
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

Contents lists available at ScienceDirect

Brain Behavior and Immunity

journal homepage: www.elsevier.com/locate/ybrbi

Review Article

Fatigue and cognitive impairment in Post-COVID-19 Syndrome: A systematic review and meta-analysis

Felicia Ceban^{a,b}, Susan Ling^{a,d}, Leanna M.W. Lui^a, Yena Lee^{a,c}, Hartej Gill^a, Kayla M. Teopiz^a, Nelson B. Rodrigues^a, Mehala Subramaniapillai^a, Joshua D. Di Vincenzo^{a,d}, Bing Cao^e, Kangguang Lin^{f,g}, Rodrigo B. Mansur^{a,h}, Roger C. Ho^{i,j}, Joshua D. Rosenblat^{a,d,h}, Kamilla W. Miskowiak^{k,1}, Maj Vinberg^{m,n}, Vladimir Maletic^o, Roger S. McIntyre^{a,b,c,d,h,*}

^a Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada

^b Brain and Cognition Discovery Foundation, Toronto, ON, Canada

^c Braxia Health, Mississauga, ON, Canada

^d Department of Pharmacology, University of Toronto, Toronto, ON, Canada

e Key Laboratory of Cognition and Personality, Faculty of Psychology, Ministry of Education, Southwest University, Chongging 400715, China

ABSTRACT

^f Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University, (Guangzhou Huiai Hospital), Guangzhou Medical University, Guanezhou, China

^g Laboratory of Emotion and Cognition, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou Medical University, Guangzhou, China

^h Department of Psychiatry, University of Toronto, Toronto, ON, Canada

¹ Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore

^j Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore

k Department of Psychology, University of Copenhagen, Copenhagen, Denmark

¹ Mental Health Services, Capital Region of Denmark, Copenhagen University Hospital, Copenhagen, Denmark

^m Faculty of Health and Medical Sciences, University of Copenhagen, Denmark

ⁿ Psychiatric Research Unit, Psychiatric Centre North Zealand, Hillerød, Denmark

^o Department of Psychiatry, University of South Carolina, Greenville, SC, USA

ARTICLE INFO

Post-COVID-19 syndrome

Post-COVID-19 condition

Cognitive impairment

Functional outcomes Population health

Keywords:

Brain fog

Fatigue

Inflammation

Depression

Cognition

COVID-19

Immunology

Anhedonia

Brain

Mental illness

Bipolar

Long COVID

Importance: COVID-19 is associated with clinically significant symptoms despite resolution of the acute infection (i.e., post-COVID-19 syndrome). Fatigue and cognitive impairment are amongst the most common and debilitating symptoms of post-COVID-19 syndrome.

Objective: To quantify the proportion of individuals experiencing fatigue and cognitive impairment 12 or more weeks following COVID-19 diagnosis, and to characterize the inflammatory correlates and functional consequences of post-COVID-19 syndrome.

Data sources: Systematic searches were conducted without language restrictions from database inception to June 8, 2021 on PubMed/MEDLINE, The Cochrane Library, PsycInfo, Embase, Web of Science, Google/Google Scholar, and select reference lists.

Study selection: Primary research articles which evaluated individuals at least 12 weeks after confirmed COVID-19 diagnosis and specifically reported on fatigue, cognitive impairment, inflammatory parameters, and/or functional outcomes were selected.

Data extraction & *synthesis:* Two reviewers independently extracted published summary data and assessed methodological quality and risk of bias. A meta-analysis of proportions was conducted to pool Freeman-Tukey double arcsine transformed proportions using the random-effects restricted maximum-likelihood model.

Main outcomes & measures: The co-primary outcomes were the proportions of individuals reporting fatigue and cognitive impairment, respectively, 12 or more weeks following COVID-19 infection. The secondary outcomes were inflammatory correlates and functional consequences associated with post-COVID-19 syndrome.

Abbreviation: PCS, Post-COVID-19 syndrome.

Received 5 November 2021; Received in revised form 8 December 2021; Accepted 24 December 2021 Available online 29 December 2021 0889-1591/© 2022 Elsevier Inc. All rights reserved.

^{*} Corresponding author at: University Health Network, 399 Bathurst Street, MP 9-325, Toronto, ON M5T 2S8, Canada. *E-mail address:* Roger.McIntyre@uhn.ca (R.S. McIntyre).

https://doi.org/10.1016/j.bbi.2021.12.020

Results: The literature search yielded 10,979 studies, and 81 studies were selected for inclusion. The fatigue metaanalysis comprised 68 studies, the cognitive impairment meta-analysis comprised 43 studies, and 48 studies were included in the narrative synthesis. Meta-analysis revealed that the proportion of individuals experiencing fatigue 12 or more weeks following COVID-19 diagnosis was 0.32 (95% CI, 0.27, 0.37; p < 0.001; n = 25,268; $I^2 =$ 99.1%). The proportion of individuals exhibiting cognitive impairment was 0.22 (95% CI, 0.17, 0.28; p < 0.001; n = 13,232; $I^2 = 98.0$). Moreover, narrative synthesis revealed elevations in proinflammatory markers and considerable functional impairment in a subset of individuals.

Conclusions & relevance: A significant proportion of individuals experience persistent fatigue and/or cognitive impairment following resolution of acute COVID-19. The frequency and debilitating nature of the foregoing symptoms provides the impetus to characterize the underlying neurobiological substrates and how to best treat these phenomena.

Study registration: PROSPERO (CRD42021256965).

1. Introduction

The global confirmed case count of coronavirus disease 2019 (COVID-19) surpassed 275 million as of December 2021 (Coronavirus disease (COVID-19), 2021). The actual case positive rate, however, is estimated to be much higher with multiple models predicting the actual number to be 10 (3 to 24) times greater than the number of confirmed cases (Wu et al., 2020; Havers et al., 2020; Aizenman, 2021). In keeping with this view, a projection of over 2.75 billion people may have been infected by COVID-19.

>30% of individuals affected by COVID-19 (Tenforde et al., 2020), including asymptomatic cases (Huang et al., 2021), and approximately 80% of patients hospitalized for COVID-19⁷ may experience post-COVID sequelae. Fatigue and cognitive impairment, along with other enduring neuropsychiatric (e.g., depression) (Renaud-Charest et al., 2021) and physical (e.g., dyspnea) manifestations, comprise 'post-acute sequelae of SARS-CoV-2' (i.e., symptoms persisting for at least 4 weeks following infection) (Nalbandian et al., 2021), colloquially referred to as 'long COVID' (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7992371/). The National Institute for Health and Care Excellence (NICE) defines 'post-COVID-19 syndrome' (PCS) as a constellation of symptoms which develop during or following COVID-19 infection, persist for >12 weeks, and are not sufficiently explained by alternative diagnoses (https:// www.nice.org.uk/guidance/ng188). Towards the aim of identifying a common nomenclature in case definition, the World Health Organization (WHO) has recently proposed the moniker 'post COVID-19 condition (https://www.who.int/publications/i/item/WHO-2019-nCoV-Post COVID-19 condition-Clinical case definition-2021.1). Post COVID-19 condition is defined as persistent symptoms usually occurring 3 months from onset in individuals with past confirmed or probable SARS-CoV-2 infection and persisting for at least 2 months which cannot be explained by an alternative diagnosis (hq) WH. A clinical case definition of post COVID-19 condition by a Delphi consensus, 6 October, 2021).

Research efforts into PCS were originated by online patient advocacy groups, who have reported substantial detriments to quality of life and daily functioning as a consequence of persistent symptoms, lack of formal diagnosis, and effective established treatments (Siegelman, 2020; Rubin, 2020). Fatigue and cognitive impairment have been consistently reported to be some of the most common and debilitating features of PCS (Davis et al., 2020; Marshall, 2020; Report: What does COVID-19 recovery actually look like, 2020). Chronic fatigue (Sabes-Figuera et al., 2010) and cognitive impairment (Winston, 2020; Xu et al., 2017) constitute a significant global economic burden, respectively. Unlike other common symptoms of PCS including dyspnea and depression, there are no established and effective treatments for post-viral fatigue and cognitive impairment, as well as related conditions such as Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). The global incidence of COVID-19 infection and the potential economic burden and quality of life diminution provide the impetus for identifying neurobiological substrates subserving PCS-related fatigue and cognitive impairment, associated factors and determinants, as well as safe and

effective treatments. Herein, we sought to determine the proportion of individuals exhibiting fatigue and cognitive impairment 12 or more weeks following COVID-19 diagnosis, including amongst age, sex, and clinical subgroups. We additionally aimed to characterize the inflammatory correlates and functional consequences of PCS.

2. Methods

2.1. Data Sources and searches

The protocol pertaining to this systematic review and meta-analysis was registered on PROSPERO (CRD42021256965). This study followed the Meta-analysis of Observational Studies in Epidemiology (MOOSE) reporting guidelines (Stroup et al., 2000). In accordance with the 2020 Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines (Page et al., 2020), a systematic search was conducted on PubMed/MEDLINE, Cochrane Library, PsycInfo, EMBASE, and Web of Science from database inception to June 8, 2021. The search string implemented was: "long covid" OR "persistent covid" OR "post covid" OR "post covid" OR "post-acute sequelae of SARS-CoV-2 PASC" OR "enduring COVID-19 sequelae" OR "long-haul covid" OR "long-tail covid". We manually searched the references of relevant articles, as well as Google Scholar/Google, for additional studies. No language or publication date restrictions were imposed.

Titles and abstracts were independently screened by two review authors (FC and SL) using the Covidence platform. (Better systematic review management, 2020) Articles identified as potentially relevant by at least one reviewer were retrieved, and duplicates were removed. Full text-articles were independently screened by two reviewers (FC and SL), with discrepancies resolved through discussion. Authors of potentially eligible studies were contacted to provide clarification and/or supplementary data where necessary.

