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A B S T R A C T   

It is increasingly understood that moment-to-moment brain signal variability – traditionally modeled out of 
analyses as mere “noise” – serves a valuable functional role related to development, cognitive processing, and 
psychopathology. Multiscale entropy (MSE) – a measure of signal irregularity across temporal scales – is an 
increasingly popular analytic technique in human neuroscience calculated from time series such as electroen
cephalography (EEG) signals. MSE provides insight into the time-structure and (non)linearity of fluctuations in 
neural activity and network dynamics, capturing the brain’s moment-to-moment complexity as it operates on 
multiple time scales. MSE is emerging as a powerful predictor of developmental processes and outcomes. 
However, differences in data preprocessing and MSE computation make it challenging to compare results across 
studies. Here, we (1) provide an introduction to MSE for developmental researchers, (2) demonstrate the effect of 
preprocessing procedures on scale-wise entropy estimates, and (3) establish a standardized EEG preprocessing 
and entropy estimation pipeline that adapts a critical modification to the original MSE algorithm, and generates 
reliable scale-wise entropy estimates capable of differentiating developmental stages and cognitive states. This 
novel pipeline – the Automated Preprocessing Pipe-Line for the Estimation of Scale-wise Entropy from EEG Data 
(APPLESEED) is fully automated, customizable, and freely available for download from https://github.com/ 
mhpuglia/APPLESEED.   

1. Introduction 

Development signifies a time of great complexity and dynamism. 
Changes in cognitive capacity, processing speed, and behavioral reper
toire co-occur with changes in the structure and function of complex 
neural networks. Recent work has turned to the study of brain signal 
variability to inform our understanding of the processes underlying the 
formation of these complex neural networks. While inadequate or 
excessive neural variability provides inconsistent representations of the 
external world, which might result in poorly integrated neural networks 
and detrimental behavioral outcomes (Bosl et al., 2011, 2017; Catarino 
et al., 2011; Gurau et al., 2017; Sathyanarayana et al., 2020; Takahashi 
et al., 2010), a moderate amount of random noise in a system can–perhaps 
counterintuitively–enhance signal detection by improving the fidelity of 
an underlying signal (Fig. 1) (Ward et al., 2006). Such variability may not 
be “random” but a fundamental property of neural systems at multiple 
hierarchical levels, and is thought to promote the exchange of 

information between neurons, neural synchrony, and the formation of 
robust, adaptable, and dynamic networks that are not overly reliant on 
any particular node (Fuchs et al., 2007; Mǐsić et al., 2015; Shew et al., 
2009; Ward et al., 2006). It is therefore increasingly understood that the 
inherently fluctuating nature of the brain, which is often modeled out of 
analyses as mere “noise,” serves a valuable functional role (Faisal et al., 
2008; Garrett et al., 2013, 2011; Stein et al., 2005; Ward et al., 2006). 

1.1. Multiscale entropy 

The multiscale entropy (MSE) algorithm (Costa et al., 2005, 2002) is 
among the most popular methods to quantify such moment-to-moment 
brain signal variability by calculating entropy – a measure of irregularity 
or unpredictability – across multiple time scales. Entropy at fine time 
scales is understood to reflect local information processing, while en
tropy at coarser time scales relates to the long-range integration of in
formation across distal neural nodes (Vakorin et al., 2013). 
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MSE computation involves 1) coarse graining the time series to scale 
s by averaging together s successive, non-overlapping data points, and 2) 
computing sample entropy (Richman and Moorman, 2000) on the 
resulting time series (Costa et al., 2002). Sample entropy quantifies ir
regularity by determining how frequently a pattern of length m repeats 
relative to a pattern of length m+ 1. A similarity criterion, r, set as a 
proportion of the standard deviation of the time series, determines what 
points are considered indistinguishable. For any data point x, all points 
within x ± r are considered indistinguishable for pattern matching. 
Then, the negative natural log of the ratio of the count of m patterns to 
the count of m+ 1 patterns is computed. Higher sample entropy values 
therefore indicate higher irregularity in the data because patterns of 
length m+ 1 reoccur less often than patterns of length m (Fig. 2). 

In Costa’s original MSE algorithm (Costa et al., 2005, 2002), r is 
calculated as a percentage of the standard deviation of the original time 
series (i.e., scale 1) and remains constant across all scales. Using this 

method, it was shown that over increasingly coarse-grained time scales, 
entropy increases for biological signals such as heart rate or EEG data, 
but decreases for a completely random signal such as white noise. It was 
argued that MSE was therefore capable of distinguishing truly “com
plex” time series from those that are completely random because “no 
new structures are revealed on larger scales” (Costa et al., 2005). 
However, a completely random time series should be highly irregular 
and unpredictable at any time scale, and therefore should yield high 
entropy values regardless of how the signal is coarse-grained. Instead, 
this decrease in entropy over time scales for random signals can be 
attributed to the fact that the standard deviation of a time series de
creases with the coarse-graining procedure, and the extent of this 
decrease is greatest for random signals (Fig. 3). Because sample entropy 
explicitly incorporates the standard deviation of the time series when 
defining the similarity criterion r, r is larger for a time series with greater 
standard deviation, meaning the entropy algorithm is more likely to 
identify matches resulting in a lower entropy value (Shafiei et al., 2019). 
Therefore, the original MSE algorithm conflates entropy with variance; 
recalculating the similarity criterion r at each time scale is a simple but 
critical modification to the MSE algorithm (Nikulin and Brismar, 2004). 
Throughout the remainder of this article, we use “MSE” as an umbrella 
term to refer to any instance in which entropy is calculated across scales, 
but use “scale-wise entropy” to emphasize the importance of recalcu
lating this parameter across scales and to differentiate when this 
modification is employed. 

Calculating MSE from EEG signals requires careful consideration of 
data preprocessing procedures. EEG is susceptible to non-brain artifacts 
that themselves operate on different time scales, such as low frequency 
drifts and skin potentials, and high frequency muscle activity and elec
trical interference. Therefore, the typical preprocessing procedures 
applied to EEG data such as bandpass filtering to remove low and high 
frequency bands, and data cleaning procedures such as independent 
components analysis (ICA), require particular consideration for EEG 
data that will be subjected to MSE analysis. However, there is no stan
dardized preprocessing protocol for the calculation of MSE on EEG data, 
and the preprocessing choices employed across different research labs 
vary widely (Table 1). For example, some argue that EEG data should 
undergo minimal preprocessing prior to MSE calculation to avoid the 

Fig. 1. Adding random noise to a signal enhances signal detection. A theoret
ical illustration of how a signal that is below the threshold for detection (panel 
1) can be enhanced and more accurately represented by the addition of a 
moderate amount of random noise (panel 2). However, inadequate (panel 3) or 
excessive (panel 4) noise provides inconsistent representations of the signal. 

