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Viruses are obligate parasites that depend on the host cell machinery for their replication
and dissemination. Cellular lipids play a central role in multiple stages of the viral life
cycle such as entry, replication, morphogenesis, and egress. Most viruses reorganize
the host cell membranes for the establishment of viral replication complex. These
specialized structures allow the segregation of replicating viral RNA from ribosomes
and protect it from host nucleases. They also facilitate localized enrichment of cellular
components required for viral replication and assembly. The specific composition of the
lipid membrane governs its ability to form negative or positive curvature and possess a
rigid or flexible form, which is crucial for membrane rearrangement and establishment of
viral replication complexes. In this review, we highlight how different viruses manipulate
host lipid transfer proteins and harness their functions to enrich different membrane
compartments with specific lipids in order to facilitate multiple aspects of the viral
life cycle.
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INTRODUCTION

Biomolecules are the basic building block of life. Lipids are non-polar biomolecules that can be
classified functionally into structural components of the cell (ex: phospholipids), energy storage
molecules (ex: triglycerides), and signaling molecules (ex: steroid hormones). Lipid bilayers serve
as limiting membranes of different cellular compartments that define their spatial limits and allows
regulated exchanges between them. The specific lipid composition of the membranes dictates their
functions, and intracellular lipid trafficking machinery helps in tailoring the unique composition
of lipid membrane.

Viruses being obligate parasites are dependent on the host cell machinery for their replication
and dissemination. Apart from being an integral part of the virus particle, cellular lipids play a
central role in multiple stages of the viral life cycle. This includes: (i) binding and entry of the virus
particle into the host cells by fusion of viral envelopes with cellular membranes, (ii) reorganization
of host cell membranes for the establishment of viral replication compartments, and (iii) utilization
of host lipid membranes and platforms for envelopment and egress of nascent virions (Zilversmit,
1983; Holthuis and Levine, 2005). Thus many viruses target host lipid synthesis and signaling
to enrich the intracellular environment with lipids and promote membrane reorganization
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(Murillo et al., 2015). Viruses modulate host lipid signaling,
trafficking, and synthesis to benefit the viral life cycle. In this
review, we will discuss how the viruses manipulate the host lipid
transfer proteins and harness their functions to facilitate multiple
aspects of the viral life cycle and also highlight the importance of
targeting host-lipid transfer proteins as an avenue for developing
therapeutic strategies against viral infection.

LIPID TRANSFER PROTEINS (LTPs)

Inter-and intra-cellular transportation of lipids is mediated
by two distinct processes such as vesicular and non-vesicular
mediated lipid transport. Cells usually prefer a non-vesicular
mediated mode of lipid transfer for intracellular trafficking
because unlike the vesicular process it is energy efficient
and does not require cytoskeletal reorganization and complex
signaling cascades (Das and Nozaki, 2018). Non-vesicular
lipid transfer involves the exchange of monomeric lipids
between the intracellular membranes and organelles. There are
three mechanisms involved in non-vesicular lipid transport:
monomeric lipid exchange, lateral diffusion and trans bilayer
flip–flop. Lipid transfer proteins (LTPs) mediate monomeric
lipid exchange by transferring a lipid to the acceptor membrane
in exchange with a lipid of the acceptor membrane (Sleight,
1987; van Meer, 1989). Lateral diffusion occurs in the
lateral plane of membrane bilayer usually occurring between
membranes that are connected by membrane bridges (Sleight,
1987; Sprong et al., 2001). Trans bilayer flip–flop movement
of lipids is spontaneous or mediated by proteins such
as flippases and translocases (Perkins et al., 1997; Lev,
2006). Trans bilayer flip–flop movement does not majorly
contribute to lipid transport between organelles but may
indirectly influence inter-organelle lipid transport by other
means (Chiapparino et al., 2016).

Lipid transfer proteins are a class of highly conserved proteins
that facilitate the non-vesicular transfer of lipids from one
organelle to another (Chiapparino et al., 2016; Wong et al., 2019).
Around 125 genes in the human genome encode for the 10
different classes of LTP’s expressed in different human tissues
(Chiapparino et al., 2016). The distinction of each family is
based on the structural fold of their water-soluble and globular
lipid transfer domain (LTD). Each family has LTDs comprising
of either α-helices, β-sheets, or both. Lipids are accommodated
inside a tunnel-shaped deep hydrophobic or amphiphilic cavity
in the LTDs, which provides a hydrophobic environment to the
non-polar group of the lipids (Wong et al., 2019). A flexible
motif referred to as a “lid” or a “cap” often blocks the cavity
entrance, and sterically disables the dissociation of the bound
lipid ligand (Chiapparino et al., 2016). The ligand-binding
specificity is created by a series of polar groups on the ligands
such as the head groups of glycosphingolipids (GSLs) that
engage in interim molecular hydrogen bonding to the LTD
residues in the interior of the cavity (Malinina et al., 2004;
Kudo et al., 2008). Targeting of LTPs to specific subcellular
membranes often requires the integration of multiple low-affinity
interactions. LTPs not only promote non-vesicular transfer of

lipids between cellular organelles but also contribute in inter-
organelle membrane tethering mechanisms by facilitating the
formation of membrane contact sites (MCSs) (Hanada et al.,
2003; D’Angelo et al., 2007, 2013; Mesmin et al., 2013). Through
this function, the LTPs link the endoplasmic reticulum (ER),
a major site of cellular lipid biogenesis to other organelles
like Golgi-apparatus, Mitochondria, and Plasma membrane
(Achleitner et al., 1999; Csordás et al., 2006; Elbaz and Schuldiner,
2011; Helle et al., 2013; Maeda et al., 2013). Both spontaneous
and LTP mediated routes of lipid transfer are functional at
MCS. The MCS not only facilitates the transport of lipids
but also contributes to non-vesicular transfer and exchange of
different metabolites/ions such as calcium ions between the
cellular organelles (Levine and Munro, 2002; Wong et al., 2018;
Peretti et al., 2020). MCS is composed of proteins involved in
lipid biosynthesis and signaling and is stabilized through protein–
protein or protein–lipid interactions between the opposing
membranes (Giorgi et al., 2009; Lebiedzinska et al., 2009; Lev,
2010). The proximity between donor and acceptor membrane
that occurs at MCSs reduces the diffusion distance of LTPs
and accelerates the intermembrane lipid transfer (Peretti et al.,
2020). For further details on LTPs, we suggest referring to many
elaborate reviews published on this subject (Zilversmit, 1983;
Holthuis and Levine, 2005; Lev, 2006; Elbaz and Schuldiner, 2011;
Chiapparino et al., 2016; Hanada, 2018; Wong et al., 2019).

In this review, we briefly discuss about: (i) LTPs that have been
implicated to play a vital role in the life cycle of animal viruses, (ii)
Functional role of LTPs in the life cycle of these viruses and how
viruses exploit them for their production and dissemination, and
(iii) Targeting LTPs for therapeutic purpose and development of
potential antiviral agents.