2.2. Study selection

We sought articles reporting on the incidence of any primary outcome (i.e., fatigue or cognitive impairment) and/or secondary outcome (i.e., inflammatory markers or functional outcomes/quality of life measures), as defined in Table 1, in individuals with confirmed COVID-19 12 or more weeks following diagnosis. At the outset, we planned to determine the secondary outcomes solely for fatigue and cognitive impairment in PCS. However, due to the paucity of data concerning the foregoing, we subsequently included inflammatory correlates and functional outcomes associated with PCS more broadly. Inclusion criteria were established prior to article review and were as follows:

1. Complete summary estimates (i.e., exact proportions) pertaining to at least one primary outcome, and/or qualitative or quantitative data pertaining to at least one secondary outcome, as defined in Table 1,

Table 1

Definition of study variables.

PRIMARY OUTCOMES	Objective Ascertainment	Subjective Ascertainment
Fatigue (asthenia)	Fatigue ascertained via any validated tool (e.g., FACIT fatigue scale, FSS), or clinical diagnosis of CFS/EM.	Self-report or non-validated measure of fatigue, tiredness/low energy, muscular fatigue/muscular weakness (myasthenia), malaise.
Cognitive Impairment	Cognitive impairment ascertained via any validated tool for performance-based cognitive function (e.g., MoCA, TICS, SCIP), or clinical diagnosis of cognitive impairment.	Self-report or non-validated measure of cognitive impairment/'brain fog', mental slowness, deficits in attention, executive, processing, memory, learning, articulation, and/or psychomotor coordination.
SECONDARY OUTCOMES		
Inflammatory Parameters	Abnormal levels of circulating or intracellular cytokines, CRP, D-dimer, and/or procalcitonin, in accordance with thresholds determined by study investigators, or relative to control group or established standard.	N/A
Functional Outcomes/ Quality of Life	Functional impairment (including activity, occupational, and social limitations) (Ustün and Kennedy, 2009) ascertained via any validated tool for quality of life or functional outcomes (e.g., EQ-5D, mRS).	Self-report or non-validated assessment of functional impairment (including activity, occupational, and social limitations), as well as general vitality/quality of life (Ustün and Kennedy, 2009).

Acronyms: FACIT: Functional Assessment of Chronic Illness Therapy, FSS: Fatigue Severity Scale, CFS/EM: chronic fatigue syndrome/myalgic encephalomyelitis, MoCA: Montreal Cognitive Assessment, TICS: Telephone interview for cognitive status, SCIP: Screen for Cognitive Impairment for Psychiatry CRP: Creactive peptide, D-dimer: domain dimer, N/A: not applicable, EQ-5D: European Quality of Life 5 Dimension Scale, mRS: modified Rankin Scale.

for individuals previously diagnosed with COVID-19 of any age, sex, or ethnicity.

- 2. Median or mean follow-up time of at least 12 weeks (84 days) since COVID-19 diagnosis, to serve as a proxy for time since infection, in accordance with the NICE definition of PCS. If the index date was hospital admission or discharge, resolution of acute illness, or onset of symptoms, it was assumed that these events occurred either concurrently or subsequent to diagnosis.
- COVID-19 (any severity) ascertained according to laboratory testing, diagnostic code linkage, and/or clinical diagnosis.
- 4. Primary research.
- 5. Presentation as full-text article (including preprints).

Exclusion criteria were:

- 1. Incomplete or inexact quantitative data (i.e., no exact proportions provided for primary outcomes).
- Outcomes precede exposure (i.e., it is stated that fatigue, cognitive impairment, inflammation, and/or functional impairment were present prior to COVID-19 infection, and/or did not markedly increase in severity following COVID-19 infection at 12 or more weeks follow-up).
- 3. Study solely reports new symptoms arising following resolution of acute COVID-19 (i.e., not persisting since diagnosis).
- 4. Outcomes of interest reported solely in the general population, or in persons without a confirmed prior COVID-19 diagnosis.

- 5. Median/mean follow-up time of <12 weeks (84 days) since COVID-19 infection or diagnosis.
- COVID-19 is not verified by laboratory testing or ICD-10 linkage, or is not clinically diagnosed.
- 7. Post-mortem study of COVID-19 patients.
- Case series, or any study design wherein participants are selected for inclusion based on the presence of PCS symptoms (i.e., outcomes of interest).
- 9. Unpublished study, abstract, case report, study with a sample size of <10 persons, or protocol.
- 10. Non-primary research.

2.3. Data extraction

Published summary data from included articles were independently extracted by two reviewers (FC and SL) using a piloted data extraction form, then corroborated, with discrepancies resolved through discussion. Information to be extracted was established a priori and included study characteristics, participant characteristics and subgroups, sample size and source, modes of ascertainment, follow-up period, exact proportions (including subgroup-specific data where available) pertaining to primary or secondary outcomes, qualitative data pertaining to secondary outcomes, and factors reportedly associated with PCS across individual analyses.

2.4. Quality assessment

Methodological quality and risk of bias was assessed using the Newcastle-Ottawa Scale (NOS) (Stang, 2010), modified for applicable cohort and case-control studies, as well as adapted for cross-sectional studies. Studies wherein the design was unclear were assessed according to the prospective cohort NOS. Cohort studies were penalized for failing to include a non-exposed cohort. All component studies were independently rated by two reviewers (FC and LMWL) and results were corroborated, with discrepancies resolved through discussion. Modified NOSs and methodological quality rankings for each study type are provided (supplementary material).

2.5. Data synthesis and analysis

A meta-analysis of proportions was conducted using R version 4.1.0 (R Foundation for Statistical Computing). An α level of 0.05 was chosen to indicate statistical significance. In anticipation of marked heterogeneity, the meta::metaprop function (Balduzzi et al., 2019) was used to pool proportions, indicated as the number of cases exhibiting fatigue or cognitive impairment (events) divided by the size of the sample (observations), via the random-effects restricted maximum-likelihood model (REML) (Kenward and Roger, 1997; Miller, 1978). Where one study reported multiple proportions qualifying as a primary outcome measure (e.g., concentration impairment and memory impairment, which can both be subsumed under cognitive impairment), only the largest proportion was included to prevent data duplication or skewing of true effect size. Where studies provided data for multiple qualifying follow-up periods, the earliest follow-up was used in the main analyses. Single proportions were transformed via the Freeman-Tukey Double arcsine method to stabilize variances (Miller, 1978), Clopper-Pearson 95% confidence intervals (CIs) were calculated for individual studies, and Wald 95% CIs were calculated for pooled proportions. Forest plots for each primary outcome were created via the meta::forest function. Random effects subgroup analyses, established a priori, for sex, COVID-19 hospitalization status, age group (children vs adults, defined as median/mean age <18 and \geq 18 years, respectively), follow-up duration (<6 months vs \geq 6 months), and mode of ascertainment (objective vs subjective) were conducted using the byvar argument, assuming separate estimates of between-study variance for each subgroup. Study populations were classified as comprising hospitalized populations if \geq 80% of the participants had been hospitalized for COVID-19 (and vice versa for outpatients). Post hoc sensitivity analyses according to NOS quality rating groupings, as well as by study design, were undertaken. Statistically significant differences in inter-group effect sizes were calculated via the Wald-type χ 2 test.

Heterogeneity was quantified using the I² statistic, where the cut-offs 30.0%, 50.0%, and 75.0% denote moderate, substantial, and considerable heterogeneity, respectively, as recommended by GRADE (Grading of Recommendations, Assessment, Development and Evaluations) criteria and the Cochrane Handbook's interpretation of heterogeneity scores (Deeks et al., 2008; Schünemann et al., 2019). The Egger regression intercept test and the Begg and Mazumdar rank correlation test, as well as visual inspection of funnel plots for asymmetry, were used to assess publication bias via the *meta::metabias* and *meta::funnel* functions, respectively. Qualitative analysis via narrative synthesis was performed for secondary outcomes, which were not sufficiently

homogenous to meta-analyze.

3. Results

3.1. Search results

The literature search yielded 10,979 studies. Following the removal of duplicates, 5965 studies were screened by title and abstract, producing 229 eligible studies. 148 studies were further excluded following full-text screening. Details of study selection are provided in Fig. 1. In total, 81 studies were included in the review: 56 prospective cohort studies, 14 cross-sectional studies, 10 retrospective cohort studies, and 1 retrospective case-control study. Component studies are grouped by design in the supplementary material. The quantitative synthesis primarily evaluating the effect of COVID-19 exposure on fatigue (i.e., fatigue meta-analysis) included 68 studies, whereas the quantitative

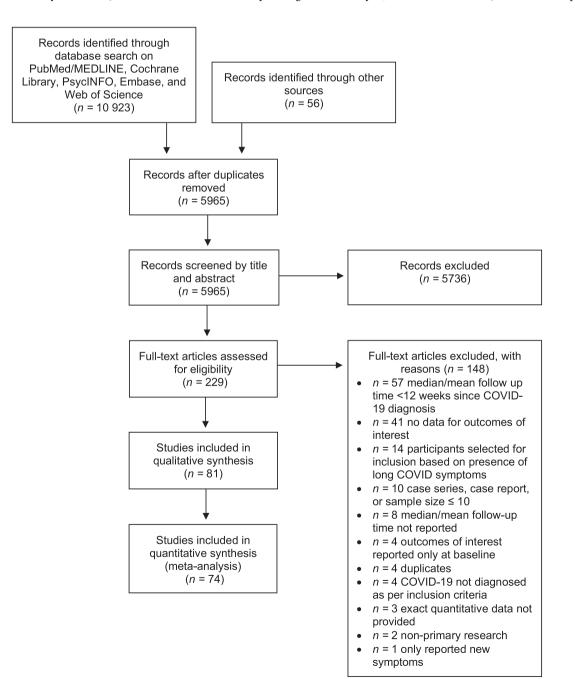


Fig. 1. Flow diagram of study selection.

Table 2

Characteristics and results of studies (n = 81) examining individuals with confirmed COVID-19 12 or more weeks following diagnosis.