Fig. 2. The multiscale entropy algorithm illustrated. (A) A 
coarse-grained time series is first computed for scale s by 
averaging together s consecutive, non-overlapping data 
points of the original time series (Scale 1). Entropy is then 
calculated on the coarse-grained time series. (B) Entropy 
measures the irregularity in a time series by determining 
how frequently a pattern of length m repeats relative to a 
pattern of length m+ 1. A similarity criterion, r, is set as a 
proportion of the standard deviation of the time series to 
determine what points are considered indistinguishable. 
For any data point x, all points within x ± r (illustrated 
with dashed lines) are considered indistinguishable. In this 
example, if m = 2, the first pattern of length m (points 1 
and 2: red, green) repeats 4 times, whereas the first pattern 
of length m+ 1 (points 1, 2, 3: red, green, blue) repeats 2 
times. The pattern template is then shifted forward 1 point 
such that matches of pattern m consisting of points 2 and 3, 
and pattern m+ 1 consisting of points 2, 3, and 4, are 
counted, and so on. Entropy is then calculated as the 
negative natural log of the ratio of the count of all pattern- 
length m repeats to the count of all pattern-length m+ 1 
repeats: − ln

( count(m)

count(m+1)
)
. Consequently, low entropy values 

indicate regularity in a time series; if pattern length m+ 1 
occurs as often as pattern length m, e.g.: − ln

( 4
4
)
= −

ln(1) = 0. Conversely, high entropy values indicate high 
irregularity because patterns of length m+ 1 occur less 
often than patterns of length m, e.g.: − ln

( 4
2
)
= −

ln(2) = 0.69..   
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introduction of temporal distortions (e.g. Okazaki et al., 2015), while 
others maintain that non-brain sources of noise should be removed 
through thorough data cleaning procedures (e.g. Miskovic et al., 2016). 
Here, we develop and validate a standardized approach to preprocessing 
EEG data for the calculation of scale-wise entropy. We begin by 
reviewing previous work which has calculated MSE on pediatric EEG 
data to determine the range of preprocessing choices and the extent to 
which the critical modification to the MSE algorithm has been adopted 
(i.e., scale-wise entropy). We then select a representative range of pre
processing parameters and apply them to an infant EEG dataset to 
demonstrate the effect of preprocessing choices on scale-wise entropy 
estimates. Finally, we recommend a standardized approach to pre
processing and scale-wise entropy estimation that generates scale-wise 
entropy estimates that are reliable, replicable, and capable of differen
tiating developmental stages and cognitive states throughout the first 
year of life. Called the Automated Preprocessing Pipe-Line for the Esti
mation of Scale-wise Entropy from EEG Data (APPLESEED), this pipeline 
is made freely available as a fully automated and customizable MATLAB 
function that can be downloaded from https://github.com/mhpu
glia/APPLESEED. The dataset used herein to develop and validate the 
pipeline is available for download from https://openneuro.org/data
sets/ds003710 (Williams and Puglia, 2021). 

1.2. MSE across development: an overview of prior pediatric EEG 
research 

To gain a comprehensive picture of the different preprocessing steps 
undertaken in the quantification of MSE in pediatric EEG, we conducted 
a literature search by entering the search terms ("multiscale entropy" OR 
"multi-scale entropy" OR "MSE" OR “multi scale entropy” OR “sample 
entropy”) AND ("EEG" OR "electroencephalography") AND (“infan*” OR 
“newborn” OR “neonate” OR “child*” OR “adolescen*” OR “pediatric” 
OR “juvenile” OR “toddler” OR “developmental”) into PubMed and Web 
of Science databases on 3 April 2021. This search revealed 98 unique 
articles, 40 of which met inclusion criteria for our review. Articles were 
included if they were written in English and described original research 
in which multiscale entropy was estimated from EEG data collected in a 
pediatric (≤ 16 years of age) sample. Three additional articles identified 
through the reference lists of identified articles were also included. We 
extracted EEG recording, data preprocessing, and MSE algorithm pa
rameters from each article (summarized in Table 1), which informed the 
selection of preprocessing methodology examined here. 

While many studies demonstrate change in MSE across development 
(Bosl et al., 2011; De Wel et al., 2017; Hasegawa et al., 2018; Kang et al., 
2019; Lippé et al., 2009; McIntosh et al., 2008; Miskovic et al., 2016; 

Fig. 3. Coarse graining differentially impacts 
standard deviation across signal types. The 
original multiscale entropy curve involves 
setting the similarity criterion, r, as a propor
tion of the standard deviation (SD) of the native 
time series (Scale 1) and applying the param
eter to all subsequent time scales. However, SD 
decreases as the scaling factor increases ac
cording to the statistical properties of the orig
inal time series. Here we plot a time series and 
its SD for simulated white noise (left), a sinu
soidal wave (middle), and EEG signal (right) 
over scales 1, 10, 20, 30, 40, and 50. SD de
creases most for white noise and least for the 
sine wave.   
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Polizzotto et al., 2016; Szostakiwskyj et al., 2017; Zhang et al., 2009) or 
with developmental disorder (Begum et al., 2017; Chenxi et al., 2016; 
Eroğlu et al., 2020; Kang et al., 2018; Liu et al., 2017; Okazaki et al., 
2015; Rezaeezadeh et al., 2020; Simon et al., 2017; Wadhera and Kak
kar, 2020; Weng et al., 2017), the vastly differing preprocessing choices 
and widespread failure to adopt the critical MSE algorithm modification 
of scale-wise recalculation of the similarity criterion makes it chal
lenging to compare results across studies and realize the role of entropy 
in neurodevelopment. 

2. Automated preprocessing pipe-line for the estimation of 
scale-wise entropy from EEG data (APPLESEED) 

Here, we introduce APPLESEED, the Automated Preprocessing Pipe- 
Line for the Estimation of Scale-wise Entropy from EEG Data, and vali
date this novel pipeline for the analysis of EEG data collected in pediatric 
populations. We use the term scale-wise entropy to emphasize that this 
pipeline adopts the critical modification to the MSE algorithm that 
recalculates the similarity criterion parameter across scales. 

APPLESEED is a fully automated and customizable MATLAB (The 
Math Works, Natick, MA) function that makes use of the freely available 
EEGLAB software (Delorme and Makeig, 2004) and associated plugins. 
APPLESEED was developed and validated using MATLAB 2017b and 
functions from EEGLAB v2021.1 (Delorme and Makeig, 2004) 

(download link: https://sccn.ucsd.edu/eeglab/download.php), ERPLAB 
v8.10 (Lopez-Calderon and Luck, 2014) (available as an EEGLAB plugin, 
via EEGLAB → File → Manage EEGLAB extensions), MADE Pipeline v1.0 
(Debnath et al., 2020) (download link: https://github. 
com/ChildDevLab/MADE-EEG-preprocessing-pipeline), ADJUST (Mog
non et al., 2011) (available as an EEGLAB plugin), and FASTER v1.0 
(Nolan et al., 2010) (available as an EEGLAB plugin). Some of these 
toolboxes and plugins that APPLESEED makes use of also require 
MATLAB’s Signal Processing (https://www.mathworks.com/pro
ducts/signal.html) and Statistics and Machine Learning (https://www. 
mathworks.com/products/statistics.html) toolboxes. 

