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Abstract: Neospora caninum is an obligate intracellular protozoan responsible for abortion and still-
births in cattle. We previously developed a mucosal vaccination approach using N. caninum membrane
proteins and CpG adjuvant that conferred long-term protection against neosporosis in mice. Here,
we have extended this approach by alternatively using the carbomer-based adjuvant Carbigen™
in the immunizing preparation. Immunized mice presented higher proportions and numbers of
memory CD4+ and CD8+ T cells. Stimulation of spleen, lungs and liver leukocytes with parasite
antigens induced a marked production of IFN-γ and IL-17A and, less markedly, IL-4. This balanced
response was also evident in that both parasite-specific IgG1 and IgG2c were raised by immunization,
together with specific intestinal IgA. Upon intraperitoneal infection with N. caninum, immunized
mice presented lower parasitic burdens than sham-immunized controls. In the infected immunized
mice, memory CD4+ T cells predominantly expressed T-bet and RORγt, and CD8+ T cells expressing
T-bet were found increased. While spleen, lungs and liver leukocytes of both immunized and sham-
immunized infected animals produced high amounts of IFN-γ, only the cells from immunized mice
responded with high IL-17A production. Since in cattle both IFN-γ and IL-17A have been associated
with protective mechanisms against N. caninum infection, the elicited cytokine profile obtained using
CarbigenTM as adjuvant indicates that it could be worth exploring for bovine neosporosis vaccination.

Keywords: Neospora caninum; vaccine; adjuvant; interferon-γ; interleukin-17

1. Introduction

The apicomplexan Neospora caninum is an obligatory intracellular coccidian parasite.
Domestic and wild canids are the definitive hosts of N. caninum while farm ruminants
are the economically important definitive hosts of this parasite, which has been also
isolated from horses, deer and buffaloes [1]. N. caninum is a major causative agent of
abortion and stillbirths in cattle [2]. Neosporosis is prevalent worldwide [1] and inflicts
high economic losses to dairy cattle systems [3,4], which have been estimated above one
billion US dollars per annum [5]. A recent meta-analysis study estimated that the highest
prevalence of bovine neosporosis occurs in North, Central and South America, followed by
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Asia, Europe, and Oceania [6]. The highly effective vertical transmission of N. caninum in
cattle significantly contributes to the burden of disease [7,8]. Several control measures could
be considered to manage neosporosis, ranging from “doing nothing” to “test-and-cull” and
chemotherapeutical approaches [9,10]. However, vaccination is still considered the most
cost-effective approach to manage neosporosis, especially in high-prevalence farms [11].
Currently, no commercial vaccine is available to prevent or treat N. caninum infection,
despite several approaches that have been attempted to achieve it [12]. A Th1-type response
mediated by the IL-12/IFN-γ axis has been considered the prototypic protective immune
response in N. caninum-infected hosts [13]. Indeed, numerous studies in different host
species have associated the production of IFN-γ to protection against neosporosis [13,14].

Studies in mice showed the preponderant role of IFN-γ produced by CD4+ and
CD8+ T cells in protection against this parasitic infection [15,16]. Moreover, a direct effect
of this cytokine in limiting parasite multiplication in bovine cells has also been demon-
strated [17]. Stimulation of nitric oxide production and of immunity-related GTPases and
guanyl-ate-binding proteins have been highlighted as effector mechanisms triggered by
IFN-γ [16,18–22]. More recently, a protective role of IL-17A against N. caninum infection in
the bovine model has also been suggested [23,24]. However, a beneficial or deleterious role
of this cytokine in the course of infection is yet uncertain [25,26].

Considering the preponderant role of IFN-γ in host protection against neosporosis,
several vaccination strategies have stressed the induction of the production of this cytokine
through selected antigen and adjuvants [27–32]. We have previously developed a mucosal
immunization approach aimed at preventing N. caninum infection that used an extract of the
parasite membrane antigens together with CpG oligodeoxynucleotide adjuvant to promote
Th-1-type and humoral immunity [33]. This approach proved highly effective in protecting
against N. caninum infection in the long term [34]. Here, we extended our previous work
by using the same mucosal immunization approach, using instead the carbomer-based
adjuvant Carbigen™ in the immunizing preparation. The low cost of this adjuvant, as
compared to previously used CpG, plus its suitability to be used in veterinary immu-
nization [35,36], prompted us to assess its effectiveness in a murine model of neosporosis
established intraperitoneally (i.p.). Our results highlighted immune parameters resulting
from the immunization approach used here that make CarbigenTM a promising adjuvant
to be similarly assessed in the bovine model.