Oxysterol-Binding Protein (OSBP)
Related Proteins (ORPs)
Oxysterol-binding protein (OSBP) is a major representative
member of the ORP family. All the ORPs contain a core
OSBP-related domain (ORD). ORPs can bind sterols, however,
some ORPs may preferentially bind to other lipids (Suchanek
et al., 2007). Many ORPs also contain PH (Pleckstrin homology)
domain that specifically binds to phosphatidylinositol-4-
phosphate (PI4P), and FFAT [two phenylalanines (FF) in
an acidic tract] motif that binds to the ER-resident VAMP-
associated protein A (VAP-A) (Figure 1). Localization of ORPs
is dynamic and oxysterol binding changes the subcellular
localization of certain ORPs from the cytosol to the Golgi or
ER (Ridgway et al., 1992). Although many ORPs can specifically
bind to PI4P through the PH domain, some ORPs also bind
to other phosphoinositides (Wong et al., 2019). OSBP can
bind to both cholesterol and 25-hydroxycholesterol. Sterol
transfer by OSBP is a cyclic process and involves the exchange
of sterol from the ER with PI4P in opposing membranes
(Ghai et al., 2017). The presence of PI4P on the donor
membranes can stimulate OSBP activity (Ridgway et al., 1992).
Loading/unloading of sterols into the LTD of OSBP modulates
the opening and closing of the hydrophobic channel in LTD
(Kwon et al., 2009).
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FIGURE 1 | Schematic illustration of the protein domains in the respective lipid transfer proteins. The (red boxes) represent the Pleckstrin homology domain (PH
domain) which binds to phosphatidylinositol-4-phosphate (PI4P) that is commonly present in OSBP, CERT, and FAPP. The FFAT motif which promotes interaction
with ER-resident VAP proteins is represented in (green box) is present in OSBP, CERT, and STARD proteins. STEROL binding domain (dark yellow box), START
domain (navy blue box), GLTP domain (gray box), and SMP domain (purple box) represents the characteristic lipid-binding domains specific for the individual LTPs.
START proteins also have a multifunctional MENTAL domain (violet box) that binds to cholesterol. The E-Syts transfers glycerophospholipids through its
mitochondrial-lipid-binding protein domain (SMP) (purple box). The E-Syts protein has a variable number of C2 domains (pine green boxes) which is responsible for
Ca2+/phospholipid binding and protein–protein interactions. NPC1 has a cholesterol binding domain NTD (brown box), sterol sensing domain (SSD) (bottle green
box) and a Cystine rich C terminal domain (dark gray box). Unlike NPC1, NPC2 consists of a signal peptide (butter yellow box) sensor and Proline rich domain
(sapphire blue box). The proline rich domain is represented in (light blue box). The PITD of Nir2 is represented in (pink box) whereas LNS2 is represented as (teal
colored box) (Created with BioRender.com).

START (StAR-Related Lipid-Transfer)
Domain Proteins
The steroidogenic acute regulatory protein (StAR)-related lipid
transfer (START) domain is a protein domain spanning ∼210
residues that binds to lipids such as sterols (Ponting and Aravind,
1999). Fifteen mammalian proteins (STARD 1-15) have been
identified to contain START domains (Alpy and Tomasetto,
2005) (Figure 1). The STARD1/D3 subfamily facilitates
cholesterol transfer, STARD4/D5/D6 subfamily can bind to
both cholesterol and oxysterol, STARD2/D7/D10/D11 subfamily
facilitates the transfer of phospholipids and sphingolipids. The
lipid ligands for other STARD family subgroups are currently
unknown (Alpy and Tomasetto, 2005). STARD1 (also known
as StAR) is a mitochondrial cholesterol carrier and facilitates
cholesterol transfers from liposomes to mitochondria (Kallen
et al., 1998). STARD3 (also known as metastatic lymph node 64,
MLN64) plays a central role in the redistribution of cholesterol
between the ER and endosomes (Soccio and Breslow, 2003).
STARD3 anchored to the endosomal membrane interacts via its
FFAT motif with the ER-resident VAPs (A and B) and MOSPD2
(motile sperm domain-containing 2) a VAP homolog protein
to create the ER/endosomal contact sites. STARD3 captures
cholesterol via its MENTAL domain (Figure 1) in the late

endosome membranes, which are subsequently extracted by its
cytoplasmic START domain and transferred to the receptor
membrane in the cytosol (Alpy and Tomasetto, 2005). STARD
11 is commonly known as ceramide transfer protein (CERT),
is involved in the transfer of ceramide, and N-acylated form of
sphingosine, which serves as a key intermediate in the synthesis
of sphingomyelin (SM), the plasma membrane sphingolipid, and
various species of GSLs (Chiapparino et al., 2016). Sphingolipids
are major components of lipid rafts and are required for
the synthesis of signaling molecules such as sphingosine and
sphingosine-1-phosphate (SIP) that play a vital role in cell
signaling and physiology (Yamaji and Hanada, 2015). Ceramide
synthesis takes place in the ER and transported to Golgi
for further processing and subsequently distributed to various
organelles. CERT is composed of three domains, N-terminal
PH domain, C-terminal START domain, and a MR (middle
region) domain (Fukasawa et al., 1999; Hanada et al., 2003;
Yamaji and Hanada, 2014) (Figure 1). PH domain preferentially
binds to PI4Pand plays a vital role in the localization of
CERT to various membrane compartments (De Matteis et al.,
2005). START domain of CERT specifically extracts ceramide
and facilitates the transfer of ceramide between juxtaposing
membranes (Hanada et al., 2003; Kumagai et al., 2005). Apart
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from these two domains, CERT also contains FFAT motif that
interacts with the cytosolic region of the ER-resident VAP-A and
VAP-B (Murphy and Levine, 2016) (Figure 1).

Niemann-Pick Type C1 and C2 (NPC1
and NPC2) Proteins
Niemann Pick C (NPC) disease is an autosomal recessive disorder
that exhibits impaired neuronal and visceral cell trafficking of
cholesterol and other lipids, including glycolipids. Due to defect
in the transport of cholesterol from the endosomal/lysosomal
compartments the mutant cells exhibit accumulation of lipids
in the late endosomes and lysosomes. NPC1 and NPC2
co-ordinate to export cholesterol from endosomal/lysosomal
compartments. NPC1 is a membrane glycoprotein that resides
primarily in the late endosomes and transiently localizes to
lysosomes and TGN (Higgins et al., 1999; Neufeld et al.,
1999; Patel et al., 1999). NPC1 contains 13 transmembrane
domains, 3 large luminal hydrophilic loops, and a cytoplasmic
tail (Kobayashi et al., 1999). Transmembrane domains 3–7
comprise the Sterol-Sensing Domain (SSD) of NPC1 (Long
et al., 2020) (Figure 1). Along with SSD, NPC1 also has an
MD-2-related lipid-recognition (ML) domain (Munkacsi et al.,
2007). NPC2 is a soluble protein that binds to unesterified
cholesterol and ML domain of NPC1 and transfers cholesterol
to the N-terminal domain (NTD) of NPC1 (Li et al., 2016)
(Figure 1). This transfer is facilitated by the formation of a
channel between NTD of NPC1 that allows cholesterol to slide
from NPC2 to NPC1 in a process known as a “hydrophobic
handoff” (Kwon et al., 2009). NPC2 can also transfer cholesterol
to phospholipid membranes very rapidly through a collision
mechanism, which involves direct interaction with the acceptor
membrane. NPC2 mediated transfer of cholesterol to membranes
is very rapid in an acidic environment and enhanced by the
presence of the unique lysosomal/late endosomal phospholipid
lyso-bisphosphatidic acid (LBPA) (Ko et al., 2003; Cheruku
et al., 2006). The complete details of how NPC1 and NPC2
mediate cholesterol transport from late endosomal/lysosomal
compartments are still not clear.