2.1. Setting up to use APPLESEED 

The APPLESEED function can be downloaded from https://github. 
com/mhpuglia/APPLESEED. The dataset from this article can be 
downloaded to an “APPLESEED_Example_Dataset” directory from 
https://openneuro.org/datasets/ds003710 (Williams and Puglia, 2021). 
This provided dataset is organized according to the standardized Brain 
Imaging Data Structure (BIDS) format (Gorgolewski et al., 2016; Pernet 
et al., 2019), and we recommend that users follow this convention for 
naming and organizing their datasets for use with APPLESEED. In short, 
each subject’s EEG data is named as sub-<identifier> [_ses-<identifier> ] 
_task-<identifier> [_acq-<identifier> ][_run-<identifier> ]_eeg< . 

Table 1 
Summary of prior research applying MSE analysis to pediatric EEG data. The results of our literature review are summarized by key preprocessing and entropy 
algorithm parameters including sampling rate, the method and frequency cutoffs for filtering, whether/what artifact correction methods were employed, the entropy m 
pattern length parameter, the entropy r similarity criterion parameter, and whether or not r was recalculated at each scale. N/S – parameter not specified.  

Article Sampling rate Filter Data cleaning methods m r Scale-wise r 

Chah et al., 2008 multiple N/S N/S 2 0.2 No 
McIntosh et al. (2008) 500 Low-pass (40 Hz) ICA 2 0.5 No 
Molteni et al., 2008 256 Band-pass (1–45 Hz) N/S 2 0.2 No 
Yum et al., 2008 256 Band-pass (0.5–32 Hz) N/S 2 0.2 No 
Lippé et al. (2009) 250 Band-pass (0.5–50 Hz) ICA 2 0.5 No 
Zhang et al. (2009) 167 Band-pass (N/S) N/S 2 0.2 No 
Bosl et al. (2011) 250 Band-pass (0.1–100 Hz) N/S 2 0.15 No 
Kaffashi et al., 2013 multiple Band-pass (0.531–35 Hz) N/S 2 0.2 No 
Ouyang et al., 2013 256 Band-pass (0.5–35 Hz) N/S 4 N/S No 
Yang et al., 2014 500 Band-pass (0.5–35 Hz) N/S 2 0.2 No 
Hogan et al., 2015 250 Notch (50 Hz) N/S 2 0.25 No 
Lu et al., 2015 200 N/S N/S 2 0.15 No 
Okazaki et al. (2015) 500 Band-pass (1.5–120 Hz) N/S 2 0.2 No 
Polizzotto et al., 2015 250 Band-pass (0.01–100 Hz) ICA 2 0.5 No 
Weng et al., 2015 multiple Band-pass (0.5–70 Hz) N/S 2 0.15 No 
Zavala-Yoé et al., 2015 200 N/S N/S 2 0.2 Yes 
Begum et al., 2016 250 Band-pass (0–40 Hz) N/S N/S N/S No 
Chenxi et al. (2016) 1000 N/S N/S 2 0.15 No 
Miskovic et al. (2016) 512 Band-pass (0.01–80 Hz) ICA 2 0.5 No 
Song & Zhang, 2016 256 Band-pass (0.5–100 Hz) N/S 3 0.2 No 
De Wel et al. (2017) 125 Band-pass (1–20 Hz) N/S 2 0.2 No 
Liu et al. (2017) 1000 Band-pass (0.5–30 Hz) N/S 2 0.15 No 
Sato et al., 2017 200 Notch (60 Hz) N/S 2 0.2 No 
Simon et al. (2017) 250 Band-pass (N/S) ICA+Interpolation N/S N/S No 
Szostakiwskyj et al. (2017) 500 Band-pass (0.05–55 Hz) ICA+Interpolation 2 0.5 No 
Weng et al. (2017) 200 Band-pass (0.5–70 Hz) N/S 2 0.15 No 
Hasegawa et al. (2018) 500 Band-pass (1.5–60 Hz) N/S 2 0.2 No 
Jomaa et al., 2018 1000 Band-pass (0.5–45 Hz) ICA 2 0.15 No 
Kang et al. (2018) 500 Band-pass (0.5–40 Hz) N/S 2 0.2 No 
Piangerelli et al., 2018 256 Band-pass (1–70 Hz) N/S N/S N/S No 
Sheehan et al., 2018 250 Notch (60 Hz) N/S 2 0.2 No 
De Wel et al., 2019 125 Band-pass (1–40 Hz) N/S 2 0.2 No 
Hadoush et al., 2019 500 Band-pass (0.3–50 Hz) N/S 2 0.15 No 
Kang et al. (2019) 256 Band-pass (0.5–45 Hz) ICA+Interpolation N/S N/S No 
Sato et al., 2019 200 Notch (60 Hz) N/S N/S N/S No 
Puglia et al. (2020) 500 Band-pass (0.3–20 Hz) ICA 2 0.5 Yes 
Rezaeezadeh et al. (2020) 256 Band-pass (0.5–80 Hz) N/S 2 0.2 No 
Sathyanarayana et al. (2020) N/S N/S N/S N/S N/S No 
Tang et al., 2020 256 Low-pass (64 Hz) N/S N/S N/S No 
Wadhera and Kakkar (2020) 250 Band-pass (0.01–40 Hz) ICA N/S N/S No 
Al-Jawahiri et al., 2021 500 Notch (60 Hz) N/S 2 0.2 No 
Chu et al., 2021 1000 Band-pass (0.5–60 Hz) N/S 2 0.15 No 
Eroğlu et al., 2022 128 Band-pass (0.1–50 Hz) N/S 2 0.25 No  
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extension> (terms in brackets are optional, if applicable). EEG file(s) are 
saved within an “eeg” sub-directory within a (session-level, if applicable, 
then) subject-level directory, housed within a study-wide parent direc
tory (e.g., the path to the first recording of the provided dataset is: 
APPLESEED_Example_Dataset > sub-01 > ses-1 > eeg > sub-01_
ses-1_task-appleseedexample_eeg.eeg). 

APPLESEED requires an EEGLAB dataset with an associated channel 
location structure as its input. If the data are not already in this format, 
the user must first import the data using one of EEGLAB’s data import 
plugins that are available for many file format types (see https://eeglab. 
org/tutorials/04_Import/Importing_Continuous_and_Epoched_Data. 
html). The user may assign a channel location structure (https://eeglab. 
org/tutorials/04_Import/Channel_Locations.html) using EEGLAB’s 
pop_chanedit() function. Alternatively, the user may specify the channel 
location file via the optional ’chanfile’ input argument to APPLESEED(). 
We provide an example channel location file for the present dataset in 
the “APPLESEED_Example_Dataset > code” directory. The data should 
be saved as an EEGLAB dataset (recommended within a subject-level 
and, if applicable, session-level directory) within the parent directory 
(e.g., APPLESEED_Example_Dataset > sub-01 > ses-1 > eeg > sub- 
01_ses-1_task-appleseedexample_eeg.set). 