Ψ.	
Ceban	
et	
al.	

	Country	Study Design	Sample Source	Sample Characteristics	Follow-up Duration	Ascertainment of COVID-19	Ascertainment of Outcomes	Results	Factors Associated with persistent symptoms
	ada Prospective Cohort	Cohort	previously hospitalized follo cases and 38 previously test non-hospitalized cases) pati ± 10 \bullet Age Range: ≥ 18 hosp \bullet Mean Age*:59.1 \pm 13.5	Mean 119.9 \pm 16.2 days following first positive test for hospitalized patients, and mean 129 \pm 16.5 days for non- hospitalized patients	RT-PCR	Subjective self-report via clinical follow-up	 71.4% (45/63) reported fatigue (72% [18/25] hospitalized and 71.1% [27/38] non-hospitalized) 		
				 Mean Age**: 42.2 ± 12.9 Sex (%F/%M)*: 36.0/64.0 Sex (%F/%M)**:47.4/52.6 *pertains to hospitalized cohort**pertains to non- 					
Amin- Chowdhury et al., 2021 ^a	England	land Prospective Cohort		hospitalized cohort $N = 140$ (clinical and non-clinical healthcare workers) • Age Range: ≥ 20	Median 7.5 (7.1–7.8) months following COVID- 19 diagnosis	Serologyand RT-PCR -	Subjective self-report via online questionnaire	 cases reported fatigue/tiredness after exertion 35.0% (49/140) of 	 Female sex was associated with unusual fatigue and forgetfulness Having underlying
				 Median Age*: 41 (31–52) Sex* (%F/%M): 71.3/ 28.7 				 cases reported forgetfulness 27.9% (39/140) of cases reported confusion/brain fog/ trouble focusing attention 20.7% (29/140) of cases reported short- term memory loss 15.7% (22/140) of cases reported trouble trying to form words 	comorbidities was associated with unusual fatigue and confusion
Arnold et al., 2020	United Kingdom	Prospective Cohort	Diagnostic and Severity markers of COVID-19 to Enable Rapid triage (DISCOVER) study (Bristol)	N = 110 (all previouslyhospitalized cases) ● Age Range: ≥18 ● Median Age*: 47(32-61) ● Median Age**: 57(48-67) ● Median Age***: 62(54-71) ● Sex*(%F/%M): 38.2/ 61.8 *mild cases**moderatecases***severe cases	Median 90 (80–97) days following onset of symptoms	RT-PCR or clinico- radiological diagnosis	Objective assessment via laboratory testing (inflammatory parameters), SF-36 (quality of life), as well as subjective self-report via questionnaire	 39% (43/110) reported fatigue SF-36 scores demonstrated a reduction in reported health status across all domains as compared with age-matched population norms 1.8% (2/110) exhibited CRP levels > 10 mg/L 	 Physical SF-36 scores were significantly lower in patients wit severe COVID-19 compared with mild, moderate
Augustin et al., 2021	Germany	Prospective Cohort	University Hospital Cologne (recruited through public media)	N = 353 • Age Range: $age^* \ge 18$ • Median Age*: 43 (31-54)	Median 6.8 (6–8) months following onset of symptoms	RT-PCR	Subjective self-report via systematic questionnaires and evaluation by physician	• 14.7% (52/353) of individuals reported fatigue	 Anosmia and diarrhe during acute COVID- 19, as well as a lowe baseline level of SARS-CoV-2 IgG, were

Study	Country	Study Design	Sample Source	Sample Characteristics	Follow-up Duration	Ascertainment of COVID-19	Ascertainment of Outcomes	Results	Factors Associated with persistent symptoms
				• Sex* (%F/%M): 53.5/ 46.5 *pertains to initial cohort of 958 COVID-19 conva- lescent individuals, which were not all fol- lowed up					 associated with higherisk of developing long-term symptoms Male sex was associated with a lower risk of post-COVID syndrome Female patients and individuals with a prior diagnosis of depression or anxiety had a higher risk of suffering from fatigue
Breton et al., 2021	USA	Retrospective Cohort	Residents of greater New York City Tristate Region	 N = 41 cases (including 8 previously hospitalized) Age Range: 24–73 Median Age: 45 Sex (%F/%M): 36.6/63.4 	Mean 6.1 months following COVID-19 infection	RT-PCR	Objective assessment via laboratory testing (flow cytometry; intracellular cytokine staining)	 Antigen-specific CD4 T cells expressing IL-2, IFN-γ, and TNF-α	
Buonsenso et al., 2021	Italy	Cross-sectional	Fondazione Policlinico Universitario Agostino Gemelli (part of ISARIC)	N = 68 children (including 6 previously hospitalized and 3 in pediatric ICU) • Age Range: ≤ 18 • Mean Age: 11 ± 4.4 • Sex (%F/%M): 48.1 /51.9	Mean 162.5 \pm 113.7 days following diagnosis	RT-PCR	Subjective self-report via phone interview or outpatient assessment	•	
Xirulli et al., 2020 ^a	USA	Prospective Cohort	Helix DNA Discovery Project and the Healthy NevadaProject	 N = 357 (including 9 previously hospitalized cases) Age Range*: ≥18 Median Age*: 56 Sex* (%F/%M): 64.1/35.9 *pertains to entire cohort, including both COVID-19 positive and negative 	90 days following onset of symptoms	Laboratory test	Subjective self-report via online questionnaires	 7.96% (9/113) reported fatigue 7.50% (9/120) reported decreased alertness 8.20% (10/122) reported memory loss 12.61% (15/119) reported difficulty concentrating 	 Initial dyspnea and a large number of initia symptoms were associated with long COVID symptoms after 30 days Individuals who wermore ill at the onset of symptoms are at higher risk of long-term symptoms There was an association of between anxiety disorders and autoimmune/ rheumatologic disorders and long-term symptoms Female patients were more likely to have long-term symptoms
Darley et al., 2021 ^a	Australia	Prospective Cohort	St. Vincent's Hospital Sydney (ADAPT study)	<i>N</i> = 99 ● Age Range: ≥18	Median 240 (227–256) days following infection	RT-PCR	Objective assessment via SPHERE-34 (fatigue, cognitive function)	• 23% (15/65) reported fatigue	 long-term symptoms Female sex and hospitalization for acute COVID-19 wer (continued on next page)

86

99

Study	Country	Study Design	Sample Source	Sample Characteristics	Follow-up Duration	Ascertainment of COVID-19	Ascertainment of Outcomes	Results	Factors Associated with persistent symptoms
								 Mean EQ5D-5L VAS changed from 81 ± 17 (pre-COVID-19) to 72 ± 20 (post-COVID-19) 1/5 of the population reached the threshold for a new disability with at least one domain coded as "a lot of difficulty" or "cannot do it all" on the WG-SS 	
/lice et al., 2021	Turkey	Retrospective Cohort	Hospital in Turkey	 N = 266 (all previously hospitalized cases, including 11 in ICU) Age Range: ≥18 Mean Age: 56.96 ± 16.62 Sex (%F/%M): 51.5/ 48.5 	Mean 99.80 \pm 26.16 days following discharge	RT-PCR or CT	Subjective self-report via telephone survey		 Persistent symptom were observed at a higher rate in cases with comorbidity Statistically significant relationship betwee high admission CRF level and presence of persistent symptom
ernández-de- Las-Peñas (1) et al., 2021	Spain	Retrospective Cohort	Four public hospitals in Madrid	 N = 1142 (all previously hospitalized cases) Age Range: N/A Mean Age: 61 ± 17 Sex (%F/%M): 47.5/52.5 	Mean 7.0 \pm 0.6 months following discharge	RT-PCR	Subjective self-report via systematic telephone interview conducted by trained researchers	 60.8% (695/1142) reported fatigue 19.0% (217/1142) reported memory loss 9.6% (110/1142) reported brain fog 8.1% (93/1142) reported attention disorders 	 Women reported fatigue more frequently than me Female sex, numbe days at hospital, previous comorbidities, and number of symptor at hospital admissi were associated wi more long COVID symptoms
rnández-de- Las-Peñas (2) et al., 2021	Spain	Retrospective Cohort	Three public hospitals in Madrid	 N = 1950 (all previously hospitalized cases, including 129 in the ICU) Age Range: N/A Mean Age: 61 ± 16 Sex (%F/%M): 46.9/53.1 	Mean 11.2 \pm 0.5 months after hospital discharge	RT-PCR and radiological findings	Self-report via systematic telephone interview conducted by trained healthcare professionals	 61.4% (1206/1950) reported fatigue 16% (6/38) reported no longer being able to participate in a sport or recreational activity because of their ongoing symptoms 	
errucci et al., 2021	Italy	Prospective Cohort	Non-intensive COVID units of the ASST Santi Paolo e Carlo hospitals	 N = 38 (all previously hospitalized cases in non-intensive wards) Age Range: 22–74 Mean Age: 53.45 ± 12.64 Sex (%F/%M): 28.9/71.1 	Mean 4.43 ± 1.22 months following discharge	RT-PCR	Objectively assessed via MoCA (cognitive function), BRB-NT (neurological battery of tests for cognition), SSD (fatigue)	 50% (15/30) reported a moderate to severe increase in fatigability 60.5% (23/38) obtained scores below Italian normative cut- offs in at least one task of the BRB-NT [exhibited cognitive abnormalities] 42% (16/38) demonstrated slowing 	 Females more frequently reported subjective decline i cognitive performance following hospitalization Participants aged ≥ 55 obtained lower scores in all measuu of verbal memory,