2. Materials and Methods
2.1. Mice

Female C57BL/6 mice were purchased from Charles River (Barcelona, Spain) and
bred under specific pathogen-free conditions at the animal facilities of Instituto de Ciências
Biomédicas Abel Salazar (ICBAS). Housing and nesting materials were provided as en-
richment. Experiments were approved by the institutional board responsible for animal
welfare at ICBAS (ORBEA, document 109/2015) and by the competent national authority
(DGAV, document 0421/000/000/2016).

2.2. Growth of Parasites and Preparation of Tachyzoite Lysates and Cell Membrane Extracts

N. caninum tachyzoites (Nc1 isolate) were serially passaged in VERO cell cultures
to obtain free parasitic forms using a previously described methodology [37]. Parasite
concentration was determined in cell suspensions using a hemocytometer. Whole parasite
sonicates and N. caninum antigen extracts enriched in parasite membrane proteins (NcMP)
were prepared accordingly to previously described methodology [33]. Briefly, frozen
tachyzoites were suspended in PBS containing 0.75% Triton X-14 and the organic phase
was precipitated with 4 volumes of absolute ethanol. After centrifugation, the protein
extract was air dried and suspended in PBS. Protein concentration was determined using
the Pierce™ BCA Protein Assay Kit (Thermo Fisher Scientific, Rockford, IL, USA) according
to the manufacturer’s instructions.
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2.3. Immunizations and Tissue Sample Collection

Mice, 8–10 weeks-old, randomly distributed into 2 groups, were immunized in-
tranasally (i.n.) with 15 µL of PBS containing 10% of carbomer-based (Carbopol 934P)
adjuvant suspension CarbigenTM (MVP adjuvants, Omaha, NE, USA) (CARB group) or
with PBS containing 30 µg of NcMP plus 10% CarbigenTM (NcMP/CARB group). A boost
immunization was done three weeks later. Three weeks after the boost immunization,
mice were either sacrificed by cervical dislocation upon isoflurane anesthesia for organ
collection or i.p. challenged with 1 × 107 N. caninum tachyzoites. Infected mice were
similarly sacrificed seven days after infection. Spleens, lungs and liver were collected under
aseptic conditions to analyze the elicited immune response. Brain, liver and lungs samples
were collected and stored frozen at −20 ◦C until processing for DNA extraction. Serum
was prepared from clotted blood samples after centrifugation at 10,000× g for 15 min at
4 ◦C. Serum was then transferred to new tubes and stored frozen at −20 ◦C for antibody
quantification. Intestinal lavage fluids were prepared as follows: PBS with protease in-
hibitors (Mini Complete, Roche, Basel, Switzerland) was consecutively passed through the
small intestine lumen and then centrifuged at 4500× g for 15 min at 4 ◦C. The supernatant
was collected and centrifuged at 10,000× g for 1 h at 4 ◦C, and the resulting supernatant
was collected and kept frozen at −20 ◦C for subsequent antibody detection.

2.4. Antibody Detection

Titers of NcMP-specific serum IgG1 and IgG2c and of IgA in intestinal lavage fluids
were quantified by ELISA, using respective alkaline phosphatase-coupled goat anti-mouse
antibodies (all from Southern Biotechnology Associates, Birmingham, AL, USA) by a
previously described methodology [33].