Extended Synaptotagmins (E-Syts
Family)
The extended synaptotagmins (E-Syts) is a family of ER-
resident LTPs having an N-terminal membrane anchoring
domain and cytosolic exposed C2 domains that transfer
glycerophospholipids between ER and plasma membrane (El
Kasmi et al., 2018). The N- terminal region also contains
the synaptotagmin-like mitochondrial and lipid-binding (SMP)
domain) which is followed by a variable number of C2
domains in different members of the family. Mammals
express three E-Syts (E-Syt1, E-Syt2, and E-Syt3). E-Syt 1
has five C2 domains and E-Syt2 and E-Syt3 have three C2
domains (Min et al., 2007) (Figure 1). The C2 domain
is responsible for Ca2+/phospholipid binding and protein–
protein interactions. E-Syts activities are controlled by Ca2+and
facilitates Ca2+dependent regulation of lipid transport and
intracellular membrane transport (Yu et al., 2016). An increase

in the intracellular Ca2+ mediates the enrichment of E-Syt1 from
ER to ER–PM junctions (Pérez-Lara and Jahn, 2015). E-Syt1
hydrophobic moieties in the SMP domain form a hydrophobic
channel leading to the bridge formation between opposing
membranes and resultant transfer of glycerophospholipids in
tunnel mode. Sometimes E-Syt 1 also transfers lipids by shuttle
mode, which involves the extraction of lipids from ER and
delivering it to the PM (Schauder et al., 2014). Currently,
there is a lack of complete details on the exact mechanism
involved in lipid transfer mediated by E-Syt proteins between
the contact sites.

Four-Phosphate Adaptor Protein 2
(FAPP2)
The four-phosphate adaptor protein 2 (FAPP2) is a member
of glycolipid-transfer domain family (GLTD) (Hanada, 2018).
FAPP2 localizes to the trans-Golgi network and facilitates the
transportation of proteins from the Golgi complex to the cell
surface. It is also involved in GSL metabolism at the Golgi
complex (D’Angelo et al., 2012). FAPP2 has a PH domain
with an additional globular domain at its carboxy terminus
(Figure 1) (Godi et al., 2004). PH domain of FAPP2 bind
selectively to PI4P and targets the protein to trans-Golgi
network whereas the globular domain binds to glucosylceramide
(GlcCer) primarily synthesized on the cytosolic leaflet of cis-
Golgi. FAPP2 facilitates transfer of GlcCer from the cis-Golgi
to the trans-Golgi regions or from the cis-Golgi to the ER
(Rao et al., 2004).

N-Terminal Domain-Interacting Receptor
(Nir)
N-terminal domain-interacting receptor (Nir) is a member
of phosphoinositide transfer protein (PITP) (Peretti et al.,
2020). There are three isoforms of Nir encoded by the
human genome, Nir1, Nir2, Nir3. Nir1 lacks an LTD in
the N-terminal region which is present in Nir2 and Nir3.
The structural prototype of Nir2/Nir3 LTD is a PI-transfer
protein (PITP)-α isoform (PITPα) which belongs to PI-transfer
domain family (Hanada, 2018). Nir2 has a canonical FFAT
motif that enables its localization to ER (Figure 1). Nir2 has
been shown to exchange PI (phosphatidylinositol) and PC
(phosphatidylcholine) between the ER and Golgi apparatus and
also PC and PA (phosphatidic acid) between the ER and PM,
thus exerting dual function, i.e., PI/PC exchange at ER-Golgi
MCSs and PI/PA exchange at ER-PM MCSs (Hanada, 2018).
PI transfer by Nir2 is required for the maintenance of PI4,5P2
pools at the PM and the transfer of PA from PM to ER is
tightly coupled to PI4,5P2 hydrolysis at PM and PI transfer to
ER (Kim et al., 2015).

LIPID TRANSFER PROTEINS IN THE
VIRAL LIFE CYCLE

Viruses promote membrane rearrangement to establish highly
specialized replication compartments. These structures allow
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spatial segregation of replicating viral RNA from ribosomes and
protect from host nucleases and pattern recognition receptors.
In addition, by reducing the overall diffusion space these
structures promote the enrichment of components required
for viral replication and provide a conducive environment for
virion assembly. Specific lipid composition of the membranes
is required to facilitate the formation of negative or positive
curvature and attributes membrane rigidity or flexibility to
aid in membrane rearrangement. For instance, cholesterol
a lipid of intrinsic negative curvature due to its small
head group, and the large hydrophobic tail is enriched in
membranes of the vesicles. Many viruses harness the ability of
LTPs to promote the transfer of lipids from one membrane
compartment to the other to enrich specific lipids that induce
curvature and flexibility in membranes that make up the viral
replication compartments.

Hepatitis C Virus (HCV)
Hepatitis C virus (HCV) is a positive-sense ssRNA virus of
the family Flaviviridae, genus Hepacivirus. About 71 million
people worldwide are affected by HCV as per the World Health
Organization (Shepard et al., 2005). HCV associated chronic
hepatitis leads to hepatic steatosis that slowly progresses into liver
fibrosis, cirrhosis, and hepatocellular carcinoma (HCC) (Negro
and Sanyal, 2009). It has been reported that 5–25% of people with
chronic hepatitis C develop cirrhosis within 10–20 years. Patients
with cirrhosis have a 1–4% risk of developing HCC and 3–6% risk
of hepatic decompensation (Thomas, 2013).

Hepatitis C virus replication factory comprises of a highly
convoluted membranous structure known as the ‘membranous
web’ derived from the ER membranes. The membranous web
is majorly composed of double-membrane vesicles (DMVs) and
multi-membrane vesicles (MMVs), which serve as a platform
for HCV genome replication. HCV exploits several host factors
to promote the enrichment of cholesterol in the replication
compartment or membranous web HCV triggers fatty liver by
upregulating lipogenesis and downregulating lipid secretion and
β-oxidation (Syed et al., 2010). HCV non-structural protein 5A
(NS5A) interacts with the ER-localized phosphatidylinositol-4
kinase III alpha (PI4KIIIα) and stimulates its kinase activity
(Berger et al., 2009; Reiss et al., 2011). Activation of PI4KIIIα
results in enhance levels of PI4P in the ER membranes and
knockdown of PI4KIIIα leads to a defect in HCV replication
and membranous web morphology (Reiss et al., 2011). PI4KIIIα
inhibitor PIK93 reduced HCV-NS5A mediated induction of
PI4P and affected the subcellular distribution of PI4P in HCV-
infected cells (Reiss et al., 2011). PI4P recruits OSBP to the
viral replication complex membranes. OSBP binds to PI4P as
well as to VAP anchored at the ER membrane and catalyzes
the exchange of cholesterol and PI4P between the ER and HCV
replication organelles. OSBP is required for HCV replication
and membranous web integrity and OSBP recruitment to the
membranous web is PI4KIIIα dependent (Wang and Tai, 2019).
HCV NS5A also interacts with the OSBP near the Golgi
compartment and this interaction is shown to be essential for
HCV egress (Amako et al., 2009). The phosphatidylinositol
transfer protein Nir2 is also shown to support HCV replication.