F. Ceban et al.

Study	Country	Study Design	Sample Source	Sample Characteristics	Follow-up Duration	Ascertainment of COVID-19	Ascertainment of Outcomes	Results	Factors Associated with persistent symptoms
								of cognitive processing speed, as evidenced by low SDMT scores • 20% (8/38) demonstrated long- term verbal and spatial memory dysfunctions • 26.7% (8/30) reported a moderate to severe increase in forgetfulness and lack of concentration • 23.3% (7/30) reported a moderate to severe increase in time needed to perform tasks such as reading/writing documents • 20% (6/30) reported moderate to severe difficulties in learning new skills or procedures	when compared to those aged < 55 • ARDS at hospitalization was associated with worse verbal memory performance and worse delayed verbal recall performance
Fortini et al., 2021	Italy	Prospective Cohort	San Giovanni di Dio Hospital	 N = 59 (all previously hospitalized cases in non-intensive ward) Age Range: N/A Mean Age: 68.2 ± 12.8 Sex (%F/%M): 47.5/ 52.5 	Median 123 (116–145) days following discharge	RT-PCR	Objective assessment via laboratory testing (inflammatory parameters), as well as subjective self-report via self-administered questionnaire	 42.4% (25/59) reported fatigue 13.6% (8/59) reported confusion 32.2% (19/59) exhibited elevated D- dimer levels 32.2% (19.59) exhibited elevated IL- 	• No significant correlation between the values of inflammatory parameters and patient-reported symptoms was detec- ted by the multivari- able logistic
roidure et al., 2021	Belgium	Prospective Cohort	Hospital in Belgium	 N = 126 patients (all previously hospitalized and/or ICU cases) Age Range: N/A Median Age: 60 (53-68) 	Median 95 (86–107) days following infection	RT-PCR and lung HRTC or chest X-ray	Subjective self-report via clinical assessment	 6 levels 25% (32/126) reported ongoing fatigue 	regression analysis
Frontera et al., 2021	USA	Prospective Cohort	Four NYC area hospitals	• Sex (%F/%M): 59/41 N = 382 (all previously hospitalized cases including 196 neurologic cases, 67 of which were admitted to the ICU, and 186 cases without neurological disorders during hospitalization, 54 of which were admitted to the ICU)	Median 6.7 (6.5–6.8) months following onset of symptoms	RT-PCR	Objective assessment via MoCA (cognitive function), Barthel index (functional impairment), as well as subjective self- report via telephone questionnaire	reported worse than average fatigue, operationalized as T-	 Patients diagnosed with new neurological complications during hospitalization for COVID-19 had a 2- fold increased odds of worse 6-month func- tional outcome (as measured by the modified Rankin Score)

101

102

Study	Country	Study Design	Sample Source	Sample Characteristics	Follow-up Duration	Ascertainment of COVID-19	Ascertainment of Outcomes	Results	Factors Associated with persistent symptoms
				 Age Range*: ≥18 Median Age*: 68 (55-77) Sex* (%F/%M): 65/35 Age Range*: ≥18 Median Age*: 69 (57-78) Sex** (%F/%M): 65/ 35 *neurologic COVID-19 cohort**non-neurologic COVID-19 cohort 				 52.6% (81/154) of those who were working premorbidly were able to return to work 44.11% (134/304) could not independently perform some basic activities of daily living, operationalized as Barthel index < 100 	
García-Abellán et al., 2021 ^a	Spain	Prospective Cohort	Hospital General Universitario de Elche	 N = 116 (all previously hospitalized cases, including 15 previously admitted to ICU) Age Range: N/A Median Age*: 66 (57–76) Sex* (%F/%M): 50/50 *pertains to patients reporting symptoms at 6-month follow-up 	6 months following discharge	RT-PCR and serology	Objective assessment via laboratory testing (immunological parameters), and subjective self-report via CSQ (fatigue) during clinical visit	 I0.3% (12/116) reported fatigue Median serum IL-6: 3 (1.8–5.1) pg/mL Median serum CRP: 1 (0.4–5.1) mg/L Median serum D- dimer: 0.4 (0.2–0.7) mcg/mL 	 Patients with the highest CSQ scores showed lower CRP levels on admission and weaker initial antibody response Female sex predicted persistent symptoms Post-COVID syndrome was associated with additional distinctive innate and adaptive immune traits, consisting of a weaker initial inflammatory response, evidenced by lower baseline levels of CRP and ferritin Patients with midterm lasting symptoms [follow up at 2 months] showed persistent residual inflammation
Garrigues et al., 2020	France	Retrospective Cohort	Beaujon Hospital, COVID-19 Unit	 N = 120 (all previously hospitalized cases, including 24 in ICU that underwent mechanical ventilation) Age Range: N/A Mean Age: 63.2 ± 15.7 Sex (%F/%M): 37.5/ 62.5 	Mean 110.9 days \pm 11.1 following hospital admission	RT-PCR and/or chest CT	Objective assessment via EQ-5D-5L (quality of life), as well as subjective self-report via telephone questionnaire conducted by trained physicians	reported fatigue	(continued on next page)

Study	Country	Study Design	Sample Source	Sample Characteristics	Follow-up Duration	Ascertainment of COVID-19	Ascertainment of Outcomes	Results	Factors Associated with persistent symptoms
								• EQ-VAS mean score of 70.3 ± 21.5, and EQ- 5D index mean score of 0.86 ± 0.20	
3hosn et al., 2021	France	Prospective Cohort	Institut National de la Santé Et de la Recherche Médicale	 N = 1137 (all previously hospitalized cases, including 288 in ICU) Age Range: N/A Median Age: 61 (51–71) Sex (%F/%M): 37/63 	3 and 6 (median 194 [188–205] days) months following hospital admission	RT-PCR	Subjective self-report via physician visit	 57% (538/944) reported fatigue at month 3 38% (404/1063) reported fatigue at month 6 29% (125/431) of those who had a professional occupation had not returned to work at 6 months 	• Presence of 3 + symptoms at 6-month follow-up was associ- ated with female sex and having 3 + symptoms at admission
ionzález et al., 2021	Spain	Prospective Cohort	Hospital Universitary Arnau de Vilanova	 <i>N</i> = 62 (all previously ICU cases) Age Range: ≥18 Median Age: 60 (48-65) Sex (%F/%M): 25.8/74.2 	3 months following discharge	RT-PCR	Objective assessment via SF-12 (quality of life), as well as subjective self- report	 29.5% (16/62) reported muscular fatigue SF-12 Physical score median: 45.9 (36.1-54.4) SF-12 Mental score median: 55.8 (40.6-58.0) SF-12 showed mean scores that were substantially lower than those of healthy people, those with other chronic diseases, and healthy Spanish people 	
ionzález- Hermosillo et al., 2021	Mexico	Prospective Cohort	Instituto Nacional de Cardiología Ignacio Chávez	 N = 130 (all previously hospitalized cases) Age Range: ≥18 Mean Age: 51 ± 14 Sex (%F/%M): 36.4/63.6 	3 and 6 (mean 270 \pm 32 days) months following discharge	RT-PCR	Subjective self-report via telephone questionnaire based on ME/CFS International Consensus Criteria	 53% (69/130) reported fatigue that did not exist before COVID-19 at 3-month follow-up (40.5% [28/130] females re- ported fatigue compared to 27.8% [17/130] without fatigue) 46.9% (61/130) reported fatigue that did not exist before COVID-19 at 6-month follow-up 23% (30/130) reported concentration impairment that did not exist before 	 Patients with fatigue at 3-month follow-up were older compared with those without fatigue, and had a longer length of hos- pital stay Age 40–50 years old was associated with fatigue There was a significantly higher prevalence of persisting symptoms in those with fatigue
									(continued on next p

F. Ceban et al.

Study	Country	Study Design	Sample Source	Sample Characteristics	Follow-up Duration	Ascertainment of COVID-19	Ascertainment of Outcomes	Results	Factors Associated with persistent symptoms
								COVID-19 at 3-month follow-up 45.4% (59/130) reported short-term memory loss that did not exist before COVID-19 at 3-month	
avervall et al., 2021	Sweden	Prospective Cohort	Danderyd Hospital	 N = 1395 health care professionals (mild cases, <i>hospitalization status not specified</i>) Age Range: ≥18 Median Age: 43 (33–52) Sex (%F/%M): 83/17 	8 months following onset of symptoms	Serology	Objective assessment via Sheehan Disability Scale (functional outcomes), as well as subjective self- report via smartphone app questionnaire	 follow-up 6.8% (22/323) reported fatigue after 4 months, and 4.0% (13/323) reported fatigue after 8 months 1.9% (6/323) reported concentration impairment after 4 months, and 0.6% (2/ 323) reported concentration 1.2% (4/323) reported memory impairment after 4 months, and 0.3% (1/ 323) reported memory impairment after 8 months 8% reported that long- term symptoms moderately to mark- edly disrupted work life 15% reported that long-term symptoms moderately to mark- edly disrupted social life 12% long-term symp- toms moderately to markedly disrupted home life 11% long-term symp- toms moderately to markedly disruption in any Sheehan Disability Scale 	
uang et al., 2021	China	Ambidirectional Cohort	Jin Yin-tan Hospital	N = 1733 patients (all previously hospitalized cases, including 76 previously admitted to ICU)	Median 186 (175–199) days following onset of symptoms	Laboratory testing	Objective assessment viaEQ-5D-3L (quality of life), as well as subjective self-report via questionnaire	 category 63% (1038/1655) reported fatigue/ muscle weakness Median quality of life score was 80/100 (70–90), with 7% 	 Increased age and severity of acute disease were positively associated with fatigue and muscle weakness