2.5. In Vitro Cell Cultures and Cytokine Detection

For cytokine production assessment, spleens were mechanically homogenized in
Hanks’ balanced salt solution (HBSS) (Sigma) and passed through 100 µm cell strainers (BD
Falcon, Franklin Lakes, NJ, USA). Ammonium–Chloride–Potassium Lysing Buffer (ACK)
was added to lyse red blood cells. Remaining cells were washed in HBSS and suspended in
RPMI-1640 medium supplemented with 10% Fetal Bovine Serum (FBS), HEPES (10 mM),
penicillin (200 IU/mL) and streptomycin (200 µg/mL) (all from Sigma, Burlington, MA,
USA) (RPMI), and β-mercaptoethanol (0.05 µM) (Merk, Darmstad, Germany). The lungs
and livers were cut in small pieces and placed in RPMI containing 2 mg/mL Collagenase
D (Roche, Basel, Switzerland) for 45 min at 37 ◦C in a water bath with agitation. Then,
samples were homogenized and passed through 100 µm pore cell strainers. Liver leukocytes
were isolated through density gradient centrifugation using 33% Percoll (GE Healthcare,
Chicago, IL, USA) solution in PBS for 12 min at room temperature at 750× g with minimal
brake. Cells from lungs and liver were washed twice with HBSS 2% FBS before being
resuspended in 500 µL supplemented RPMI. In between washes, ACK was added for red
blood cell lysis. Spleen, liver and lung cell concentrations were adjusted, and cells were
plated (2 × 105/well) in round bottom 96-well plates (Nunc, Roskilde, Denmark) and were
left unstimulated or stimulated with N. caninum sonicates (25 µg/mL) for 3 days at 37 ◦C
and 5% CO2. Then, supernatants were collected for IFN-γ, IL-4, and IL-17A cytokine
measurements by ELISA, using respective eBioscience™ Mouse ELISA Ready-SET-Go!™
kits according to manufacturer’ instructions.

2.6. Flow Cytometry Analysis

The following mAbs were used for surface antigen staining: anti-mouse CD3 eFluor
506-conjugate (clone 17A2), anti-mouse CD4 eFluor 450-conjugate (clone RM4–5), anti-
mouse CD44 PE-Cy7-conjugate (clone IM7), anti-mouse CD62L PE-conjugate (clone MEL-
14) (all from eBioscience, San Diego, CA, USA) and anti-mouse CD8 FITC-conjugate (clone
53-6.7) (BioLegend, San Diego, CA, USA). Cell viability was assessed using APCeFluor
780 Fixable viability dye (FVD; eBioscience). Firstly, cells were stained with FVD and
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incubated 30 min on ice. After washing with PBS, antibodies specific for surface markers
were added to the cells and incubated for 25 min on ice, protected from light. After
washing with FACS buffer (10 mM Sodium Azide, 2% FBS in PBS), cells were fixed with
Foxp3 Fixation/ Permeabilization solution (eBioscience) and permeabilized using Foxp3
Permeabilization Buffer (eBioscience). For Fcγ receptor nonspecific binding, cells were
preincubated with anti-mouse CD16/CD32 (BioLegend) before staining with anti-mouse
T-bet PerCP-conjugate (clone eBio4B10), anti-mouse RORγt APC-conjugate (clone B2D),
anti-mouse GATA-3 AlexaFluor488-conjugate (clone TWAJ) and anti-granzyme B APC-
conjugate (clone NGZB) (all from eBioscience). Fluorescence minus one staining were
done for gating purposes. Data were acquired in a BD FACSCanto™ II cytometer (BD
Biosciences, Franklin Lakes, NJ, USA) and analyzed using FlowJo version 10.8.1 (Tree Star
inc., Ashland, OR, USA). Used gating strategies are shown in Figures S1 and S2.

2.7. DNA Extraction and Real-Time PCR Analysis

DNA was extracted from the brain, liver and lungs of infected mice, as previously
described [38]. Parasite burden was assessed by quantitative real-time PCR (qPCR) using the
primers NcA 5′-GCTACCAACTCCCTCGGTT-3′ and NcS 5′-GTTGCTCTGCTGACGTGTCG-
3′, the TaqMan fluorescent probe FAM-CCCGTTCACACACTATAGTCACAAACAAAA-BBQ
(all from TIB Molbiol GmbH, Berlin, Germany) and NZY qPCR Probe Master Mix (Nzytech,
Lisbon, Portugal). Samples were run in a Corbett rotor gene 6000 system (Corbett Life
Science, Sydney, NSW, Australia), according to previously described methods [16]. In all
runs, parasite burden was determined by interpolation of a standard curve performed with
DNA isolated from N. caninum tachyzoites, ranging from 10 to 1 × 10−4 ng of parasitic
DNA (2 to 2 × 105 parasites), included in each run. Data were analyzed in the Rotor gene
6000 software v1.7 (Corbett Life Science) and expressed as log10 parasites per mg of DNA.