Nir2 facilitates the replenishment of PI4P pools at HCV
membranous webs to maintain steady-state levels of PI4P and
thus in co-ordination with VAP and OSBP enables the PI4P flow
between the ER and membranous web to drive HCV replication
(Wang and Tai, 2019). ORP4 (OSBP2) is a closely related paralog
of OSBP and is found to negatively regulate HCV replication.
ORP4S (a naturally occurring variant of ORP4 lacking the PH
domain which is required to bind to PI4P) expression also results
in inhibition of HCV pointing to an important role of the PH
domain in HCV replication. ORP4 is also shown to interact with
HCV NS5B (RNA dependent RNA polymerase) and inhibit HCV
replication (Park et al., 2009).

Sphingolipids have been implicated to play vital role in HCV
life cycle (Hanada et al., 2003; Aizaki et al., 2008; Amako
et al., 2011). Some studies have shown that inhibition of
sphingomyelin biosynthesis, either by small molecule inhibitor
such as NA255 or by knocking out (KO) of CERT, suppressed
HCV replication in a genotype-independent manner (Sakamoto
et al., 2005; Gewaid et al., 2020) whereas other group has
reported that the sphingolipid biosynthetic pathway inhibitor,
HPA-12 blocks HCV virions production but not genome
replication (Aizaki et al., 2008). FAPP2, a GLTP-like CERT is
also implicated to play a role in HCV replication. FAPP2 is
shown to localize to the HCV replication sites and promotes
the transfer of lactosylceramide to the membranous web. Both
PH and GLTP domains of FAPP2 are crucial for its role
in HCV replication and FAPP2 depletion disrupts the HCV
replication complex (Khan et al., 2014). Protein kinase D
(PKD) regulates vesicular trafficking from trans-Golgi to the
plasma membrane by mediating the phosphorylation-dependent
inhibition of OSBP and CERT. PKD depletion or chemical
inhibition enhanced HCV secretion suggesting that the transfer
of lipids from ER to Golgi mediated by OSBP and CERT is
required for maintenance of Golgi function and HCV egress
(Amako et al., 2011). Subsequent studies highlighted the role of
several other LTPs as host factors for HCV replication. Proteins
such as STARD3, OSBP-related protein 1A, and -B (OSBPL1A
and -B), and NPC1 have been shown to play a crucial role
in HCV replication (Stoeck et al., 2018). Inhibition of NPC1
causes cholesterol entrapment in the lysosomal vesicles with a
concomitant decrease in HCV replication compartment leading
to the loss of membranous web integrity. This suggests that
NPC1-mediated endosomal/lysosomal cholesterol transport is
required for subsequent enrichment of cholesterol in the HCV
membranous web (Stoeck et al., 2018). One study demonstrated
that the Niemann-Pick C1-like 1 (NPC1L1) cholesterol uptake
receptor is a host factor required for HCV entry. NPC1LI is
commonly found in the bile canaliculus and localized on the
apical membrane of hepatocytes. Chemical inhibition or silencing
of NPC1L1 leads to inhibition of HCV infection in vitro. Most
likely, the inhibition of NPC1LI results in the depletion of
plasma membrane cholesterol which leads to defect in HCV
uptake due to inhibition of HCV virion-cell membrane fusion
(Sainz et al., 2012). Overall, these studies highlight the role
of non-vesicular cholesterol transport at the ER and the late
endosome/lysosome compartments plays a vital role in the
maintenance of HCV membranous web integrity and optimal
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FIGURE 2 | Schema representing the role of lipid transfer proteins in HCV life cycle. HCV virus gains entry via receptor-mediated endocytosis and subsequent
uncoating of the viral envelope in the endocytic vesicles results in the release of viral genome into the cytoplasm. The viral RNA gets translated on the rough ER
leading to the biosynthesis of viral polyprotein that is subsequently processed by host and viral proteases to yield structural and non-structural viral proteins. Viral
proteins along with other host factors promote the rearrangement of ER-derived membranes to establish the viral replication complex. Recruitment and activation of
PI4KIIIα at viral replication sites leads to enhanced levels of phosphatidylinositol-4-phosphate (PI4P) at replication sites resulting in recruitment of the lipid transfer
proteins OSBP and CERT to the membranes. OSBP and CERT bind to PI4P via their Pleckstrin homology (PH) domains and to the ER anchored vesicle-associated
membrane-associated protein (VAP) by FFAT motif. Both OSBP and CERT bind to their respective lipid ligands (i.e., cholesterol or ceramide) through their lipid
binding domains and catalyze the transfer of cholesterol and ceramide respectively, in exchange for PI4P between the ER and virus replication complex. Nir2
facilitates replenishment of PI4P at HCV replication sites by coordinating the transfer of PI from ER membranes, which can be further converted to PI4P by PI4KIIIα.
The assembly of viral genomic RNA into nucleocapsid takes place near the replication complexes followed by subsequent morphogenesis into virus particle and
secretion through the Golgi secretory pathway (Created with BioRender.com).

replication. An illustration depicting the role of some LTPs in
HCV life cycle is shown in Figure 2.

Dengue Virus (DENV)
Dengue virus (DENV) is a positive-sense ssRNA arbovirus
of the family Flaviviridae, and genus Flavivirus. It has been
reported that around 40% of the world’s population live in
areas prone to DENV (Simmons et al., 2012). Annually almost
400 million people get infected with DENV (Centers for
Disease Control and Prevention, 2019). Infection with any of
the four DENV serotypes (DENV-1, DENV-2, DENV-3, and
DENV-4) may lead to asymptomatic infection or result in a
symptomatic infection that varies from mild febrile illness to
severe Dengue fever associated with vascular fragility (dengue