Table	2 (continued)	

udy Coun	try	Study Design	Sample Source	Sample Characteristics	Follow-up Duration	Ascertainment of COVID-19	Ascertainment of Outcomes	Results	Factors Associated with persistent symptoms
				 Age Range: ≥18 Median Age: 57.0 (47.0–65.0) Sex (%F/%M): 48/52 				(113/1622) reporting mobility problems, 1% (11/1622) reporting personal care problems, 2% (25/1611) reporting problems with usual activity, and 27% (431/1616) reporting pain or discomfort	 Women reported a higher percentage of symptoms at follow- up
cobson et al., USA 2021		Prospective Cohort	Patients from enrolled clinical trials at Stanford University	 N = 118 participants (including 22 previously hospitalized cases, of which 11 were previously admitted to ICU) Age Range: N/A Mean Age: 43.3 ± 14.4 Sex (%F/%M): 46.6/ 53.4 	Mean 119.3 \pm 33.0 days following diagnosis	RT-PCR	Objective assessment via WPAI (functional outcomes), as well as subjective self-report via questionnaire		 Older age and hospitalization were associated with higher odds of any activity impairment Presence of fatigue was associated with long-term activity impairment (in multi- variate analysis)

105

Johnsen et al., 2021	Denmark							 non-hospitalized patients 50.9% (54/106) overall reported any activity impairment due to health, 	
		Cross-sectional	Copenhagen University Hospital at Bispebjerg	 N = 57 (34 previously hospitalized cases and 34 non-hospitalized cases) Age Range: N/A Mean Age: 51 ± 13 Sex (%F/%M): 51/49 	3 months following discharge/resolution of acute disease	RT-PCR	Objective assessment via WPAI, PCFS (functional outcomes), EQ-5D-5L (quality of life), and CFQ, SCIP-D, and TMT-B (cognitive function)	 including 73.7% (14/ 19) of previously hospitalized patients and 46.0% (40/87) of non-hospitalized patients 58% (26/45) demonstrated clinically significant cognitive impairment (66% [19/29] of previously hospitalized, 44% [8/ 19] non-hospitalized) Median EQ-VAS: 70 (55,81) Percent work time missed due to health: 0 (0,24) Percent impairment while working due to health: 20 (9, 45) Percent overall work impairment due to health: 23 (6, 66) Percent activity impairment due to health: 30 (10,60) 	
Kashif et al., 2021 ^a	Pakistan	Prospective Cohort	Hameed Latif Hospital	 N = 242 (including hospitalized cases and non-hospitalized cases who sought healthcare at hospital) Age Range: 18–65 Mean Age: 35.64 ± 12.57 Sex (%F/%M): 30.6/ 69.4 	3 months following discharge or onset of symptoms	RT-PCR	Subjective self-report via telephone interview	 41.7% (101/242) reported fatigue 	 Prolonged symptoms months after recover; from mild COVID-19 were associated with female sex
dein et al., 2021	Israel	Retrospective Cohort	Israeli residents recruited through social media and word of mouth	N = 103 (all mild symptomatic cases; asymptomatic excluded, <i>hospitalization status not</i> specified) ● Age Range: ≥18 ● Mean Age: 35 ± 12 ● Sex (%F/%M): 40/60	6 months following onset of symptoms	RT-PCR	Subjective self-report via telephone questionnaire	 22% (23/103) reported fatigue 6% (6/103) reported memory disorders 1% (1/103) reported concentration disorders 	

107

Study	Country	Study Design	Sample Source	Sample Characteristics	Follow-up Duration	Ascertainment of COVID-19	Ascertainment of Outcomes	Results	Factors Associated with persistent symptoms
Latronico et al., 2021 ^a	Italy	Prospective Cohort	3 ICUs of the Spedali Civili University Hospital	 N = 55 (all cases which were previously admitted to ICU with ARDS) Age Range: ≥18 Median Age: 59 (54-64) Sex*(%F/%M): 17/83 *pertains to a larger cohort of 163 admitted to ICU, which were not all followed up 	3 and 6 months following discharge	RT-PCR	Objective assessment via FSS (fatigue), PICS, MoCA (cognitive function), SF-36 (quality of life), Barthel Index (functional outcomes)	 36% (20/55) reported severe fatigue, operationalized as FSS score 36 + at 3 months 36% (16/45) reported severe fatigue, operationalized as FSS score 36 + at 6 months 22% (12/55) exhibited mild-severe cognitive impairment according to MoCA at 3 months 26% (10/38) exhibited mild cognitive impairment according to MoCA at 6 months 33% (18/55) of patients exhibited mild cognitive impairment according to SF-36 65% (36/55) had returned to work with the same pre-COVID-19 employment status (5% (3/55) with worsening employment status, 5% (3/55) had returned to work with the same pre-COVID-19 employment status (fewer hours worked per week), and 32% (18/55) had not returned to work 5% (3/55) reported significant derangement in social function, operationalized as > 2 SD on SF-36 domain at 3 months, and 3% (1/36) at 6 months 	
Leth et al., 2021	eth et al., 2021 Denmark	Cohort Infectious Diseases, H Aarhus University i Hospital a	N = 49 (all previouslyhospitalized cases,including 6 previouslyadmitted to ICU) ● Age Range: ≥18 ● Median Age: 58(48–73) ● Sex (%F/%M): 57/43	Median 128 (98–148) days following discharge	RT-PCR	Objective assessment via OMC (cognitive function), as well as subjective self-report via in person or telephonequestionnaire		 Significantly reduced OR of challenged concentration if the patient was a current or previous smoker (continued on next page) 	

Table 2 (a	continued)
------------	-------------

Study	Country	Study Design	Sample Source	Sample Characteristics	Follow-up Duration	Ascertainment of COVID-19	Ascertainment of Outcomes	Results	Factors Associated with persistent symptoms
Liang et al., 2020	China	Prospective Cohort	Wuhan Union Hospital	N = 76 (all previously hospitalized, including 65 healthcare worker cases, and 7 previously admitted to ICU) • Age Range: 24–76	3 months following discharge	RT-PCR	Subjective self-report via questionnaire	● 59% (45/76) reported fatigue	• Serum troponin-I levels during acute illness showed high correlation with fa- tigue after hospital discharge
				 Mean Age: 41.3 ± 13.8 Sex (%F/%M): 72.4/ 27.6 					
Liyanage-Don et al., 2021	USA	Prospective Cohort	2 Columbia University Hospitals	$N = 153 \text{ (all previously} \\ \text{hospitalized cases)}$ ● Age Range: ≥18 ● Mean Age: 54.5 ± 16.7 ● Sex (%F/%M): 39.9/	Median 3.7 (2.6–5.7) months following discharge	RT-PCR	Subjective self-report via online or telephone questionnaire	 20.3% (31/153) reported fatigue 	 Patients with PTSD and/or depression were more likely to report fatigue
Logue et al., 2021	USA	Prospective Cohort	University of Washington	 60.1 N = 177 (145 previously outpatient cases, 16 previously hospitalized) Age Range: 18–94 Mean Age: 48.0 Sex (%F/%M): 57.1/42.9 	Median 169 (range 31–300) days following onset of acute COVID-19	RT-PCR	Subjective self-report via electronic questionnaire	 13.6% (24/177) reported fatigue 2.3% (4/177) reported brain fog 29.9% (53/177) reported worsened health-related quality of life compared with baseline measurements 	
Mattioli et al., 2021	Italy	Prospective Cohort	Unit of Occupational Health, General University Hospital of Brescia	 N = 150 (120 healthcare workers cases, including 2 with previous respiratory failure requiring hospitalization) and 30 healthcare worker healthy controls) Age Range: N/A Median Age*: 47.86 	COVID-19 diagnosis	RT-PCR	Objective assessment via MMSE (cognitive function), as well as subjective self-report via clinical diagnostic assessment (including questionnaire)	 15% (18/120) reported fatigue 11.6% (14/120) reported attention difficulties 6.6% (8/120) reported memory difficulties MMSE results were normal in both cases 	
				(26–65) ● Sex* (%F/%M): 75/25 *pertains to cases				(median 29; 27–30), and controls (median 29; 28–30), operationalized as MMSE scores 24+	
Mazza et al., 2021	Italy	Prospective Cohort	IRCCS San Raffaele Hospital	 N = 226 (including 177 hospitalized cases and 49 cases treated at home) Age Range: 26–87 Mean Age: 58.5 ± 12.8 Sex (%F/%M): 34/66 	Mean 90.1 \pm 13.4 days following discharge	RT-PCR	Objective assessment via BACS (cognitive function), as well as subjective self-report via questionnaire		 Baseline systemic inflammation predicted cognitive impairment at follow- up

109

Study	Country	Study Design	Sample Source	Sample Characteristics	Follow-up Duration	Ascertainment of COVID-19	Ascertainment of Outcomes	Results	Factors Associated with persistent symptoms
								 24% (30/126) scored poorly in the domain of working memory (15% [11/73] males; 37% [19/51] females) 33% (43/130) scored poorly in the domain of attention and Information processing (38% [29/76] males; 27% [14/52] females) 55% (72/130) scored poorly in the domain of psychomotor coordination (59% [43/73] males; 56% [29/52] females) 46% (60/130) scored poorly in the domain of executive functions (46% [32/70] males; 56% [28/50] females) 	
ei et al., 2021	China	Prospective Cohort	Wuhan No.1 Hospital, Wuchang Hospital, Zhongshang Hospital, and Hubei Province Hospital	 N = 3,677 (all previously hospitalized cases) Age Range: 10–98 Median Age: 59 (47–68) Sex (%F/%M): 54.1/45.9 	Median 144 (135–157) days following discharge	RT-PCR	Subjective self-report during clinical follow-up	 1.5% (55/3677) reported fatigue 1.7% (64/3677) reported reduction in physical strength 1.3% (49/3677) reported headache/ dizziness/poor memory 0.03% (1/3677) reported confusion 	 The majority of death during follow-up wermale The risk of the development of physical abnormalities was independent of age and sex The incidence of pos COVID-19 sequelae elderly COVID-19 sequelae elderly COVID-19 survivors (age ≥ 60 years) was slightly increased compared to that of young survivors (age < 60)
enges et al., 2021 ^ª	Switzerland	Cross-sectional	General Population of Zurich (Zurich SARS-CoV-2 Cohort Study)	N = 431 (including 81 previously hospitalized cases, of which 10 were in ICU, and 350 non- hospitalized cases) ● Age Range: ≥18 Median Age: 47 (33-58) ● Sex (%F/%M): 49.7/ 50.3	Median 220 (181–232) days following diagnosis	RT-PCR	Objective assessment via FAS (fatigue), EQ-5D-5L (quality of life), as well as subjective self-report via online survey conducted via REDcap	 54.7% (233/426) reported fatigue measured by FAS (59.2% [125/211] of females and 50.2% [108/215] males; 55.9% [195/349] non-hospitalized and 49.4% [38/77] hospitalized) Median FAS score: 22 (19-25) 53% (225/431) reported problems in 	 Younger individuals and females more frequently reported symptoms of fatigue A higher proportion female participants and initially hospitalized individuals reported not having fully recovered Severe to very sever acute symptoms and the presence of co- morbidities were