2.2. Running APPLESEED 

APPLESEED is executed as a function from the MATLAB command 
line. Mandatory input arguments for APPLESEED() include the file name 
for the EEGLAB dataset, the full path to the study directory, and, if a 
task-based analysis, the full path to the location of an ERPLAB bin file. A 

bin file defines unique event codes in the dataset and how they should be 
grouped within a task condition. We provide an example bin file for the 
present dataset (in the “APPLESEED_Example_Dataset > code” direc
tory) and refer users to ERPLAB’s documentation for specifics on 
creating a bin file (https://github.com/lucklab/erplab/wiki/Assigning- 
Events-to-Bins-with-BINLISTER:-Tutorial). If event codes are found and 
no bin file is specified, a warning message will be displayed and the data 
will be treated as continuous resting state data. 

The user may also specify additional, optional arguments to 
customize preprocessing parameters. The default parameters for these 
inputs are based on the recommendations from this manuscript. Table 2 
provides a description of all possible APPLESEED() input arguments and 
the default values that will be assigned if the argument is not specified at 
the command line. 

Output files are saved within an “appleseed” folder housed in the 
parent directory with the same subfolder structure as the input dataset 
(e.g., APPLESEED_Example_Dataset > appleseed > sub-01 > ses-1 >

eeg). Output files include the final, preprocessed dataset, a logfile de
tailing each preprocessing step employed and any errors or warnings 
that occurred during pipeline execution, scale-wise entropy file(s) (one 
per condition if a task-based analysis), and interim datasets that allow 
users to examine trials and components marked for rejection. While we 
strongly recommend that users inspect these datasets to ensure artifacts 
and components are appropriately classified, this option may be turned 
off via the optional ’saverobust’ input argument if disk space is limited. 

The provided APPLESEED_batch script demonstrates how APPLE
SEED() can be run as a batch across multiple subjects’ data, and runs 
APPLESEED for the provided dataset (Williams and Puglia, 2021), which 

Table 2 
APPLESEED input arguments. A description of all required and optional input arguments to the APPLESEED function including the argument flag and the default 
value if the argument is not specified.  

Argument Description Default Value 

Required 
’filenamebase’ A string specifying the name of the input dataset NA 
’parentdir’ A string specifying the full path to the parent directory that contains the input dataset NA 
’binfile’ Required if a task-based analysis; a string specifying the full path to the bin file defining event codes in the dataset No bin file - data will be treated as 

resting-state 
Optional 

’chanfile’ A string specifying the full path to the channel location file. This argument must be specified if the input dataset does not 
contain a channel location structure and channel interpolation will be performed 

NA 

’saverobust’ ’on’ - save interim datasets enabling the inspection of artifacts /components marked for rejection 
’off’ - do not save interim datasets 

’on’ 

’resamp’ A number defining resampling rate (in Hz) 250 
’hp’ A number defining high-pass filter cutoff (in Hz) 0.30 
’lp’ A number defining low-pass filter cutoff (in Hz) 50 
’eplen’ A number defining epoch length 1000 
’arxt’ A number defining the threshold for identification of extreme voltage artifacts 500 
’runica’ ’on’ - run ica 

’off’ - do not run ica 
’on’ 

’icarej’ A string specifying the method to identify components contaminated with artifacts: ’adjusted_ADJUST’, ’ADJUST’, 
’manual’. Selecting ’manual’ will open an EEGLAB GUI in which users can click on each component to manually inspect it 
and, if necessary, toggle the accept/reject button to mark it for rejection. Once the “Reject components by map” GUI is 
closed, the pipeline will resume. 

’adjusted_ADJUST’ 

’arsd’ A number defining artifact rejection via moving-window standard deviation threshold (in µV) 80 
’arauto’ ’on’ – automatically detect and reject artifactual epochs 

’off’ – manually detect and reject artifactual epochs. If selected, users must then create a text file which contains the index 
of each epoch they wish to remove, and supply the full path to this text file with the ’arfile’ input argument 

’on’ 

’arfile’ A string specifying the full path to the file containing manually identified artifactual epochs. This argument is required 
when ’arauto’ is set to ’off’ 

NA 

’chainterp’ 1 - perform channel interpolation via FASTER 
0 - do not perform channel interpolation 

1 

’fastref’ A string specifying the name of the channel to be used as the reference channel for the FASTER channel interpolation 
algorithm 

’Cz’ 

’reref’ A string specifying the channel(s) for referencing ’Average’ 
’trselcnt’ A number specifying the number of trials to retain across all participants 10 
’trselmeth’ A string specifying the method to select an equivalent number of trials across all participants 

’gfp’ - global field power 
’first’ - select the first n = ’trselcnt’ trials 
’last’ - select the last n = ’trselcnt’ trials 

’gfp’ 

’m’ A number specifying the pattern length parameter for entropy estimation 2 
’r’ A number specifying the similarity criterion parameter for entropy estimation 0.5  
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can be downloaded from https://openneuro.org/datasets/ds003710. 
Each step of APPLESEED is detailed below, and an overview of the 
pipeline is provided in Fig. 4. 

2.3. Preprocessing step: resampling 

The first step in APPLESEED is to down-sample the data to a stan
dardized sampling rate. In MSE, scales are directly related to the sam
pling rate of the native (scale 1) time series. For example, scale 1 for data 
sampled at 250 Hz, scale 2 for data sampled at 500 Hz, and scale 4 for 
data sampled at 1000 Hz comprise equivalent time scales. Therefore, 
scales cannot be directly compared across studies if different sampling 
rates are employed. For pipeline validation, we consider data down- 
sampled to 250 Hz, 500 Hz, and 1000 Hz. The default value for 
APPLESEED is 250 Hz. Users may specify an alternate resampling rate 
via the optional ’resamp’ input argument. 

2.4. Preprocessing step: filtering 

Filtering removes low-frequency drifts such as those associated with 
skin potentials, and high-frequency artifacts such as those introduced by 
muscle activity or electrical line noise. APPLESEED by default applies an 

infinite impulse response (IIR) Butterworth 0.3–50 Hz bandpass filter to 
the continuous EEG data. For pipeline validation, we consider high-pass 
cutoffs of 0.1, 0.2, and 0.3 Hz and low-pass cutoffs of 20, 30, and 50 Hz. 
Users may specify alternate high- and low-pass cutoffs via the optional 
’hp’ and ’lp’ input arguments, respectively. 

2.5. Preprocessing step: epoching 

Next, the data is segmented into discrete epochs. For task-based 
studies, epochs are time-locked to stimulus onset. For resting-state 
studies, evenly spaced epochs are extracted from the continuous time 
series. The default epoch length for APPLESEED is 1000 ms. We 
recommend using the longest possible epoch that enables an appropriate 
balance between artifact rejection and subject retention for subsequent 
analysis, which will vary across studies due to individual participant and 
task factors. While shorter epochs are less likely to contain eye blink or 
motion artifacts, epochs must be long enough to contain sufficient 
continuous data points for a reliable estimation of entropy (Grandy 
et al., 2016) and to achieve the desired coarse-grained scales. Because 
the coarse-graining procedure employs a moving window, the number of 
data points decreases as a function of scale. Users may specify an 
alternate epoch length (in ms) via the optional ’eplen’ input argument. 

