest
branches in the phylogeny were seemingly “easy” to
reconstruct even with limited numbers of RAD loci,
including Sceloporinae, Phrynosomatinae, Callisaurini,
Phrynosomatini, and Brevicauda (Table 3). However,
the relationships among the genera within Sceloporinae
(e.g., Uta, Petrosaurus, Urosaurus, and Sceloporus) are
among the most difficult to resolve in the entire
family, and the support for these short branches was
inconsistent and dependent on the size of the data
matrix (Table 3). A recent study of phrynosomatid lizard
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relationships using targeted sequence capture data and
ddRADseq data also found that these short branches in
the phylogeny were the most difficult to resolve, and that
differentpyRAD assemblies have the potential to support
conflicting topologies, often with strong support (Leaché
et al. 2015).

The phylogenetic relationships among Phrynosoma
that we estimated from ddRADseq data in this study
reaffirm the close relationships among some species at
shallow levels of the tree (Fig. 10). These include the
placement of P. sherbrookei within Brevicauda, and the
specific relationships within Tapaja; these relationships
are congruent with previous analyses of nuclear loci and
mtDNA (Leaché and McGuire 2006; Nieto-Montes de
Oca et al. 2014; Leaché and Linkem 2015). These
ddRADseq data, whether analyzed using full sequences
or with SNPs, fail to support the monophyly of Anota
and Doliosaurus (Table 3, Fig. 10), two clades that are
supported by phylogenetic analyses of concatenated
nuclear gene sequences (Leaché and McGuire 2006;
Nieto-Montes de Oca et al. 2014; Leaché and Linkem
2015). The initial divergences within Phrynosoma appear
to have occurred in rapid succession (Figs. 9 and 10).
The coalescent-based species tree analyses provide weak
support for these short branches (Fig. 10), which could
be an indication that there is incongruence among the
RAD loci, presumably from incomplete lineage sorting.
However, the concatenation analysis squelches this
signal and provides strong support for several of these
short branches (Fig. 9). Determining whether incomplete
lineage sorting is responsible for lowered support values
in the coalescent analysis, or if ADO is responsible for
increased support values in the concatenation analysis,
or if a mix of both is occurring, will have important
implications for future phylogenetic studies of RAD loci.
There is a need for the continued development of species
tree estimation approaches that can handle large SNP
data sets that contain high levels of missing data.

CONCLUSIONS

The use of SNP data in phylogenetics is increasing as
reduced representation library sequencing approaches
(like RADseq) become more common. An assessment of
the best practises for using these data in a phylogenetic
context is important for identifying the costs and benefits
associated with different approaches. We developed
and assessed two new acquisition bias corrections for
SNP-based phylogenetic analysis, and compared these
approaches to phylogenetic analyses of full sequences.
We found that using full sequences from RAD loci is
preferable to omitting invariant sites and analyzing the
SNPs on their own. Analyzing SNPs comes with the
benefit of decreasing computation times when removing
thousands of sites with missing data, but branch length
and topological accuracy are compromised when using
the acquisition bias correction models. Despite these
drawbacks, the conditional likelihood and reconstituted
DNA corrections provide new alternatives for the

phylogenetic analysis of exceptionally large data sets
that are often prohibitively slow with full sequences.
The acquisition bias corrections are both sensitive to
missing data, which is usually extensive with respect
to RAD loci, but branch length accuracy is improved
in the reconstituted DNA approach compared to the
conditional likelihood approach. More detailed studies
are needed to address how structured missing data,
model misspecification, and rate variation among loci
impact phylogenetic analyses of RAD loci and SNP data.
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