hemorrhagic fever) and hypovolemic shock (dengue shock
syndrome) (Harris et al., 2000). Like many other viruses,
DENV modulates the host cell metabolism and signaling
pathways to benefit its replication and dissemination (Chatel-
Chaix and Bartenschlager, 2014; You et al., 2015). Dengue
genome replication occurs in viral replication complexes (VRCs)
consisting of membrane packets, DMVs, tubular structures, and
convoluted membranes (CM), derived by the reorganization
of the host intracellular membranes (Welsch et al., 2009;
Junjhon et al., 2014). DENV infection promotes the activity
of 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCR) and
fatty acid synthase (FASN) enzymes resulting in enhanced de
novo synthesis of fatty acids and cholesterol, which may be
required for the formation of VRCs (Heaton et al., 2010;
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Soto-Acosta et al., 2017). Earlier studies have suggested that PI4P
enrichment at replication sites is not required and PI4KIIIα,
PI4KIIIβ, and OSBP activity is dispensable for Dengue replication
(Negro and Sanyal, 2009; Thomas, 2013). PI4KIIIα inhibitor
AL-9 and OSBP inhibitor OSW-1 had only minor effect on
DENV replication at concentrations that strongly inhibit HCV
replication (Wang and Tai, 2019). High-throughput screening
of National Institutes of Health (NIH) Clinical Collection using
an unbiased DENV replicon-based system to identify DENV
inhibitors led to the identification of itraconazole (ITZ), a broad
range inhibitor of human fungal infections (Cleef et al., 2013).
Treatment with ITZ and its derivative posaconazole inhibited
DENV replication. OSBP knockdown increased the sensitivity
of DENV to posaconazole suggesting that inhibitory activity of
antifungal posaconazole against DENV replication is mediated by
OSBP, establishing OSBP as a host factor for DENV replication
(Meutiawati et al., 2018). In contrast to previous studies, another
group suggested that knockdown of OSBP, ORP2, and ORP11
or treatment with OSBP antagonist OSW1 inhibited DENV
replication suggesting that OSBP and its related proteins 2 and
11 are required for DENV replication (Meutiawati et al., 2018).
Unlike HCV, OSBP does not localize with DENV replication
complexes suggesting that OSBP is not directly involved in
DENV replication but supports replication by altering the
intracellular lipid homeostasis (Meutiawati et al., 2018). To date,
the functions of ORP2 and ORP11 are not fully resolved. It has
been proposed that ORP11 lacks a known ER targeting signal
and localizes on Golgi membranes and late endosomes to mediate
non-vesicular lipid trafficking between these compartments
(Zhou et al., 2010). ORP2, unlike OSBP and ORP11, does
not possess a PH domain. Yet, ORP2 might regulate cellular
sterol homeostasis and has been shown to have a role in
intracellular cholesterol trafficking, endocytosis, and neutral
lipid metabolism (Laitinen et al., 2002; Hynynen et al., 2009).
The precise functions of these ORPs in the DENV replication
cycle remain to be studied in detail. Interestingly, empirical
evidence suggests that African descent is protective against
dengue hemorrhagic phenotype in the Cuban population and
two candidate genes, OSBPL10 and RXRA, have been implicated
to confer protection (Sierra et al., 2017). Knockdown of
OSBPL10 gene expression leads to a significant reduction in
DENV2 replication. Although it is still not clear how OSBPL10
contributes to DENV replication, it is important to note that
proteins involved in lipid metabolism play a crucial role in the
DENV life cycle.

Ebola Virus (EBOV) and Marburg Virus
(MARV)
Ebola virus (EBOV), Marburg virus (MARV) belong to the
Filoviridae family. These are filamentous, enveloped and
negative-sense ssRNA viruses. Infection with EBOV causes
Ebola virus disease (EVD) a fatal illness associated with
coagulation disorders, hemorrhagic fever, lymphopenia, leading
to septic shock and multi organ failure in affected humans
and primates. MARV infection also leads to similar clinical
sequelae as that of EBOV. Infected individuals experience

severe watery diarrhea, abdominal pain, vomiting, and lethargy
which progresses into severe hemorrhagic manifestation and
shock. The average fatality rate of EVD is around 50% and
about 90% in MARV infection (Schnittler and Feldmann,
2003; Maruyama et al., 2014). Filovirus genome expresses
seven structural proteins, including a glycoprotein (GP),
nucleoprotein (NP), viral proteins (VP) 24, VP30, VP35,
VP40, and an RNA-dependent RNA polymerase. The EBOV-
GP controls two critical aspects of viral entry: receptor
binding and membrane fusion. Studies using global gene
disruption in human cells led to the identification of the
role of NPC1 in Filovirus entry (Carette et al., 2011). Cells
defective for the homotypic fusion and protein sorting
(HOPS) complex or NPC1 function, including primary
fibroblasts derived from human NPC1 disease patients, are
resistant to infection by Ebola and Marburg viruses (Carette
et al., 2011). HOPS complex regulates the late endosomes
maturation by mediating their fusion with lysosomes (Nickerson
et al., 2009). Defect in HOPS complex may perturb the
endo-lysosomal trafficking which may negatively impact
Filovirus entry (Carette et al., 2011). NPC1-null cells are
resistant to EBOV infection and the expression of human
NPC1 reverses the resistance (Carette et al., 2011). Upon
cleavage by cathepsin in late endosomes the receptor-binding
domain (RBD) of the GP gets exposed thereby facilitating its
interaction with its intracellular receptor NPC1 in the late
endosomal/lysosomal compartments leading to membrane
fusion and release of the viral genome. Computational
analysis has shown that NPC1 utilizes two protruding loops
to engage a hydrophobic cavity on the head of cleaved GP
with exposed RBD resulting in a conformational change in
the GP internal fusion loop and membrane fusion (Wang
et al., 2016). Overall these studies suggest that filovirus
requires the NPC1 to promote membrane fusion and viral
escape from the vesicular compartment protein, independent
of NPC1 role in cholesterol transport function from the
endosomal/lysosomal compartments.