2.6. Optional preprocessing step: ICA rejection 

Data may then be cleaned via artifact correction including ICA 
decomposition and channel interpolation. Because ICA performs best 
with large amounts of relatively clean data (Luck, 2014), epochs with 
extreme voltages (default threshold ± 500 µV, users may specify an 
alternate value via the ’arxt’ input argument) are first rejected as arti
facts. Data is then subjected to ICA decomposition using the EEGLAB 
runica() function. Components contaminated with artifacts must then be 
identified and removed. This identification may be performed manually 
(Lippé et al., 2009; McIntosh et al., 2008; Puglia et al., 2020) – a time 
intensive and somewhat subjective process, or via an automated algo
rithm. While several automated algorithms for the identification of 
artifactual components exist, APPLESEED makes use of the MADE 
(Debnath et al., 2020) adjusted_ADJUST() function by default, which is 
the only algorithm specifically designed to detect artifactual compo
nents in pediatric data. This algorithm is an adaptation of the ADJUST 
EEGLAB plugin (Mognon et al., 2011), which examines the spatial and 
temporal features of each component to identify components contami
nated by blinks, eye movements, and generic discontinuities. The MADE 
adjusted_ADJUST function makes several important modifications to 
improve performance of this algorithm on pediatric data including 
improved eye blink detection and retaining any components that 
contain an alpha peak (Debnath et al., 2020). For pipeline validation we 
consider both “maximal” data cleaning (i.e., ICA rejection via adjust
ed_ADJUST + channel interpolation) and no data cleaning. Users may 
specify whether to run ICA and which algorithm (’adjusted_ADJUST’, 
’ADJUST’, or ’manual’) to use for the automatic identification of com
ponents for rejection via the optional ’runica’ and ’icarejmethod’ input 
arguments, respectively. 

2.7. Preprocessing step: artifact rejection 

Epochs with excessive amplitude standard deviations within a 200- 
ms sliding window with a 100-ms window step are discarded as arti
facts. The default threshold value is set to 80 μV. If visual inspection 
reveals too many non-artifact epochs are rejected, users may wish to 
increase this value, or if too many epochs with artifacts are retained, 
users may wish to decrease this value. Users may specify an alternate 
voltage threshold (in µV) for artifact rejection via the optional ’arsd’ 
input argument. Alternatively, if users wish to manually identify epochs 
for inclusion or removal, they may do so with the optional ’arauto’ input 
argument. When automatic artifact rejection is turned off, APPLESEED 

Fig. 4. Overview of APPLESEED Preprocessing Pipeline. A flowchart depicting 
the preprocessing steps undertaken in APPLESEED. Blue coloring indicates steps 
for which alternative parameters were tested during the validation of this 
pipeline, and the boldfaced font indicates which parameter was ultimately 
selected for the optimized pipeline that produced scale-wise entropy estimates 
demonstrating significant test-retest reliability in two independent samples and 
sensitive to developmental changes and cognitive state. AR – artifact rejection; 
SD – standard deviation; GFP – global field power. 
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will initially run through artifact rejection. Users must then create a text 
file which contains the index of each epoch they wish to remove, and re- 
run APPLESEED including the full path to this text file with the optional 
’arfile’ input argument. APPLESEED will resume at the artifact rejection 
stage and continue preprocessing. 

2.8. Optional preprocessing step: channel interpolation 

Data may be further cleaned by channel interpolation. Problematic 
channels are identified and removed using the channel_properties() 
function from the FASTER EEGLAB plugin (Nolan et al., 2010). For each 
channel, this function computes and standardizes the channel’s corre
lation with other channels, the channel variance, and the channel’s 
Hurst exponent – a measure of long-range dependence within a signal 
(Nolan et al., 2010). If the value of one of these parameters exceeds 3 
standard deviations from the mean, that channel is interpolated. 
APPLESEED’s default reference channel for the FASTER algorithm is Cz 
(or that closest if Cz is not presesnt). Users may specify whether to run 
channel interpolation and an alternate FASTER reference channel via 
the optioal ’chaninterp’ and ’fastref’ input arguments, respectively. 

2.9. Preprocessing step: re-referencing 

Data are then re-referenced. By default, APPLESEED re-references to 
the average of all scalp electrodes, but users may specify alternate re- 
referencing channel(s) via the optional ’reref’ input argument. 

2.10. Preprocessing step: trial selection 

Finally, because the number of data points included in MSE calcu
lation can influence the reliability of the estimates (Grandy et al., 2016), 
the final step of APPLESEED is trial selection of an equivalent number of 
trials across all participants by identifying the trials with total global 
field power (GFP) (McIntosh et al., 2008) closest to the median GFP for 
each participant. By default, APPLESEED will select 10 trials, but we 
recommend increasing this number as much as possible such that doing 
so retains a sufficient number of participants for subsequent analyses. 
Users may specify an alternate number of trials to retain and the method 
for selecting these trials via the optional ’trselcnt’ and ’trselmeth’ input 
arguments, respectively. Other available trial selection methods options 
are ’first’, ’middle’, and ’last’ to sequentially select trials. 

2.11. Scale-wise entropy calculation 

Scale-wise entropy is then calculated using these selected trials for all 
electrodes in each dataset. To orthogonalize signal mean and signal 
variance, APPLESEED computes sample entropy on the residuals of the 
EEG signal (i.e., after subtracting the within-person average response 
across trials within each condition) using an algorithm based on that 
created by Grandy and colleagues for the estimation of MSE across 
discontinuous epochs (Grandy et al., 2016). 

The default parameter values for entropy estimation are set to 
pattern length m = 2 and similarity criterion r = .5. Others have 
examined the effect of alternative m and r parameter values and found 
no substantial effect on the accuracy and precision of MSE estimates 
(Grandy et al., 2016). APPLESEED coarse-grains each time scale via 
moving window average, as in the original MSE algorithm. Critically, in 
scale-wise entropy, APPLESEED recalculates r for each scale. Users may 
specify alternate m and r values for entropy estimation via the optional 
’m’ and ’r’ input arguments, respectively. 

3. Pipeline development & validation 

To develop and validate APPLESEED, we iteratively applied different 
preprocessing parameters to an infant dataset (Williams and Puglia, 
2021) that can inform both the test-retest reliability and the early 

developmental trajectory of scale-wise entropy. This dataset can be 
downloaded from https://openneuro.org/datasets/ds003710. 

3.1. Sample 

As part of a larger, ongoing longitudinal study in which infants un
dergo EEG at 4, 8, and 12 months of age, 14 infants were invited to 
return to the lab for EEG assessment within 1 week of their initial 4- 
month-old visit to establish the test-retest reliability of scale-wise en
tropy estimates (Puglia et al., 2020). The primary caregiver accompa
nied the infant to all appointments and provided written informed 
consent for a protocol approved by the University of Virginia Health and 
Human Sciences Institutional Review Board. The target sample size for 
this test-retest reliability sample was determined via power analysis 
tables provided by Bujang and Baharum (Bujang and Baharum, 2017), 
which specify that 13 subjects are sufficient to detect an interclass cor
relation coefficient (ICC) of.70 based on two observations with 90% 
power. Retest data from one subject was of insufficient quality for 
analysis. Two participants failed to return for longitudinal assessment, 
and the data from one participant was of insufficient quality for analysis 
at subsequent visits. Therefore, the final dataset consists of 48 recording 
sessions, with reliability and longitudinal data for 11 infants (4 F), and 
reliability data, only, for an additional 2 infants (1 F). At the 4-month 
visit, infants ranged in age from 118 to 148 days (M = 129.14). The 
time between the test and retest appointments ranged from 1 to 8 days 
(M = 5.54). At retest, infants ranged in age from 124 to 155 days (M =
134.5). Infants ranged in age from 219 to 254 days (M = 241.18) at the 
8-month visit, and from 334 to 427 days (M = 366.64) at the 12-month 
visit. 