2.8. Statistical Analysis

Statistical analyses were performed using GraphPad prism version 9.0 (GraphPad Soft-
ware, Inc., La Jolla, CA, USA). Scatter dot graphs with bars represent mean and individual
values. Test for normal distribution was assessed with Shapiro–Wilk test and Kolmogorov–
Smirnov test. When passing normality test data were analyzed using unpaired Student’s
t-test. Otherwise, Mann–Whitney test was used, as indicated in figure legends.

3. Results
3.1. T Cell Response to N. caninum Antigens Induced by Immunization

Three weeks after the boost immunization, mice of the NcMP/CARB group presented
higher numbers of spleen CD4+ and CD8+ T cells displaying a CD44+CD62L+ phenotype
(Figure 1), characteristic of central memory T cells (TCM) [39], as compared to the con-
trol CARB group. In the spleen and lungs, higher numbers of CD4+ effector memory
(CD44+CD62L−) T cells (TEM) were also found.

Spleen, liver and lung leukocytes from mice of the NcMP/CARB group stimulated ex
vivo with N. caninum whole parasite antigen sonicates responded with higher production
of IFN-γ and IL-17A, comparatively to similarly stimulated cells obtained from the CARB
group mice (Figure 2). Production of IL-4 was also elevated in the cultures of spleen and
lung cells of the NcMP/CARB group that was nevertheless detected at lower levels.

Parasite-specific serum IgG1 and IgG2c and intestinal lavage fluid IgA levels were
elevated in the NcMP/CARB group as compared to controls (Figure 3). These results
altogether demonstrated that the used immunization approach induced a parasite-specific
response mediated by T and B cells, characterized by a mixed cytokine profile that was
mainly mediated by proinflammatory cytokines IFN-γ and IL-17A, but also involving
IL-4 production.
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individual mouse ± SEM. Results are of one representative experiment out of two independent 
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Figure 1. Memory phenotype of CD4+ and CD8+ T cells. Timeline of immunization and sample
collection (A). Representative contour plot analysis of gated CD4+ (B) and CD8+ (D) T cells expressing
CD44 and CD62L in the indicated organs, 21 days after the boost immunization. Numbers within
contour plots correspond to mean percentage values ± SEM for the particular quadrant region
in the respective sham-immunized (CARB) or immunized (NcMp/CARB) groups, as indicated.
Numbers of CD4+ (C) and CD8+ (E) T cells presenting the cell surface phenotypes CD44+CD62L−

and CD44+CD62L+, as indicated, in the analyzed organs of CARB and NcMp/CARB groups. In panels
(C,E), bars represent means, and each symbol (black circle) represents an individual mouse ± SEM.
Results are of one representative experiment out of two independent experiments that yielded
concordant results (n = 4 group; * p < 0.05; ** p < 0.01; *** p < 0.001, unpaired t-test).
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Figure 2. Analysis of cytokine production. Timeline of immunization and sample collection (A). IFN-γ,
IL-17A and IL-4 concentration (B) in the supernatants of leukocyte cell cultures unstimulated (closed
circles) or stimulated (open circles) for 3 days with N. caninum whole parasite antigen sonicates. Cells
were isolated from the spleen, lungs and liver of mice from NcMP/CARB or control CARB groups, as
indicated, 21 days after the boost immunization. Each symbol represents an individual mouse; bars
correspond to the mean value in each group ± SEM. Results are from one representative experiment
out of two independent experiments that yielded concordant results. (n = 4 group; * p < 0.05, Mann–
Whitney.)

3.2. Parasitic Burden in Immunized Mice

To assess whether the induced response could protect against N. caninum infection,
mice of the CARB and NcMP/CARB groups were infected i.p. with 1 × 107 N. caninum
tachyzoites three weeks after the boost immunization. As shown in Figure 4, 7 days upon
infection, the NcMP/CARB group presented lower parasitic burdens in the lungs and liver
than the sham-immunized CARB group. No significant difference was found in the brain
parasitic burden. These results show that the used immunization procedure conferred
partial protection against the disseminated N. caninum infection established i.p.
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3.3. Parasite-Specific Antibody Levels in Infected Immunized and Nonimmunized Mice 

As shown in Figure 5, 7 days upon infection the levels of parasite-specific serum IgG1 

and IgG2c antibodies were found elevated in the NcMP/CARB mouse group 

comparatively to the CARB group. As observed prior to infection, IgG1 reached higher 

titers than IgG2c in the immunized group. Parasite-specific IgA levels were also found 