Enteroviruses
Enteroviruses are positive sense, ssRNA virus of family
Picornaviridae, genus Enterovirus. Many viruses such as
Poliovirus, Coxsackievirus, Echovirus, and human Rhinovirus
belong to the Enterovirus category. Clinical manifestations
of Enterovirus infection includes poliomyelitis, meningitis,
hand-foot-and-mouth disease, rhinitis and other respiratory
diseases (Tapparel et al., 2013). Poliovirus 2BC and 3A proteins
play an important role in membrane rearrangements and
require PI4KIIIβ as an essential host factor, which promotes
accumulation of PI4P lipids on replication organelle (RO) and
facilitates its formation (Hsu et al., 2010; Arita et al., 2013;
Arita, 2014). 25-hydroxycholesterol (25HC) a high-affinity
ligand of OSBP and its analog enviroxime perturb Poliovirus
replication by inhibiting OSBP and transcriptional inhibition of
the SREBP/SCAP pathway suggesting OSBP-mediated transfer
of cholesterol to poliovirus replication organelles is crucial for
efficient replication (Arita et al., 2013). Replication of human
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Rhinoviruses (the causative agent of the common cold) also
requires OSBP-mediated transfer of cholesterol in exchange of
PI4P at MCSs (Roulin et al., 2014). RNAi mediated knockdown
of Sac1, an ER resident PI4P phosphatase also resulted in
inhibition of Rhinovirus replication. PI4P dephosphorylation
may reduce the competition for sterol binding on OSBP
and thereby enhance rhinovirus replication by stimulating
cholesterol transfer (Roulin et al., 2014). However another study
showed that OSBP mutant lacking the PI4P binding PH domain
fails to localize near the viral replication sites highlighting
the importance of OSBP binding to PI4P (Strating et al.,
2015). The PI4P-cholesterol flux also promotes the coupling
of other lipids into Rhinovirus replication organelles, such as
phosphatidylcholine (PC) through Phosphatidylinositol transfer
protein β (PITPβ), which enhances the complexity of lipids
build up in the membranes and facilitates the formation of
replication organelles. Similar to Poliovirus, Coxsackievirus has
also been shown to reorganize the secretory pathway to promote
the formation of PI4P lipid-enriched microenvironment in
a PI4KIIIβ-dependent manner (Hsu et al., 2010). The viral
RNA-dependent RNA polymerase of Coxsackievirus specifically
binds to PI4P and promotes PI4P mediated assembly of the
replication complex. 25HC binds to OSBP with higher affinity
than cholesterol and locks OSBP in an inactive state and
inhibits replication of both Rhinoviruses and Coxsackievirus
B3. Itraconazole was recently found to inhibit Enterovirus
replication by binding to OSBP (Strating et al., 2015). In
agreement, other OSBP antagonists like 25HC, OSW-1, and T-
00127-HEV2, also showed inhibitory activity against Enterovirus
replication (Arita et al., 2013; Roulin et al., 2014; Albulescu
et al., 2015). Both itraconazole and posaconazole can bind
to NPC1 and perturbs NPC1 mediated cholesterol transport
from late endosomes/lysosomes, this can lead to inhibition
of Enterovirus entry as well as viral replication due to the
overall effect on cellular cholesterol homeostasis (Shim et al.,
2016). Enterovirus protein 3A binds and exploits the Acyl-
coenzyme A binding domain containing 3 (ACBD3) protein
to recruit PI4KIIIβ to the viral ROs to produce PI4P and
promote OSBP-mediated cholesterol flux (Hsu et al., 2010;
Greninger et al., 2012; Rönnberg et al., 2012; Sasaki et al., 2012;
Nchoutmboube et al., 2013; Téoulé et al., 2013). ACBD3 is
a Golgi resident protein that recruits PI4KIIIβ to the Golgi
and trans-Golgi network (TGN) and stimulates its enzymatic
activity to produce PI4P (Sohda et al., 2001; Baumlova et al.,
2014; Boura and Nencka, 2015). Using infection models of
Enteroviruses A71 (EV-A71), D68 (EV-D68), Rhinovirus, and
Poliovirus various groups have demonstrated that 3A protein
binds with GOLD domain of ACBD3 and knockdown of
either ACBD3 or PI4KIIIβ perturbs replication of these viruses
signifying the role of PI4P and OSBP in enterovirus replication
(Greninger et al., 2012; Rönnberg et al., 2012; Nchoutmboube
et al., 2013; Téoulé et al., 2013; Lei et al., 2017; Lu et al., 2020).
A recent study contradicted the above finding, and shown that
trans-rescue of EV-A71 pseudo virus replication with PI4KIIIβ
deletion mutants suggested that the ACBD3-binding site of
PI4KIIIβ is not essential for EV-A71 or poliovirus replication
(Arita, 2019).

TABLE 1 | Antivirals targeting lipid transfer protein.

Virus LTP Target step Inhibitor References

HCV OSBP Replication Itraconazole
Posaconazole
OSW1

Sohda et al. (2001)
Sohda et al. (2001)
van Meer (1989)

HCV GLTP Replication Bicyclol Shim et al. (2016)

HCV CERT Secretion HPA-12 Yasuda et al. (2001),
Aizaki et al. (2008)

HCV NPC1L1 Entry Ezetimibe Sainz et al. (2012)

Enteroviruses OSBP Replication Itraconazole
TTP-8307
OSW1

Sohda et al. (2001)
Sun et al. (2015)
Albulescu et al. (2017)

DENV OSBP Replication Posaconazole
OSW1

Sierra et al. (2017)
Burgett et al. (2011)

EBOV NPC1 Entry U18666A 3.47
MBX2254
MBX2270

Wichit et al. (2017)
Côté et al. (2011)
Basu et al. (2015)

CHIKV NPC1 Entry Imipramine Wichit et al. (2017)

Aichi Virus (AiV)
Aichi virus (AiV) is a positive-sense single-stranded RNA virus
of the Picornaviridae family and genus Kobuvirus (Rivadulla
and Romalde, 2020). It is transmitted through the consumption
of contaminated food and water and affects children below
5 years of age causing acute gastroenteritis (Rivadulla and
Romalde, 2020). AiV hijacks intracellular cholesterol transport
by exploiting OSBP to enrich cholesterol at viral replication
sites in exchange for PI4P (Sasaki et al., 2012). Similar to
enteroviruses, AiV interacts with ACBD3 to recruit PI4KIIIβ
to the replication sites and enhance PI4P synthesis (Ishikawa-
Sasaki et al., 2014). OSBP, VAP-A/B, and Sac1 co-localize to
the replication organelles and serve as essential host factors
for AiV replication (Ishikawa-Sasaki et al., 2018). AiV proteins
2B, 2BC, 2C, 3A, and 3AB bind with ACBD3 and PI4KIIIβ
at replication sites to enhance PI4P levels which in turn leads
to OSBP mediated cholesterol enrichment required for the
formation of replication organelles (Ishikawa-Sasaki et al., 2018).
AiV replication is inhibited upon silencing OSBP and the ER-
resident VAP-A/B due to defect in OSBP-mediated cholesterol
transfer at replication organelle.

African Swine Fever Virus (ASFV)
African swine fever virus (ASF), is a large dsDNA virus
of the Asfarviridae family and causes hemorrhagic fever in
pigs with a high mortality rate. Initially, it was endemic
in Africa but has slowly spread to Europe, China, and
Southeast Asia causing huge socioeconomic losses (Karger
et al., 2019). The viral replication takes place in the cytoplasm
but is also reported to occur in the nucleus during the
initial stages of infection (García-Beato et al., 1992; Rojo
et al., 1999). ASFV remodels the intracellular membranes
into viral replication factories (VF). ASFV promotes the
redistribution of the intracellular vesicular system and redirects
endosomal traffic to the early replication site resulting in the
accumulation of endosomal membranes that provide membrane
source and cholesterol supply required to establish the VF
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(Cuesta-Geijo et al., 2017). The cholesterol flux to the ASFV
viral factories at the MCSs is mediated by a number of
proteins such as the ACBD3, PI4KIIIβ, and the LTPs, OSBP
and OSBP related proteins (ORP), which have high affinity
to oxysterols and cholesterol (Galindo et al., 2019). ASFV
utilizes ACBD3 to recruits PI4KIIIβ to VF promoting the
accumulation of PI4P that triggers the redistribution of OSBP
to the periphery of VFs and promotes cholesterol flux to the
VFs. Itraconazole and 25-hydroxycholesterol (25-HC) has been
shown to inhibit ASFV replication by blocking OSBP activity
(Galindo et al., 2019).