F. Ceban et al.

Miskowiak et al., Do 2021	Denmark	Prospective Cohort	Bispebjerg Hospital (IMPACT-COVID study)	N = 129 (29 previously hospitalized cases, and 100 matched healthy controls)	3–4 months following hospital discharge	RT-PCR and serology	Objective assessment via SCIP-D, TMT-B, and CFQ	at least one EQ-5D-5L dimension • 0.5% (2/430) reported problems with self-care • 10.5% (45/230) reported problems with daily activity • Median EQ-5D-5L: 0.89 (0.85–1.00) • 65% (19/29) of	 associated with non-recovery More global cognitive
	Denmark		(IMPACT-COVID	hospitalized cases, and 100 matched healthy		RT-PCR and serology			 More global cognitiv
				 Age Range: N/A Mean Age (SD): 56.2 ± 10.6 Sex (%F/%M): 41/59 			(cognitive function), and EQ-5D-5L (quality of life), as well as subjective self-report via questionnaire	 patients exhibited clinically-significant cognitive impairment, operationalized as SCIP total scores ≥ 0.5 SD below the demo- graphically adjusted predicted scores 83% (19/23) of patients reported subjective cognitive difficulties in daily life, operationalized as CFQ scores ≥ 43, and subjective cognitive complaints (CFQ Total scores) correlated significantly with objectively measured global cognitive impairments 0% reported work time missed due to health (absenteeism) 10% reported overall work impairment due to health 20% reported activity impairment due to health 	 impairment and executive dysfunction both correlated with greater disability within EQ-5D 'usual activity' and 'anxiety and depression Greater objective cognitive impairment were associated with more subjective cognitive difficulties, absenteeism, and poorer quality of life Poorer pulmonary function and more respiratory symptom: after recovery were associated with more cognitive impairment
Miyazato et al., Ja 2021	Japan	Cross-sectional	Disease Control and Prevention Center and National Center for Global Health and Medicine	hospitalized cases)	Mean 129 ± 21 days following onset of symptoms	RT-PCR	Subjective self-report via structured telephone interview conducted by the investigators	 9.5% (6/63) reported fatigue which was not chronic before onset of COVID-19 	

111

Study	Country	Study Design	Sample Source	Sample Characteristics	Follow-up Duration	Ascertainment of COVID-19	Ascertainment of Outcomes	Results	Factors Associated with persistent symptoms
Morin et al., 2021	France	Prospective Cohort	Bicètre Hospital (Paris-Saclay University hospitals)	 N = 478 (all previously hospitalized cases, including 142 previously admitted to ICU) Age Range: ≥18 Mean Age: 60.9 ± 16 Sex (%F/%M): 42.1/57.9 	Median 113 (94–128) days following discharge	RT-PCR and/or CT scan	Objective assessment via Q3PC, MoCA, d-2R (cognitive function), MFI (fatigue) during in-clinic/ ambulatory assessment, as well as subjective self- report via telephone questionnaire	reported memory difficulties	
Munblit et al., 2021 ^a	Russia	Prospective Cohort	Sechenov University Hospital Network	 N = 2649 (all previously hospitalized cases) Age Range: ≥18 Median Age: 56 (46-66) Sex (%F/%M): 51.1/49.9 	Median 217.5 (200.4–235.5) days following discharge	RT-PCR or clinically diagnosed	Objective assessment via EQ-5D-5L (quality of life), as well as subjective self-report via telephone interview performed by medical students using	 21.2% (551/2599) reported fatigue 9.1% (237/2597) reported forgetfulness Participants reported lower scores (poorer health state) at follow up (median 80 [65–90]) compared to pre-COVID (median 85 [70–95]), p < 0.001) Significant worsening of health was found across all symptom categories, whereas no statistically significant reduction in health state was found among patients reporting no 	• Female sex was associated with chronic fatigue
O'Keefe et al., 2021 ^a	USA	Cross-sectional	Emory Healthcare's Virtual Outpatient Management Clinic (VOMC)	 N = 198 participants discharged from outpatient telemedicine program for COVID-19 (including 35 previously hospitalized cases) Age Range: 18–84 	Median 119 (range 26–220) days following diagnosis	RT-PCR	Subjective self-report via e-mail survey	 symptoms 21.2% (42/198) reported fatigue 90-220 days after the acute COVID-19 phase 13.6% (27/198) reported mental fog 90-220 days after the acute COVID-19 phase 	• Moderate to severe acute COVID-19, fe- male sex, and middle age were highly asso- ciated with persistent symptoms

Study	Country	Study Design	Sample Source	Sample Characteristics	Follow-up Duration	Ascertainment of COVID-19	Ascertainment of Outcomes	Results	Factors Associated with persistent symptoms
				 Median Age: 44 ± 14 Sex (%F/%M): 74.2/ 25.8 					
)ng et al., 2021	Singapore	Prospective Cohort	4 public hospitals in Singapore	 N = 199 (175 prior cases, all of which were previously hospitalized, and 24 healthy controls) Age Range: N/A Median Age: 44 Sex (%F/%M): 24.6/75.4 	Median 181 (103–191) days following discharge	RT-PCR	Objective assessed via immunoassay (inflammatory parameters), as well as subjective self-report	 1.7% (2/120) reported fatigue at 180 days follow-up 0.8% (1/120) reported memory loss at 180 days follow-up Patients exhibited elevated levels of MIP- 1β, SDF-1α, eotaxin, IL-12p70, SCF, IL-1B, IL-17A, BDNF, and VEGF, and had sys- temic cytokine pro- files distinct from healthy controls regardless of severity of initial illness The levels of inflammation- associated IL-6, IP-10, IL-18, and MCP-1 significantly decreased from day 90 to 180 	 Age > 65 years, non- Chinese ethnicity, and severity of acute infection were associ- ated with increased likelihood of persis- tent symptoms There were no significant differences in the levels of immune mediators between patients with different [acute] disease severity
Drrù et al., 2021	Italy	Cross-sectional	Individuals living in Italy (recruited through the web)	 N = 152 (hospitalization status not specified) Age Range: ≥18 Mean age: N/A Sex* (%F/%M): 82.05/17.95 *pertains to a larger dataset of 507, which do not all follow our inclusion criteria 	At least 3 months following positive test	RT-PCR	Objective assessment via EQ-5D-3L (quality of life), as well as subjective self-report via online survey	 74.34% (113/152) reported fatigue 	
Osmanov et al., 2021 ^a	Russia	Prospective Cohort	Z.A. Bashlyaeva Children's Municipal Clinical Hospital	$N = 518$ children (all previously hospitalized cases)• Age Range: ≤ 18 • Median Age: 10.4 (3-15.2)• Sex (%F/%M): $52.1/$ 47.9	Median 256 (223–271) days following discharge	RT-PCR	Subjective self-report via telephone surveyconducted by medical students		 Older age group and pre-existent allergic disease were associ- ated with persistent symptoms

Study	Country	Study Design	Sample Source	Sample Characteristics	Follow-up Duration	Ascertainment of COVID-19	Ascertainment of Outcomes	Results	Factors Associated with persistent symptoms
								significantly declined when compared to before COVID-19 onset (from 90 [80–100]) to 82.5 [70–93.8])	
eghin et al., 2021	Italy	Prospective Cohort	Udine Hospital	 <i>N</i> = 599 (442 outpatient cases, 157 previously hospitalized, including 23 in ICU) Age Range: 18–94 Mean Age: 53 ± 15.8 Sex (%F/%M): 53.4/46.6 	Median 191 (172–204) days following onset of acute COVID-19	Nucleic acid amplification tests and/ or clinical diagnosis	Subjective self-report via telephone questionnaire administered by trained nurses	 13.1% (78/599) reported fatigue 	 Female sex, a proportional increase in the number of symptoms at onset of COVID-19, and ICU admission were inde- pendent risk factors for post-COVID-19 syndrome Persistence of fatigue was significantly associated with disease severity at onset
Pereira et al., 2021	United Kingdom	Prospective Cohort	Hospital in North West London	 N = 38 hospital staff (35 symptomatic and 3 asymptomatic cases, all not requiring hospitalization) Age Range: 23–67 Mean Age: 43 Sex (%F/%M): 84/16 	7–8 months following symptom onset	RT-PCR	Subjective self-report via questionnaire based on NICE guidelines	 57% (22/38) reported fatigue 24% (9/38) reported difficulty concentrating 16% (6/38) reported no longer being able to participate in a sport or recreational activity due to their ongoing symptoms 	
Petersen et al., 2021	Faroe Islands	Prospective Cohort	The Faroese Hospital System	 <i>N</i> = 180 (all outpatient cases) Age Range: 0–93 Mean Age: 39.9 ± 19.4 Sex (%F/%M): 54.4/45.6 	Mean 125 \pm 17 days following symptom onset	RT-PCR	Objective assessment via fatigue impact scale (fatigue)	0 0 7 1	 Symptoms persisted significantly more frequently in Individuals aged 50–66 years when compared with the youngest group (0–17 years) Symptoms seemed to be more persistent with increasing age
Pilotto et al., 2021 ^a	Italy	Prospective Cohort	Spedali Civili Brescia Hospital	 N = 165 (all previously hospitalized non-neurological cases) Age Range: N/A Mean Age: 64.8 ± 12.6 Sex (%F/%M): 30.3/69.7 	6 months following hospitalization	RT-PCR	Objective assessment via MoCA (cognitive function), as well as subjective self-report via clinical follow-up checklist	 33.9% (56/165) reported fatigue 31.5% (52/165) reported memory/ concentration complaints 16.2% (17/105) exhibited cognitive impairment [assessed via MoCA during neurological examination] 	 Patients with moderate/severe COVID-19 reported higher number of symptoms at follow- up Premorbid comorbidities, age at admission, and severity of COVID-19 were predictors of total number of (continued on next page)