Figure 3. Analysis of N. caninum-specific antibodies. Timeline of immunization and sample
collection (A). Titers of intestinal lavage fluid (ILF) IgA and serum (Serum) IgG1 and IgG2c (B),
as indicated, were determined by ELISA in samples collected, on the indicated day, from mice of
CARB and NcMP/CARB groups. Data is presented as log10 of the antibody titers (n = 4 per group).
Each symbol (triangles and circles) represents an individual mouse. Bars correspond to the mean
value in each group ± SEM. Results are of one representative experiment out of two independent
experiments that yielded concordant results (n = 4 group; * p < 0.05; **** p < 0.0001, Mann–Whitney).
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Figure 4. Protective effect of i.n. immunization with NcMP plus CarbigenTM adjuvant against i.p.
N. caninum infection. Parasitic load was determined through qPCR 7 days upon i.p. challenge
with 1 × 107 N. caninum tachyzoites in immunized (NcMP/CARB) or sham-immunized (CARB)
mice. Data are presented as log10 parasites per mg of total DNA. Results are of one representative
experiment out of two independent experiments that yielded concordant results. Each symbol (black
circle) represents an individual mouse. Bars correspond to the mean value in each group; (n = 6 group;
** p < 0.01; **** p < 0.0001, unpaired t-test).

3.3. Parasite-Specific Antibody Levels in Infected Immunized and Nonimmunized Mice

As shown in Figure 5, 7 days upon infection the levels of parasite-specific serum IgG1
and IgG2c antibodies were found elevated in the NcMP/CARB mouse group comparatively
to the CARB group. As observed prior to infection, IgG1 reached higher titers than IgG2c
in the immunized group. Parasite-specific IgA levels were also found elevated in intestinal
lavage fluids collected from the mice of the NcMP/CARB group as compared to the CARB
group. These results showed that the production of parasite-specific antibodies induced by
immunization was effective both in the intestinal mucosa and systemically.
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Figure 5. Analysis of N. caninum-specific antibodies in infected mice. Timeline of immunization,
infection and sample collection (A). Titers of intestinal lavage fluid (ILF) IgA and serum (Serum)
IgG1 and IgG2c (B), as indicated, were determined by ELISA in samples collected 7 days after N.
caninum i.p. infection from mice previously immunized (NcMP/CARB) or sham-immunized (CARB).
Data is presented as log10 of the antibody titers. Each symbol (triangles and circles) represents an
individual mouse. Bars correspond to the mean value in each group ± SEM. Results are of one
representative experiment out of two independent experiments that yielded concordant results.
(n = 6 group; ** p < 0.01; *** p < 0.001, Mann–Whitney.)

3.4. Differentiation of T cells Induced in Immunized Mice Infected with N. caninum

As shown in Figure 6B,C, 7 days upon infection, the NcMP/CARB group presented
higher proportions and numbers of CD4+ TCM cells in the spleen. Immunized mice pre-
sented higher proportions of CD4+ TEM cells in the lungs and liver. TEM cell numbers
were also found elevated in the lungs of the immunized mice as compared to controls.
CD8+ TEM cells were found at higher proportions in the lungs of NcMP/CARB group mice
(Figure 6D) while in the spleen CD8+ TCM cell proportions and numbers were both found
elevated as compared to control group (Figure 6D,E). As expected upon infection, TEM cells
predominated in the infected organs.

To determine the type of cellular response induced upon infection in the immunized
mice and controls, we evaluated the expression of the transcription factors T-bet, GATA-3
and RORγt, respectively, associated with Th1, Th2 and Th17 cell populations [40] in antigen-
experienced (CD44+) CD4+ T cells. As shown in Figure 7, immunized mice clearly presented
higher proportions and numbers of activated/memory CD4+ T cells expressing RORγt in
all analyzed organs. In the spleen, GATA-3-expressing CD4+ T cells were also increased in
the NcMP/CARB group. Splenic T-bet-expressing CD4+ T cells were detected at elevated
numbers and proportions in immunized mice, although not reaching statistical significance.
Similar results were found when evaluating the expression of these transcription factors in
gated CD4+ TEM cells (Figure S3).