3.2. EEG acquisition 

The present analyses make use of visual trials in which the infants 
viewed dynamic, colorful 2400-ms video clips of faces and objects in 
alternating 18-s blocks. Across conditions, stimuli were matched on low- 
level stimulus properties including luminance, contrast, spatial fre
quency, and visual angle (Puglia et al., 2020). EEG was recorded from 32 
Ag/AgCl active actiCAP slim electrodes (Brain Products GmbH, Ger
many) affixed to an elastic cap according to the 10–20 electrode 
placement system. EEG was amplified with a BrainAmp DC Amplifier 
and recorded using BrainVision Recorder software with a sampling rate 
of 5000 Hz, online referenced to FCz, and online band-pass filtered be
tween 0.01 and 1000 Hz. Infants were seated on their caregiver’s lap 
while undergoing EEG. Following a procedure widely used in develop
mental EEG experiments (Hoehl and Wahl, 2012), recording was 
terminated when the infant became fussy or inattentive. Participants 
successfully completed 4–12 blocks (M = 14.10) of each condition. Each 
block consisted of 6 stimuli. 

Using this pipeline, we iteratively applied different preprocessing 
parameters to each infants’ dataset to determine what combination of 
parameters yielded scale-wise entropy estimates that are both reliable 
across sessions and sensitive to developmental changes and cognitive 
states across the first year of life. We applied the following preprocessing 
parameters to each infant’s EEG data: sampling rate (250 Hz, 500 Hz, 
1000 Hz), high- (0.1 Hz, 0.2 Hz, 0.3 Hz) and low- (20 Hz, 30 Hz, 50 Hz) 
pass filter cutoffs, and whether artifact correction, i.e. via ICA and 
channel interpolation, was performed (no, yes), for a total of 54 pre
processing iterations prior to scale-wise entropy calculation. 

To reduce the number of features considered, we averaged scale-wise 
entropy estimates across electrode regions of interest (ROIs, Fig. 5) and 
frequency bands (see Table 3). The Frontal ROI consisted of electrodes 
Fp1, Fp2, F7, F3, Fz, F4, F8, FC5, FC1, FC2, and FC6. The centro- 
temporal ROI consisted of electrodes T7, C3, Cz, C4, T8, TP9, CP5, 
CP1, CP2, CP6, and TP10. The parieto-occipital ROI consisted of elec
trodes P7, P3, Pz, P4, P8, PO9, O1, Oz, O2, and PO10. To ensure that 
entropy estimates did not significantly vary within ROIs, we computed 
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an analysis of variance (ANOVA) using the aov function within R (R Core 
Team, 2020) with the factors ROI and frequency band. We find, as ex
pected, a significant main effect of frequency band on entropy values (F 
(5,174) = 534.68, p < .001). There is no significant effect of ROI (F(2, 
174) = 2.716, p = .069) nor the interaction between ROI and frequency 
band (F(10,174) = 0.99, p = .455) on entropy values. 

3.3. Effect of preprocessing on data retention 

The accuracy and precision of scale-wise entropy estimates in
creases as a function of the number of data points included in the 
calculation (Grandy et al., 2016). Furthermore, longer time series 
enable the investigation of coarser time scales reflective of long-range 
integration (Vakorin et al., 2013). However, particularly within pedi
atric samples, EEG recordings are likely to be of short duration and 
contaminated with motion artifacts, yielding fewer usable trials. We 
therefore first examine how the proportion of data retained after pre
processing varies as a function of preprocessing parameters. Across all 
54 preprocessing pipelines considered, the number of retained epochs 
after preprocessing ranged from 15 to 64 (M = 35.32) for the Viewing 
Faces condition, and from 10 to 58 (M = 35.05) for the Viewing Ob
jects condition. 

We entered proportion of data retained after preprocessing into a 
repeated measures ANOVA using the aov function within R, with 
sampling rate (250 Hz; 500 Hz; 1000 Hz), high-pass filter cutoff fre
quency (0.1 Hz, 0.2 Hz, 0.3 Hz), low-pass filter cutoff frequency 
(20 Hz, 30 Hz, 50 Hz), data cleaning implementation (no, yes), exper
imental condition (viewing faces, viewing objects), and study visit (1, 
2, 3) as within-subjects factors. Proportion of data retained differed 
significantly by sampling rate (F(1,10) = 8.06, p = 0.003) such that 
more data was retained for data sampled at 1000 Hz, high-pass (F 
(2,20) = 40.60, p < 0.001) and low-pass filter cutoffs (F(2,20) = 19.43, 
p < 0.001) such that more aggressive filters were associated with a 
greater proportion of the data retained, and data cleaning imple
mentation (F(1,10) = 92.28, p < 0.001), such that more data was 
retained when data cleaning procedures were implemented (Fig. 6). 
Proportion of data retained did not differ significantly by experimental 
condition (F(1,10) = 0.03, p = 0.876) or across longitudinal visits (F 
(3,30) = 1.24, p = 0.312). 

3.4. Effect of preprocessing on entropy estimates 

We next consider the effect of different preprocessing parameters on 
average scale-wise entropy estimates. Average scale-wise entropy curves 
for each preprocessing pipeline can be viewed in Fig. 7. We entered 
average scale-wise entropy estimates into an ANOVA using the aov 
function within R, with the factors sampling rate (250 Hz; 500 Hz; 
100 Hz), high-pass filter cutoff frequency (0.1 Hz, 0.2 Hz, 0.3 Hz), low- 
pass filter cutoff frequency (20 Hz, 30 Hz, 50 Hz), and data cleaning 
implementation (no, yes). Entropy estimates differed significantly by 
high-pass (F(2,10468) = 33.30, p < 0.001) and low-pass filter cutoffs (F 
(2,10468) = 7.48, p < 0.001) such that filters with a higher frequency 
cutoff are associated with higher entropy estimates, and data cleaning 

Fig. 5. Electrode Cap Montage & Regions of Interest. EEG was recorded from 
32 channels aligned according to the standard 10–20 system. To reduce the 
number of features considered, scale-wise entropy was averaged across elec
trode regions of interest (ROIs). These include the frontal ROI (red), the centro- 
temporal ROI (yellow), and the parieto-occipital ROI (blue). 

Table 3 
The summarization of scale-wise entropy estimates by traditional fre
quency bands. For all considered sampling rates (250 Hz, 500 Hz, 1000 Hz), 
the scale range and total number of scales (n) that fell within each frequency 
band.  