Study	Country	Study Design	Sample Source	Sample Characteristics	Follow-up Duration	Ascertainment of COVID-19	Ascertainment of Outcomes	Results	Factors Associated with persistent symptoms
Qu et al., 2021	China	Prospective Cohort		 N = 540 (all previously hospitalized cases) Age Range: 10–99 Median Age: 47.5 (37.0–57.0) Sex (%F/%M): 50/50 	3 months following discharge	RT-PCR	Objective assessment via SF-36 (quality of life), as well as subjective self- report via electronic survey form	 29.4% (159/540) reported fatigue 15.4% (83/540) had poor physical component summary scores 32.6% (176/540) had poor mental component summary scores except for the general health dimension, scores on all other dimensions of SF-36 were significantly lower than Chinese norm female patients presented with significantly lower scores of all dimensions of SF-36 	 symptoms reported at follow-up Female sex, older age, and the presence of physical symptoms after discharge [including fatigue] were risk factors for health-related quality of life scores Female patients presented with significantly lower scores of all dimensions of SF-36
Rass et al., 2021	Austria	Prospective Cohort	Department of Internal Medicine II, Medical University of Innsbruck, Zams, and Muenster	 N = 135 (31 cases previously admitted to ICU, 72 previously admitted to ward, 32 previously received mild outpatient care) Age Range: 19–87 Median Age: 56 (48–68) Sex (%F/%M): 39/61 	Median 102 (91–110) days following onset of symptoms	RT-PCR	Objective assessment via MoCA (cognitive function), SF-36-v2 (quality of life), GOSE and mRS (functional outcome), as well as subjective self-report via clinical follow-up		• Fatigue was more frequent in patients with sleep disturbances and in those with newly diagnosed neurological diseases

F.
Се
Ceban
l et
al.

Study	Country	Study Design	Sample Source	Sample Characteristics	Follow-up Duration	Ascertainment of COVID-19	Ascertainment of Outcomes	Results	Factors Associated with persistent symptoms
								 31% (28/90) exhibited an impaired SF-36 score (43% [9/ 21] ICU, 31% [16/52] with ward COVID-19, and 17% [3/18] with outpatient COVID-19) Median GOSE: 8 (7–8) Median mRS: 1 (0–1) 	
auch et al., 2021 ^a	Germany	Prospective Cohort	Life&Covid Online Cohort Study (Ludwig- Maximilians- Universität)	$N = 127 \text{ (including 116} \\ \text{outpatient cases and 11} \\ \text{inpatients)}$ ● Age Range: ≥18 ● Median Age: N/A ● Sex (%F/%M): 68.5/ 31.5	6 months following infection	RT-PCR or Serology	Subjective self-report via e-mail survey	 25% (32/127) reported fatigue (28% [24/87] females; 20% [8/40] males) 16% (20/127) reported difficulties in concentration 	 At least one symptom exertional dyspnea, and fatigue were reported more often after severe acute illness
omero-Duarte et al., 2021	Spain	Retrospective Cohort	Four hospitals in Spain	N = 797 (all previously hospitalized cases, including 81 previously admitted to ICU)	6 months following discharge	RT-PCR	Subjective self-report via questionnaire	 22.1% (176/797) reported fatigue (18.9% [81/428] males; 25.7% [95/ 369] females) 	
avarraj et al., 2021ª	USA	Prospective Cohort	University of Texas Health Science Center	 Age Range: N/A Mean Age: 63.0 ± 14.4 Sex (%F/%M): 46.3/ 53.7 N = 48 (all previously hospitalized cases) Age Range: N/A Mean Age: 50 ± 17 Sex (%F/%M): 48/52 	3 months following discharge	RT-PCR	Objective assessment via mRS (functional outcomes), BNST (cognitive function), FSS (fatigue)	 42% (19/45) exhibited fatigue symptoms, operationalized as FSS cutoff of ≥ 4 12% (5/43) exhibited cognitive deficits, 	 People with long-tern symptoms were significantly older The persistence of long-term symptoms was not associated with the severity of
								operationalized as BNST cutoff of ≤ 8 21% (10/48) scored poorly in terms of functional outcome, operationalized as mRS cutoff of ≥ 3	 acute COVID-19 symptoms Subjects with mild course of hospitalization had high incidence of symptoms, especiall fatigue
y et al., 2021	Australia	Prospective Cohort	Royal Children's Hospital	N = 151 children (including 54 asymptomatic, 91 mostly mild symptomatic cases, and 14 previously hospitalized)	3–6 months following diagnosis	RT-PCR	Subjective self-report via follow-up clinic proforma	• 2% (3/151) reported fatigue	 All children that had post-acute COVID-1 symptoms had symp tomatic acute COVII 19
			_	 Age Range: ≤18 Median Age: 3 (1-8) Sex (%F/%M): 47/53 					
hang et al., 2021	China	Prospective Cohort	Zhongnan Hospital of Wuhan University, No. 7 Hospital of	N = 796 (all previously hospitalized cases,	6 months following discharge	RT-PCR	Subjective self-report via telephone interview	 25.3% (201/796) reported fatigue (21.3% [86/392] 	 Female sex was associated with

Study	Country	Study Design	Sample Source	Sample Characteristics	Follow-up Duration	Ascertainment of COVID-19	Ascertainment of Outcomes	Results	Factors Associated with persistent symptoms
			Wuhan, Leishenshan Hospital	including 38 in ICU)				males; 29.3% [115/ 404] females)	reporting > 1 persistent symptom
				 Age Range: ≤18 Median Age: 62.0 (51.0-69.0) Sex (%F/%M): 49.2/ 50.8 					
endy et al., 2021	Egypt	Prospective Cohort	Ministry of Health and Population	N = 81 (11 previously hospitalized cases, 70 non-hospitalized cases) • Age Range: 25–40 • Mean Age: 34.03 \pm	3–5 months following recovery from COVID-19	RT-PCR	Objective assessment via MFIS (fatigue)	 64.2% (52/81) exhibited fatigue (72.7% [8/11] hospitalized; 62.9% [44/70] non- hospitalized), oper- 	
				4.9				ationalized as MFIS	
huwa et al., 2021	United Kingdom	Prospective Cohort	Coronavirus Immune Response and Clinical Outcomes (CIRCO) study based at 4 hospitals in greater Manchester	 Sex (%F/%M): 68/32 N = 83 (all previously hospitalized cases) Age Range: N/A Median Age: 60 (51.0-66.5) Sex (%F/%M): 38.6/ 61.4 	Median 158 (116.5–184.5) days following hospital admission	RT-PCR or clinical diagnosis	Objective assessment via cell culture and flow cytometry (immune parameters)	 total score ≤ 38 Moderate to severe patients demonstrated an elevation in cytokine-producing T cells (except for TNF-α + CD8 + T cells) and increased production of cytokines No significant differences in the frequency of TNF-α + B cells were observed 	 No significant increase in IFNγ + CD4 + T cells was seen when stratifyin patients for fatigue Increased production of type 1 cytokines i convalescent patient was associated with COVID-19 disease severity, (apart from for IFNγ + CD4 + T cells) The convalescent group defined by the highest proportions CD8 + T cells and typ 1 cytokine productiv was enriched in patients with a poor
mani et al., 2021	Iran	Prospective Cohort	University-affiliated hospital of Tehran	$N = 120 \text{ (all previously} \\ \text{hospitalized, including 9} \\ \text{in ICU)} \\ \bullet \text{ Age Range: N/A} \\ \bullet \text{ Mean Age: 54.62 } \\ \pm 16.94 \\ \bullet \text{ Sex (\%F/\%M): 33.3/} \\ \end{array}$	6 months following COVID-19 infection	RT-PCR or CT	Objective assessment via previously validated questionnaire based on Fukuda guidelines for CFS/EM (fatigue)	 17.5% (21/120) exhibited various fatigue levels 14.2% (17/120) qualified for CFS criteria 	outcome at follow-u Female sex was associated with an increased risk of CF ME before adjustme
kala et al., 2021	Czech Republic	Prospective Cohort	Hradec Kralove District	 66.7 N = 102 (including 15 previously hospitalized cases and 87 outpatient cases) Age Range: 10–98 Mean Age: 46.7 Sex (%F/%M): 54/46 	3 months following COVID-19 diagnosis	RT-PCR	Objective assessment via laboratory testing (inflammatory parameters), as well as subjective self-report via questionnaires administered by physician	 21.6% (22/102) reported fatigue 4.9% (5/102) reported memory impairment 10.8% (11/102) exhibited CRP elevation 	(continued on next pag