Adenoviruses (AdV)
Mammalian Adenovirus is a non-enveloped, dsDNA virus of
the family Adenoviridae, genus Mastadenovirus. Adenoviruses
commonly cause lower respiratory tract infection which is
infrequent and sporadic in nature (Masci and Wormser, 2005).
Virus infection is generally persistent and can be detected
months after primary exposure (van der Veen and Lambriex,
1973; Horvath et al., 1986). Adenovirus infection in young
children leads to gastrointestinal and respiratory symptoms
or a combination of both. Adenovirus symptoms are mild
and self-limiting but considerable morbidity and death have
been observed in the pediatric population (Singh-Naz and
Rodriguez, 1996; Mahr and Gooding, 1999; Walls et al.,
2003). Human AdV is classified into six groups (HAdV-A to
HAdV-F) based on their physical, biological, and chemical
properties (Ghebremedhin, 2014; Lion, 2014). Adenovirus
type 2 and type 5 (AdV2 and AdV5) of group C primarily
target epithelial cell lining of the upper respiratory tract
through binding to Coxsackievirus B adenovirus receptor
(CAR) and αv integrin co-receptors (Meier and Greber,
2004). The viruses uncoat at plasma membrane thereby
releasing the viral lytic protein VI that forms lesion on the
plasma membrane leading to calcium influx and activation
of canonical repair mechanism involving lysosome fusion
with the plasma membrane. This leads to the release of acid
sphingomyelinase (ASMase) into the extracellular space which
in turn promotes localized degradation of sphingomyelin and
generation of ceramide lipid in the outer plasma membrane
leaflet thereby causing invagination and subsequent penetration
and escape of viral capsid from endosome to the cytosol
(Burckhardt et al., 2011; Luisoni et al., 2015). The adenovirus
E3 transcript product RIDα is a small 13.7-kilodalton protein
that attenuates EGF receptor (EGFR) signaling by promoting
EGFR accumulation in pre-lysosomal compartments and
subsequent degradation (Hoffman and Carlin, 1994). RIDα is
also associated with attenuation of pro-inflammatory NFκB
signaling induced by stress-activated EGF receptors (Zeng and
Carlin, 2019). RIDα also modulates cholesterol homeostasis
by regulating cholesterol transport from endosomes to the
ER (Cianciola et al., 2013). RIDα rescues NPC1-deficient
cells from accumulation of lysosomal storage organelles, by
diverting excess free cholesterol to lipid droplets (Cianciola
and Carlin, 2009). RIDα directly interacts with the sterol-
binding protein ORP1L, a member of the OSBP-related proteins
(ORPs) family and with ER-resident VAP proteins through

its FFAT motif and supports the transport of LDL-derived
cholesterol from endosomes to the ER, where it gets converted
to cholesteryl esters and stored in lipid droplets. However, unlike
NPC1 mediated cholesterol transport to ER and regulation
of SREBP transcription factor, RIDα mediated cholesterol
transport is sensitive to ACAT inhibition and correlates
with induction of lipid droplets formation in adenovirus-
infected cells (Cianciola and Carlin, 2009; Cianciola et al.,
2013, 2017). Thus adenovirus RID-α restores the perturbed
cholesterol balance during the early stages of acute infection
and downregulates pro-inflammatory signaling pathway by
innate immune toll-like receptor 4, which plays a major role in
AdV pathogenesis.

Herpes Simplex Virus Type 1 (HSV-1)
Herpes Simplex type 1 (HSV-1) is a linear dsDNA enveloped
virus of the family Herpesviridae, subfamily Alphaherpesvirinae,
genus Simplex virus. The pathogenesis of HSV-1 infection
follows a cycle of infection which involves infection of epithelial
cells followed by latency in neurons, and finally reactivation
with symptoms such as primary and recurrent vesicular
eruptions generally in the orolabial and genital mucosa (Pires
de Mello et al., 2016). The herpes viruses undergo multiple
distinct membrane fusion events during the multiples stages
of life cycle such as entry and release of nascent virions.
Herpes virus entry involves receptor binding and membrane
fusion with plasma membrane resulting in the release of
the nucleocapsid in the cytoplasm and subsequent delivery
of the viral genome into the nucleus. The assembly of new
nucleocapsid occurs in the nucleus, which are too large to
get through the nuclear pores and bud into inner nuclear
membrane resulting in transiently enveloped nascent virions
(Padula et al., 2009; Wright et al., 2009). Subsequently, these
virions fuse with the outer nuclear membrane releasing the
naked nucleocapsid into the cytoplasm followed by their re-
envelopment while fusion into Golgi compartment. While the
virions bud out of the Golgi compartment they acquire a
double-envelope, which is lost when the viruses fuse with
plasma membrane leading to release of single enveloped mature
virions (Siminoff and Menefee, 1966; Stackpole, 1969; Henaff
et al., 2012). The membrane fusion functions are performed
by multifunctional viral glycoproteins (Connolly et al., 2021).
HSV-1 glycoprotein M (gM), a recognized modulator of virus-
induced membrane fusion, interacts with the E-Syt1 host protein.
E-Syt1 is a membrane fusion regulator that belongs to the
extended synaptotagmins family (El Kasmi et al., 2018). E-Syt1
facilitates ER-PM tethering and is known to regulate many
potential fusion steps of HSV-1 during the viral life cycle.
Knocked down of E-Syt1 is associated with increased secretion of
infectious virions and depletion of cell-associated viral particles
suggesting that E-Syt1 negatively regulates virus release. In
agreement, overexpression of E-Syt proteins E-Syt1 and E-Syt3
caused inhibition of virus release (El Kasmi et al., 2018).
Transmission electron microscopy revealed that knockdown
of E-Syt1 resulted in a modest and statistically significant
decrease of the virus particles in the nucleus and cytoplasm
with a concomitant increase at the cell surface. Currently, it
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FIGURE 3 | Schematic summary of the lipid transfer proteins as attractive therapeutic avenues against viruses. OSW1, ITZ (Itraconazole), POS (Posaconazole) binds
to OSBP and inhibits its lipid shuttling activity at the ER-Golgi or ER-Viral replication membrane contact sites resulting in the disruption of viral replication sites.
HPA-12 is a CERT inhibitor that inhibits ceramide trafficking from the ER to the site of sphingomyelin synthesis. PIK93 can inhibit both PI4KIIIα and PI4KIIIβ whereas
AL9 inhibits PI4KIIIα thereby inhibiting PI4P production and recruitment of OSBP and CERT, which eventually affects non-vesicular lipid transport and viral replication
sites integrity. U18666A binds to the luminal loop of NPC1 and blocks NPC1 mediated cholesterol flux from late endosomes/lysosomes thereby affecting viral entry
and release into the cytosol (Created with BioRender.com).

is not clear if the glycerophospholipids transfer activity of
E-Syt plays any role in the negative regulation of HSV release
(El Kasmi et al., 2018).