Culture supernatants of N. caninum antigen-stimulated NCMP/CARB group lung
leukocytes collected 7 days upon N. caninum infection had higher levels of IL-17A (Figure 8),
while the levels of IFN-γ and IL-4 did not differ from controls. A bias towards IL-17A pro-
duction in response to N. caninum antigens was also detected in cultures of liver leukocytes
from the NCMP/CARB group. The levels of IFN-γ were also detected elevated in these
cultures, however not differing between the NcMP/CARB and CARB groups.

CD8+ T cells have been also implicated in the protective immune response to acute
neosporosis mediated by IFN-γ [16]. Therefore, the expression of T-bet was also assessed
in the spleen, liver and lungs of CD44-expressing CD8+ T cells.



Vaccines 2022, 10, 925 9 of 17
Vaccines 2022, 10, x FOR PEER REVIEW 9 of 17 
 

 

 

Figure 6. Memory phenotype of CD4+ and CD8+ T cells in infected mice. Timeline of immunization, 

infection and sample collection (A). Representative contour plot analysis of gated CD4+ (B) and CD8+ 

(D) T cells expressing CD44 and CD62L in the indicated organs. Numbers within contour plots 

correspond to mean percentage values ± SEM for the particular quadrant region in the respective 

sham-immunized (CARB) or immunized (NcMP/CARB) groups, as indicated. Numbers of CD4+ (C) 

and CD8+ (E) T cells presenting the cell surface phenotypes CD44+CD62L− and CD44+CD62L+, as 

indicated, in the analyzed organs of CARB and NcMP/CARB groups, 7 days upon N. caninum i.p. 

infection. In panels (C,E), bars represent means ± SEM. Each symbol (black circle) represents an 

individual mouse. Results are from one experiment representative of two independent experiments 

that yielded concordant results (n = 6 group; * p < 0.05; ** p< 0.01; *** p < 0.001; **** p < 0.0001, unpaired 
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Figure 6. Memory phenotype of CD4+ and CD8+ T cells in infected mice. Timeline of immunization,
infection and sample collection (A). Representative contour plot analysis of gated CD4+ (B) and
CD8+ (D) T cells expressing CD44 and CD62L in the indicated organs. Numbers within contour plots
correspond to mean percentage values ± SEM for the particular quadrant region in the respective
sham-immunized (CARB) or immunized (NcMP/CARB) groups, as indicated. Numbers of CD4+ (C)
and CD8+ (E) T cells presenting the cell surface phenotypes CD44+CD62L− and CD44+CD62L+, as
indicated, in the analyzed organs of CARB and NcMP/CARB groups, 7 days upon N. caninum i.p.
infection. In panels (C,E), bars represent means ± SEM. Each symbol (black circle) represents an
individual mouse. Results are from one experiment representative of two independent experiments
that yielded concordant results (n = 6 group; * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001,
unpaired t-test).
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Figure 7. Expression of T-bet, RORγt and GATA-3 in CD4+CD44+ T cells collected from infected
mice. (A) Representative contour plots of T-bet and RORγt expression in CD4+ CD44+ T cells in
the indicated organs of sham-immunized (CARB) or immunized (NcMP/CARB) mice, as indicated,
7 days after i.p. challenged with 1 × 107 N. caninum tachyzoites. Numbers within contour plots
correspond to mean percentage values ± SEM of cells in the respective analysis regions. (B) Numbers
of CD4+ CD44+ T cells expressing T-bet, RORγt and GATA-3 in the indicated organs of infected
mice of NcMP/CARB and CARB mouse groups. Each symbol (black circle) represents an individual
mouse. Results are representative of two independent experiments that yielded concordant results
(n = 6 group; * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001, Mann–Whitney).

As shown in Figure 9, higher total numbers of spleen T-bet-expressing CD8+CD44+

T cells were detected in the N. caninum infected NcMP/CARB mouse group than in the
control group. Higher proportions, but not total numbers, of T-bet-expressing CD8+CD44+