Frequency 
Band 

Hz 250 Hz Scales 
(n) 

500 Hz Scales 
(n) 

1000 Hz Scales 
(n) 

Delta < 4  63–83 (21)  126–166 (41)  251–333 (83) 
Theta 4–7  32–62 (31)  63–125 (63)  126–250 (125) 
Alpha 8–12  20–31 (12)  39–62 (24)  77–125 (49) 
Beta 13–29  9–19 (11)  17–38 (22)  34–76 (43) 
Gamma 30–100  3–8 (6)  5–16 (12)  10–33 (24) 
Gamma+ 101 + 1–2 (2)  1–4 (4)  1–9 (9)  

Fig. 6. Proportion of data retained across preprocessing parameters. Results from a repeated measures ANOVA revealed that proportion of data retained significantly 
varies by sampling rate, high- and low-pass filter cutoffs, and data cleaning procedures. 
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implementation (F(1,10468) = 26.39, p < 0.001), such that data 
cleaning procedures resulted in higher entropy (Fig. 8A). Entropy esti
mates did not differ significantly by sampling rate (F(2,10468) = 0.21, 
p = .815). 

We next consider the effect of different preprocessing parameters on 
average scale-wise entropy estimates across frequency bands by 

including the interaction term between each factor above and frequency 
band. We find a significant interaction between low-pass filter cutoff 
frequency and frequency band (F(2,10468) = 7.48, p < 0.001) such that 
entropy estimates within high frequency bands (i.e. Gamma+, Gamma) 
are effected to a greater amount by low-pass filter cutoff (Fig. 8B). No 
other interactions are significant. 

Fig. 7. Average scale-wise entropy curves for each preprocessing pipeline. Scale-wise entropy is plotted as a function of sampling rate, data cleaning implementation, 
high-pass, and low-pass filter cutoffs considered in the development and validation of our pipeline. 

Fig. 8. Impact of preprocessing procedures on scale-wise entropy curves. A. Results from an ANOVA reveal a significant effect of high- and low-pass filter cutoffs and 
data cleaning procedures on average scale-wise entropy estimates. B. There is a significant interaction between low-pass filter cutoff and frequency band such that 
scale-wise entropy estimates are highest for higher low-pass cutoffs at lower time scales. 

M.H. Puglia et al.                                                                                                                                                                                                                               



Developmental Cognitive Neuroscience 58 (2022) 101163

10

3.5. Reliability of scale-wise entropy estimates 

To develop and validate a standardized methodology for pre
processing pediatric EEG data for scale-wise entropy analysis, we first 
determine the reliability of scale-wise entropy estimates following 
different preprocessing procedures. We first calculate ICC using the icc 
function of the irr R package (Gamer et al., 2019) on overall scale-wise 
entropy estimates averaged across scales and ROIs for each condition. 
Only reliable estimates that are significantly reproducible in both 
experimental conditions are considered. Eleven preprocessing pipelines 
yielded reliable ICC estimates across both Viewing Faces and Viewing 
Objects conditions (Table 4). ICC estimates for all bands, electrodes, and 
preprocessing parameters can be seen in Fig. 9. Test-retest reliability 
curves for the final, recommended pipeline can be viewed in Fig. 10A. 

3.6. Scale-wise entropy estimates are sensitive to developmental stage and 
cognitive state 

Next, we examined how scale-wise entropy estimates change across 
development, and whether these estimates were capable of differenti
ating perceptual states across the two viewing conditions. For each 
frequency band and ROI, scale-wise entropy estimates were entered into 
repeated measures ANOVAs with within-subject factors of visit (1, 2, 3) 
and experimental condition (viewing faces, viewing objects). 

Table 4 
Preprocessing pipelines that produce reliable scale-wise entropy esti
mates. The eleven preprocessing pipelines that yielded significantly reliable 
results across the test (4-months-of-age) and retest (within 1 week) visits in both 
the face viewing and object viewing conditions across all scales and all electrode 
regions of interest. The values for the final, recommended APPLESEED param
eters are highlighted in bold font, selected as the pipeline that produced scale- 
wise entropy estimates that demonstrate significant test-retest reliability in 
two independent samples and that are sensitive to developmental changes and 
cognitive state. ICC – intraclass correlation coefficient; p – p-value.  

Sampling 
Rate (Hz) 

High- 
Pass 
Cutoff 
(Hz) 

Low- 
Pass 
Cutoff 
(Hz) 

Artifact 
Correction 

Viewing 
Faces 
Condition 

Viewing 
Objects 
Condition 

ICC p ICC p  

250  0.2  50 No  0.49  .041  0.55  .016  
250  0.3  20 No  0.45  .039  0.45  .047  
250  0.3  20 Yes  0.53  .019  0.51  .034  
250  0.3  50 Yes  0.47  .048  0.55  .024  
500  0.2  50 No  0.46  .047  0.59  .010  
500  0.3  20 No  0.41  .048  0.5  .027  
500  0.3  30 No  0.46  .035  0.48  .037  
500  0.3  50 No  0.63  .007  0.44  .050  
1000  0.2  50 No  0.46  .046  0.59  .010  
1000  0.3  20 No  0.46  .033  0.46  .040  
1000  0.3  30 Yes  0.62  .006  0.53  .027  

Fig. 9. Test-retest reliability estimates across preprocessing parameters. The intraclass correlation coefficient (ICC) assessing the reliability of scale-wise entropy 
from the 4-month visit to the retest visit (approximately 1 week later) is plotted for each scale, electrode, and preprocessing parameter for the Viewing Faces (left) 
and Viewing Objects (right) conditions. In general, finer scales have higher reliability estimates across electrodes. Hotter colors represent higher ICCs. Outlined plots 
(black) depict those preprocessing pipelines that yielded significantly reliable scale-wise entropy estimates across all scales and regions of interest in both conditions 
(see also Table 4), and (red) the final preprocessing pipeline–selected as that which produced scale-wise entropy estimates that demonstrate significant test-retest 
reliability in two independent samples and that are sensitive to developmental changes and cognitive state. 
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Greenhouse-Geisser correction was applied to any factors violating the 
assumption of sphericity (Mauchly’s test p-value ≤ 0.05). Preprocessing 
procedures that consistently yielded significant effects within at least 5 
of the 6 frequency bands were considered further. Of these, one pre
processing pipeline overlapped with a preprocessing pipeline that 
generated reliable scale-wise estimates across conditions. When 
considering all electrodes, we find a significant main effect of age on 
scale-wise entropy estimates within the gamma+ (F(2,20) = 3.62, 
p = .045), gamma (F(2,20) = 3.61, p= .046), and delta (F(2,20) = 5.01, 
p = .017) frequency bands. In general, entropy increases from 4- to 8- 

months for fine-grained scales, but decreases within the delta fre
quency band over this time period (Fig. 11A). We find a significant 
interaction between age and condition within the beta (F(2,20) = 4.37, 
p = .027) and alpha (F(2,20) = 3.71, p = .043) frequency bands. This 
interaction shows that there is no distinction between entropy estimates 
across conditions at the 4- and 8-month-old visits, but by the 12-month 
visit, entropy is capable of distinguishing between viewing conditions 
(Fig. 11A). 