Chikungunya Virus (CHIKV)
Chikungunya, is a positive-sense ssRNA arbovirus of genus
Alphavirus and family Togaviridae (Wong et al., 2021). As
per WHO report the disease occurs mainly in Africa and
Asia (World Health Organization, 2020). Clinical manifestation
of CHIKV infection is characterized by high fever, intense
myalgia and arthralgia, nausea, fatigue, and rash (in 50% of
the cases) (Wong et al., 2021). CHIKV is internalized by
receptor mediated endocytosis (Lee et al., 2013). Presence of
cholesterol in the plasma membrane has been shown to be
essential for entry/fusion of a wide range of RNA viruses such
as members of Filovirus, Alphavirus, and Flavivirus (Medigeshi
et al., 2008; Rothwell et al., 2009; Herbert et al., 2015). Methyl-β
cyclodextrine mediated depletion of cholesterol lead to inhibition
of CHIKV entry and/or fusion (Bernard et al., 2010). In

agreement, CHIKV infection of primary fibroblasts from patients
with NPC disease, harboring mutations in the NPC-1 or NPC-
2, lead to reduce levels of CHIKV infection and total viral
output suggesting that cholesterol plays a crucial role in CHIKV
life cycle. The infection of mutant fibroblasts with CHIKV-
glycoproteins pseudo typed particles also demonstrated that both
NPC-1 and NPC-2 deficiency affect viral entry/fusion events
(Wichit et al., 2017)

ANTIVIRALS TARGETING LTPs

We have already discussed how viruses exploit the LTPs to
facilitate different steps of their life cycle. Different viruses
utilize the LTPs in a distinct manner to promote the
establishment of viral replication complexes or facilitate viral
entry and release. The LTPs not only facilitate the transfer
of specific lipid but also recruit specific host/viral proteins
to the viral replication factories. Targeting LTPs may provide
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potential avenues to develop specific and pan-viral inhibitors
(as mentioned in Table 1). For instance, the antiviral effect of
the interferon-inducible transmembrane protein 3 (IFITM3) on
viral entry is mediated by the disruption of VAP-A and OSBP
interaction resulting in deregulated cholesterol homeostasis
and marked accumulation of cholesterol in multi vesicular
bodies and late endosomes. The resultant defect in cholesterol
trafficking results in defective fusion of viral membranes with
endosomal compartments resulting in the blocking of virus
release into the cytosol (Amini-Bavil-Olyaee et al., 2013).
However, we need to pay attention that these strategies do
not perturb cellular lipid homeostasis and lead to toxicity.

Spontaneous interruption of HCV replication has been
observed by treatment with bicyclol an active compound in
traditional Chinese medicine that induces glycolipid transfer
protein (GLTP) expression (Huang et al., 2019). HCV NS5A
plays a key role in virus replication by activating the PI4KIIIα
kinase and binding with OSBP and VAP in the ER (Albulescu
et al., 2017). The binding site of GLTP to VAP-A overlaps with
that of the NS5A binding site. VAP-A has a higher affinity
to GLTP than NS5A, hence the induction of GLTP expression
by bicyclol blocks the interaction between VAP-A and NS5A,
causing a defect in the assembly of the HCV replication complex
(Huang et al., 2019). CERT inhibitor, HPA-12, has also been
found to suppress HCV secretion but not viral RNA replication
due to the inhibition of ceramide trafficking from the ER to
Golgi, the site of sphingomyelin synthesis (Yasuda et al., 2001;
Aizaki et al., 2008). Itraconazole (ITZ) is an antifungal agent,
which has been shown to have anti-cancer as well as antiviral
properties. ITZ can bind to both OSBP and ORP4. ITZ inhibits
the cholesterol and PI4P transfer function of OSBP. This
leads to defect in virus-induced membrane alterations and
establishment of viral replication complexes. ITZ exhibits broad-
spectrum antiviral activity against many enteroviruses such as
Poliovirus, Coxsackievirus, Enterovirus-71 and Rhinovirus. In
agreement overexpression of OSBP reversed inhibitory effect
of ITZ (Strating et al., 2015). TTP-8307, an another OSBP
inhibitor similar to ITZ also exhibits anti-enteroviral potential
(Albulescu et al., 2017). Posaconazole (POS) a derivative of
ITZ has been effectively used to inhibit DENV replication by
targeting OSBP. Knockdown of OSBP further sensitized the
DENV-infected cells to the antiviral activity of POS and ITZ.
DENV replication is also inhibited by OSW-1, a well-established
ligand, and an inhibitor of OSBP (Meutiawati et al., 2018).
OSW-1, an anti-cancer compound extracted from the bulbs of
the plant Ornithogalum saundersiae, also has a high affinity
for OSBP (Burgett et al., 2011). OSW-1 exhibited anti-viral
activity against different species of enteroviruses by inhibiting
OSBP function (Albulescu et al., 2017). U18666A is a cationic
amphiphilic drug, which interacts with the luminal loop 2 of
NPC1. NPC1 plays a major role in the entry of Ebola and
Marburg viruses by interacting with the viral spike glycoprotein
(Lu et al., 2015). The U18666A binding region on NPC1 overlaps
with the viral glycoprotein binding site and hence blocks the
interaction between the viral glycoprotein and NPC1 thereby
inhibiting Ebola and Marburg virus entry (Lu et al., 2015).
NPC1 inhibition by U18666A may perturb cholesterol transport
into the cytosol from the endosomal/lysosomal compartments

thereby leading to accumulation of cholesterol in late endosomes
and lysosomes (Schloer et al., 2019). The OSBP inhibitors ITZ
and POS have also been shown to interrupt NPC1 mediated
cholesterol flux from the endosomal/lysosomal compartments
(Shim et al., 2016). The resultant dysregulation in the intracellular
cholesterol homeostasis may affect both the viral entry and
replication events due to overall defects in: (i) membrane fusion
required for viral entry and (ii) rearrangement of membranes for
the establishment of the viral replication complexes. Imipramine,
a class II cationic amphiphilic drug that mimics the molecular
phenotype of NPC1 by blocking cholesterol exit from the late
endosomes to the cell membrane is effective in inhibition of
CHIKV replication in the primary human epidermal fibroblasts
by interrupting intracellular cholesterol trafficking (Wichit et al.,
2017). A schematic illustration of the therapeutic targeting of
LTPs to inhibit the multiple stages in a viral life cycle is
depicted in Figure 3.

CONCLUDING REMARKS

There are still some lacunae in our understanding of how the
LTPs function and how they co-ordinate with other LTPs and
other modes of lipid transport to maintain intracellular lipid
trafficking. Detailed studies of these aspects will provide clear
insight into intracellular lipid trafficking and homeostasis. The
establishment of specific replication structures is central to the
life cycles of many RNA viruses and a clear understanding of
the virus-host interactions that govern membrane rearrangement
and assembly of these complex structures will enable the
development of therapeutic strategies with pan-viral potential.
Paradoxically many viruses exploit these common host factors
to build structures that are very unique to individual viruses
and drastically differ in shape and size. It is still an enigma
how the viruses build such atypical structures and how the LTPs
contribute in terms of recruiting other essential factors and lipids
to the replication sites. Many studies suggest upregulation of
autophagy during viral infection and the cross-talk between the
LTPs and autophagy would be an interesting area to explore.
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