T cells were observed in the liver of immunized mice when compared to controls. No
such difference was observed between groups in the lungs, further suggesting the strong
polarization towards a Th17-type response induced by the intranasal immunization in this
organ. The total numbers of granzyme B-expressing cells were not significantly different
between mouse groups. The analysis of the expression of T-bet and granzyme B within the
CD8+ TEM cell compartment revealed similar results (Figure S4). Altogether, these results
show that immunization with NcMP plus CarbigenTM induced the differentiation of Th-1
and Th-17 cells and highlight the impact of the local environment in the elicited response.
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Figure 8. Analysis of cytokine production. Timeline of immunization, infection and sample collection
(A). IFN-γ, IL-4 and IL-17A concentration (B) in the supernatants of splenocyte cell cultures unstim-
ulated (closed symbols) or stimulated (open symbols) for 3 days with N. caninum whole parasite
antigen sonicates. Cells were isolated from the spleen, lungs and liver of mice from NcMP/CARB or
control CARB groups, as indicated, 7 days after the i.p. challenge with 1× 107 N. caninum tachyzoites.
Each symbol (black and white circles) represents an individual mouse; bars correspond to the mean
value in each group ± SEM. Results are representative of two independent experiments that yielded
concordant results (n = 6 group; * p < 0.05; ** p < 0.01, Mann–Whitney).
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Figure 9. Expression of T-bet and granzyme B in CD8+ T cells of infected mice. (A) Representative
contour plot analysis of CD8+ CD44+ T cells expressing T-bet in the indicated organs of sham-
immunized (CARB) or immunized (NcMp/CARB) mice, as indicated, 7 days after i.p. challenged
with 1 × 107 N. caninum tachyzoites. Numbers within contour plots correspond to mean percentage
values ± SEM of T-bet expressing cells within the CD8+ CD44+ T cell population. (B) Numbers
of CD8+ CD44+ T-bet+ and CD8+CD44+ granzyme B+ cells in the indicated organs of immunized
and sham-immunized mice. Each symbol (black circle) represents an individual mouse. Results
are representative of two independent experiments that yielded concordant results (n = 6 group;
* p < 0.05; ** p < 0.01, unpaired t-test).

4. Discussion

We have previously reported a mucosal immunization approach to prevent neosporo-
sis based on the intranasal administration of an N. caninum membrane antigen extract
and CpG adjuvant [33]. This immunization approach was conceived aiming at inducing
parasite-specific Th-1-type immunity that is promoted by CpG [41]. It is well established
that IL-12 and IFN-γ are key cytokines in host protection from neosporosis, as clearly
shown in several genetically deficient murine models [19,42,43]. Using CarbigenTM as
the selected adjuvant in the immunization performed here prompted spleen and liver
leukocyte cells obtained from the NcMP/CARB group to robustly produce IFN-γ upon N.
caninum antigen stimulation. This response may contribute to the protective effect against
N. caninum infection observed in that mouse group and concurs with the generation of
T-bet+ CD8+ T cells induced by immunization. Indeed, using a similar model of infection,
we showed that IFN-γ production, rather than cytotoxicity, was the preponderant CD8+ T
cell effector mechanism counteracting N. caninum in the acute phase of infection [16].

T-bet expression in CD8+ T cells has been associated with effector rather than mem-
ory cell differentiation [44]. As CD8+ T cells have been implicated in IFN-γ-dependent
immunity to N. caninum [16,45], it will be interesting to assess CD8+ T cell function at a
longer term in immunized animals. On the other hand, as T-bet has been shown to limit the
expression of the inhibitory cell surface receptor programmed cell death protein 1 (PD-1)
on CD8+ T cells [46], the higher expression of this transcription factor may help sustain the
effector function of these lymphocytes in infected immunized hosts.