When considering scale-wise entropy across frequency bands and 
ROIs, we find a significant main effect of age in frontal beta (F 

Fig. 10. Scale-wise entropy curves generated with APPLESEED. A. Average test-retest reliability scale-wise entropy curves for each condition generated with the final 
preprocessing pipeline. B. Scale-wise entropy curves depicting the average developmental trajectory for each condition from 4- to 12-months of age. C. Average test- 
retest reliability scale-wise entropy curves for the external validation sample generated with the final preprocessing pipeline. 
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(1.33,13.26) = 6.08, p = .021), centro-parietal gamma+ (F(2,20) 
= 4.68, p = .021), gamma (F(1.27,12.7) = 9.93, p = .005), beta (F 
(1.19,11.94) = 9.66, p = .007), and delta (F(2,20) = 5.34, p= .014), and 
parieto-occipital theta (F(2,20) = 4.71, p = .021). Again, entropy 
generally increases from 4- to 8-months for fine-grained scales, but de
creases over this time period for coarse-grained scales (Fig. 11B). We 
also find a significant interaction between age and condition within 
parieto-occipital gamma (F(2,20) = 5.20, p = 0.015) and beta (F(2,20) 
= 4.75, p = 0.021). This interaction shows again that there is no 
distinction between entropy estimates at the 4- and 8-month-old visits, 
but by the 12-month visit, entropy within parietal and occipital regions, 
specifically, is capable of distinguishing between viewing conditions 
(Fig. 11B). The developmental trajectory of scale-wise entropy as 
calculated by the final, recommended pipeline can be viewed in 
Fig. 10B. 

3.7. External validation of the reliability of the APPLESEED pipeline 

Finally, we externally validate the reliability of the final, recom
mended pipeline that produced both reliable and developmentally 
sensitive scale-wise entropy estimates in an additional experimental 
condition obtained from an independent pediatric dataset. Eight pre
term neonates (gestational age range 194–240 days, M=214.63) un
derwent EEG during rest while receiving care in the University of 
Virginia Neonatal Intensive Care Unit at two timepoints approximately 1 
week (4–12 days, M=6.5) apart. At each timepoint, EEG was recorded 
from 32 Ag/AgCl active actiCAP slim electrodes as outlined above for 
7 min while the neonates were swaddled and resting in their bassinets. 
Neonates ranged in age from 7 to 83 days (M = 51.63) at the initial 
testing session, and from 11 to 88 days (M = 58.13) at the retest session. 
ICC was calculated as above on overall scale-wise entropy estimates 

Fig. 11. Scale-wise entropy across conditions and development. Results from a repeated measures ANOVA depicting the effect of age and condition on scale-wise 
entropy estimates across the whole brain (A) and within regions of interest (B) for each frequency band. Significant effects are indicated in each panel. ns – not 
significant; mo – months; FR – frontal region of interest; CT – centro-temporal region of interest; PO – parieto-occipital region of interest. 
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averaged across scales and ROIs. We again find that the APPLESEED 
pipeline generates scale-wise entropy estimates that show significant 
test-retest reliability in this novel pediatric sample (ICC=.67, p = .015). 
Test-retest reliability curves for this sample can be viewed in Fig. 10C. 

4. Recommendations and conclusions 

We find a single preprocessing pipeline generates scale-wise entropy 
estimates that are both (1) significantly reliable across recording ses
sions occurring approximately 1 week apart across experimental con
ditions in two independent infant samples, and (2) capable of 
differentiating cognitive states and developmental stages from 4- to 12- 
months-of-age. We therefore developed APPLESEED to automatically 
accomplish the following recommended preprocessing steps and scale- 
wise entropy estimation: data (down)sampling at 250 Hz, bandpass 
filtering with 0.3–50 Hz cutoffs, segmenting the data into 1000 ms (or 
longer, if possible) epochs, extreme artifact rejection, rejection of ICA 
components contaminated with artifacts via the automated adjust
ed_ADJUST algorithm, artifact rejection using a peak-to-peak moving 
window, channel interpolation of problematic channels identified via 
the FASTER package, re-referencing to the average of all scalp elec
trodes, and the selection of 10 (or more, if possible) trials across all 
participants via global field power. Finally, scale-wise entropy is 
calculated across discontinuous segments on the residuals of the EEG 
signal with pattern length m = 2 and similarity criterion r = .5 and 
recalculated for each coarse-grained time scale. 

While some prior work has examined the reliability and psycho
metric properties of MSE (Grandy et al., 2016; Kaur et al., 2019; Kunt
zelman et al., 2018), these efforts employed the original, unmodified 
MSE algorithm that fails to recalculate r at each coarse-grained time 
scale – thereby conflating time series variance with entropy and hin
dering the ability to attribute any results to time series irregularity, 
specifically. We are the first to our knowledge to systematically examine 
the effect of preprocessing procedures, to make recommendations spe
cifically for the use of scale-wise entropy in pediatric EEG datasets, and 
to provide freely available scripts to accomplish a standardized pre
processing pipeline for scale-wise entropy calculation adopting the 
critical variance-normalization algorithm modification. 

4.1. Limitations and future directions 

The sample size for the present study was based on a power analysis 
for ICC estimation, and it cannot be overlooked that the size of the 
present samples is small. While we may therefore be underpowered to 
detect condition-specific effects across developmental stages, it should 
be noted that our exploratory results align with hypothesized effects. 
Specifically, scale-wise entropy differentiates visual conditions in the 
parieto-occipital ROI beginning at 12-months of age. This result, in 
particular, highlights the plausibility of our results. Visual processing 
occurs in the occipital and parietal cortices, and we have previously 
shown scale-wise entropy associations within the visual domain do not 
yet emerge at 4 months of age in a larger sample (Puglia et al., 2020). 
These data suggest that brain signal entropy may be sensitive to devel
opmental trajectories that align with sensory system maturation. 
Converging lines of research suggest that infants do not initially rely on 
visual cues for perception (Fernald, 1992; Mumme et al., 1996; 
Walker-Andrews, 1997). As with many mammals, the visual system 
matures later in development (Gottlieb, 1971), and in humans visual 
acuity does not reach adult levels until age 3 (Catford and Oliver, 1973). 

An additional limitation is that we only considered the effects of 
sampling rate, high- and low-pass filter cutoffs, and a limited number of 
data cleaning algorithms. Alternative preprocessing procedures and 
entropy computation parameters may differentially impact results. For 
example, other coarse-graining methods may reveal alternative, com
plementary signatures of neural dynamics to the traditional moving- 
average window coarse-graining procedure employed here (Kosciessa 

et al., 2020). Additionally, it is important to note that both samples 
employed to validate the parameters selected for this pipeline consisted 
of infants 12 months or younger. Future studies making use of APPLE
SEED should determine if these same parameters are optimal for other 
ages. To overcome these limitations of the present study, and the limi
tations in interpreting prior results generated across a wide range of 
preprocessing procedures, we make APPLESEED freely available as a 
fully automated and customizable pipeline to facilitate future large 
scale, multi-site investigations of scale-wise entropy effects throughout 
development using standardized, reproducible, and justified methods. 
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