A marked production of IL-17A was also induced in the immunized animals. While
this cytokine is usually associated with immune protection from fungal and bacterial
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infections [47], it can also play a host protective role in diverse protozoan infections [48],
including N. caninum-related protozoan Toxoplasma gondii [49]. Indeed, IL-17 receptor-
deficient mice displayed increased mortality when infected with T. gondii, which has
been attributed to impaired neutrophil recruitment to infected sites [49]. Moreover, the
production of IL-17A has been associated with reduced parasitic burden in mice immunized
with T. gondii protein ROP13 [50]. Here, IL-17A production was evident in parasite antigen-
stimulated leukocyte cells obtained from immunized mice prior or after infection. This
is in accordance with the observed increase in CD44+CD4+ T cells expressing the Th17-
associated marker RORγt in immunized mice. Th17 cells have been particularly implicated
in the local protective immune response to pulmonary infections caused by bacteria, fungi
or viruses [51]. Moreover, these cells have been implicated in protective mechanisms against
protozoan infections [52,53]. It would therefore be worth determining whether these cells
could be mediating the pulmonary protective effect observed in the NcMP/CARB mouse
group, since IL-17-mediated responses in the lungs induced by intranasal immunization
have been previously associated with host protection from diverse infections [54–57].
The intranasal immunization used here also induced N. caninum antigen responsive liver
leukocyte cells producing IL-17A. Even though local production of this cytokine in that
organ may have contributed to the lower parasitic burden, it may also play a regulatory
role therein, as previously described in T. gondii-infected mice [58]. Although the specific
role of this cytokine has not yet been elucidated in the context of N. caninum infection,
the scarce evidence available indicates that in ruminants, IL-17 may be involved in host
protection by mediating parasite elimination [24] or limiting its vertical transmission [23].
These findings support exploring in cattle the immunization strategy addressed here, based
on using CarbigenTM adjuvant.

Although we observed here that the used immunization approach conferred partial
protection against N. caninum infection in the lungs and liver, it did not lead to significantly
reduced parasitic burden in the brain, contrasting previous results obtained using CpG
adjuvant in a similar i.n. immunization approach [33]. A less exacerbated Th1-type polar-
ization in the immune response induced by the adjuvant used here may have accounted
for the absence of a protective effect in the brain tissue.

Antibodies have been previously implicated in host protective mechanisms operating
against N. caninum infection locally at the intestinal mucosa and systemically [33,34,59].
The results obtained here showed the effectiveness of using CarbigenTM adjuvant to raise
parasite-specific intestinal IgA and circulatory IgG levels, which might, respectively, coun-
teract the parasite entry into the host at the intestinal tract and parasite dissemination
within the host. The IgG antibodies raised by the immunization presented a mixed IgG1
and IgG2c isotype profile that was detected prior to and after infection, in accordance
with the detected production of IL-4 and IFN-γ in the culture supernatants of the antigen-
stimulated leukocytes isolated from the NcMP/CARB mice. This cytokine and antibody
profile indicate that a balanced immune response was induced by the immunization. A
balanced Th1/Th2 response has been considered beneficial in the course of neosporosis in
pregnant mouse models by conferring protection against the parasite and avoiding fetal
rejection by limiting deleterious excessive inflammation [25]. Moreover, an antibody profile
with higher IgG1 than IgG2 antibodies combined with IFN-γ was previously associated
with the reduced vertical transmission of N. caninum in cattle [60], which further highlights
the potential of considering the CarbigenTM adjuvant in future studies of immunization
against neosporosis in cattle. Although the murine model has been rightly considered
a valuable experimental tool in preclinical studies in neosporosis [61], species-specific
immune mechanisms should be accounted when evaluating immunization approaches
to this parasitic disease. Additionally, as the immunization approach used here raised
parasite specific antibodies in the gut and a balanced immune response, deemed conve-
nient during pregnancy, it would be interesting to assess this immunizing procedure in
animal models where infection could be established via the gastrointestinal tract or through
vertical transmission.
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5. Conclusions

Our results show that intranasal immunization with NcMP as the target antigens
plus the CarbigenTM adjuvant promoted a balanced immune response characterized by a
preponderant differentiation of RORγt- and T-bet-expressing memory T cells, leading to
the predominant production of IFN-γ and IL-17A in response to parasite antigens. In the
immunized animals, a lower parasitic burden was detected in the lungs and liver. Although
the lack of detected protection in the brain may pose a limitation to this adjuvant, the results
reported here indicate that, as previously highlighted by others [24], exploring more in
depth the role of IL-17-promoting adjuvants, such as we observed here using CarbigenTM,
will be nevertheless worth attempting in vaccination approaches to neosporosis.
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//www.mdpi.com/article/10.3390/vaccines10060925/s1, Figure S1: Flow cytometry gating strategy
used to define CD4+ T effector and central memory cells, and the expression of transcription factors;
Figure S2. Flow cytometry gating strategy used to define CD8+ T effector and central memory cells,
and T-bet and granzyme B expression; Figure S3: Expression of transcription factors T-bet and RORχt
in CD4+ TEM cells of infected mice.; Figure S4: Expression of transcription factor T-bet and granzyme
B in CD8+ TEM cells of infected mice.
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