F. Ceban et al.

Study	Country	Study Design	Sample Source	Sample Characteristics	Follow-up Duration	Ascertainment of COVID-19	Ascertainment of Outcomes	Results	Factors Associated with persistent symptoms
								 9.8% (10/102) exhibited D-dimer elevation 	
oldati et al., 2021	Brazil	Prospective Cohort	ICU unit, Complexo Hospitalar de Niterói	N = 23 (all previously admitted to ICU)	Median 83 (37–115) days following discharge	RT-PCR	Objective assessment viaTICS (cognitive function), EuroQol	• 13% (3/23) exhibited cognitive impairment, operationalized as	
				 Age Range: N/A Mean Age: 53.6 ± 			(quality of life)	TICS score 21–25 ● Mean EuroQol score:	
				11.7 ● Sex (%F/%M): 21.8/				71.9 ± 27.5 ● Patients with mild	
				78.2				cognitive impairment had lower EuroQol scores (median 50) compared to patients	
								with ambiguous and with normal cognitive performance (median	
								85), however this difference was not statistically	
onnweber	Austria	Prospective	Department of	N = 134 (including 109	$\text{Mean 103} \pm 21 \text{ days}$	RT-PCR	Objective assessment via		• Severity of acute
et al., 2021		Cohort	Medical University of Innsbruck, and two additional medical centres in Zams and Münster (CovILD		following diagnosis		laboratory testing (serology)	exhibited elevated CRP levels (mean: 0.3	COVID-19, age, sex, cardiovascular dis-
				previously admitted to ICU)				± 0.6 mg/dL) ● 6% (8/134) exhibited	eases, pulmonary dis eases, diabetes
				• Age Range: 19–87				elevated IL-6 levels (mean: 3.0 ± 2.5 mg/	mellitus type 2 and malignancy were
			study)	 Mean Age: 57 ± 14 Sex (%F/%M): 43/57 				dL) ● 9% (12/134) exhibited elevated procalcitonin levels	related to patient recovery
								(mean: 0.07 ± 0.02) ● 27% (36/134)	
								exhibited elevated D- dimer (mean: 564 \pm 804 µg/L)	
oraas et al., 2021 ^a	Norway	Prospective Cohort	Conducted online in Norway	N = 588 (all previously non-hospitalized cases)	Mean 248 \pm 18 days from baseline (mean 15.9 \pm 9 days from testing to	RT-PCR	Objective assessment via RAND-36 (quality of life), as well as subjective self-	• 31% (183/588) reported feeling fatigued in the 3	
				 Age Range: ≥18 Mean Age: 48 Sex (%F/%M): 57/43 	baseline)		report via online questionnaire	 weeks before 8-month follow-up 11.5% (68/588) 	
								reported memory problems in the 3 weeks before 8-month	
								follow-up ● 13% (74/588) reported problems	
								concentrating and thinking in the 3	
								weeks before 8-month	

(continued on next page)

follow-up • 42% (246/588) reported worsening of F. Ceban et al.

 Age Range: ≥18 Mean Age: 49.5 ± Sa Sex (%F/%M): 56/44 Sex (%F/%M): 56/44 Sex (%F/%M): 56/44 	Study	Country	Study Design	Sample Source	Sample Characteristics	Follow-up Duration	Ascertainment of COVID-19	Ascertainment of Outcomes	Results	Factors Associated with persistent symptoms
Linkeren et al. 2021 Norway Cross-sectional befold Hospital Serio de Serio Serio de Serio Serio de Serio Serio de Serio Serio de Serio Serio Serio de Serio Se									 one year ago 20% (119/588) reported that physical health has limited work or other activities in the past 4 weeks 13% (78/588) reported that pain has limited activities mildly or worse in the 	
Spain Cross-sectional et al., 2020 No. 134 (all previously carlos 90 days following previously admitted (ICU) RT-PCR Subjective self-report wi telephone structured interview 54,5% (72/134) * Vises et al., 2020 Median 113 (range 2021 RT-PCR Objective assessment via EQ5-D5-L (quality of Life), as well as subjective self-report via standardised clinical 9.96% (53/134) • Females were significantly more figure (30,79,70) 2021 Vises et al., 2020 Vises et al., 2020 Median 113 (range 2021 RT-PCR Objective assessment via EQ5-D5-L (quality of Life), as well as subjective self-report via standardised clinical • 9.96% (53/134) • Females were significantly more figure (30,79,70) • Age Range: 25-89 • 4.96 • 9.76 (Vises Vises		Norway	Cross-sectional	Hospital (Ahus) and	 hospitalized cases) Age Range: ≥18 Mean Age: 49.5 ± 15.3 	days following first	RT-PCR	CFQ-11 and RAND-36 (fatigue) administered	 46% (211/458) reported fatigue Mean CFQ-11 bimodal score: 3.9 ± 3.7 Mean RAND-36 en- ergy/fatigue scale 	depression, higher BMI, single/divorced/ widowed, short time since symptom debut, high symptom load and, confusion during acute COVID-19 were associated with higher multivariable odds of
by best et al., UK Prospective Cohort Hull University Teaching Hospitals NHS Trust N = 134 (all previously hospitalized, including 27 previously admitted in 1CU Median 113 (range 46-167) days following RT-PCR Objective assessment via EQ-SD-5L (quality of life), as well as subjectiva self-report via 39.6% (53/134) reported extreme self-report via 93.6% (53/134) repor		Spain	Cross-sectional	-	 hospitalized, including 2 previously admitted to ICU) Age Range: N/A Mean Age: 58.53 ± 18.53 Sex (%F/%M): 53.7/ 	, ,	RT-PCR	telephone structured	 reported fatigue 18.7% (25/134) reported general 	
		UK		Teaching Hospitals	 N = 134 (all previously hospitalized, including 27 previously admitted to ICU) Age Range: 25–89 Mean Age: 59.6 ± 14 Sex (%F/%M): 34.3/ 	46-167) days following	RT-PCR	EQ-5D-5L (quality of life), as well as subjective self-report via standardised clinical assessment by a specialist nurse and/or	reported extreme fatigue (30.7% [27/ 88] males; 56.5% [26/46] females) 25.4% (34/134) reported an attention deficit (20.5% [18/ 88] males; 34.8% [16/46] females) 37.3% (50/134) reported memory impairment (27.3% [24/88] males; 56.5% [26/46] females) 9.7% (13/134) reported cognitive impairment (5.7% -[5/88] males; 17.4%	significantly more likely to report residual symptoms

118

Brain Behavior and Immunity 101 (2022) 93–135

119

Study	Country	Study Design	Sample Source	Sample Characteristics	Follow-up Duration	Ascertainment of COVID-19	Ascertainment of Outcomes	Results	Factors Associated with persistent symptoms
								 EQ-5D-5L mean: 0.657 (0.30) CRP levels were within normal range in 84% (54/64) of patients (median: 2.9 (0.2-33) mg(1) 	
aboada (1) et al., 2020	Spain	Prospective Cohort	Seven hospitals located in northwestern Spain	 N = 91 (all cases previously admitted to ICU) Age Range: N/A Mean Age: 65.5 ± 10.4 Sex (%F/%M): 35.2/ 64.8 	6 months following ICU treatment	RT-PCR	Objectively assessed via EQ-5D-3L (quality of life) and PCFS (functional outcomes), as well as subjective self-report via structured interview conducted by trained research coordinators	 (0.2–33) mg/L) 37% (34/91) reported asthenia 67% (61/91) exhibited a decrease in the quality of life, including 56% (51/91) experiencing mobility problems, 37% (34/91) experiencing problems with usual activities, and 13% (12/91) experiencing problems with selfcare 63% (57/91) reported a decreased functional status; 38% (35/91) had lowered two grades in the PCFS, 45% (41/91) described persistent functional limitations (operationalized as grades 2–4 in the PCFS) 	 Advanced age, male sex, need for mechanical ventilation during ICU stay, duration of mechanical ventilation, length of ICU stay, and length of hospital stay were associated with a decreased quality of life and/or functional status
'aboada (2) et al., 2021	Spain	Cross-sectional	University Hospital of Santiago	 N = 183 (all previously hospitalized cases, including 32 to ICU) Age Range: N/A Mean Age*: 65.9 ± 14.1 Sex* (%F/%M): 40.5/ 59.5 *pertains to all who were admitted to hospital at index, including those 	6 months following hospitalization	RT-PCR	Objective assessment via PCFS (functional status), as well as subjective self- reportvia surveys conducted by trained study investigators	 47.5% (87/183) patients exhibited decreased functional status, operationalized as PCFS grades 2–4 	• Female sex, age, length of hospital stay, mechanical ventilation, and ICU admission were associated with limitations in functional status
awfik et al., 2021	Egypt	Retrospective Cohort	Ain-Shams University and Ministry of Health and Population hospitals	who are not included in follow-up N = 120 healthcare workers (including 18 previously hospitalized) • Age Range: 23–62 • Mean Age: 33.7 \pm 7.29 • Sex (%F/%M): 58/42	3 months following COVID-19 infection	RT-PCR and CT	Subjective self-report via questionnaire	 35.0% (42/120) reported fatigue 3.3% (4/120) reported memory and attention problems 	● Age ≥ 35 years was associated with development of persistent symptoms

Table 2	(continued)
---------	-------------

120

Study	Country	Study Design	Sample Source	Sample Characteristics	Follow-up Duration	Ascertainment of COVID-19	Ascertainment of Outcomes	Results	Factors Associated with persistent symptoms
Todt et al., 2021	Brazil	Prospective Cohort	Hospital Municipal Dr. Moyses Deutsch	 N = 251 patients (all previously hospitalized, including 42 in ICU) Age Range: ≥18 Mean Age: 53.6 ± 14.9 Sex (%F/%M): 40.2/ 59.8 	3 months following discharge	RT-PCR	Objective assessment viaEQ-5D-3L (quality of life)	 Overall worsening of EQ-5D-3L single sum- mary index compared to before the onset of COVID-19 symptoms (medians: 0.80 [0.74-1.0] vs. 1.0 [0.80-1.0]) 7.4% (18/251) reported problems with self-care (EQ-5D- 3L levels 2 or 3) 15.6% (38/251) reported problems with usual activities (EQ-5D-3L levels 2 or 3) 	 Worsening of health status in usual activities was higher among females Participants with worsening of health status were predominantly female, more frequently had required mechanical ventilation and intensive care, and had longer length of hospital stay than participants without worsening of health status Poorer health status prior to admission was associated with more significant decline in health status Factors associated with self-care impair- ment: age, hyperten- sion, number of comorbidities, inten- sive care, new onset hemodialysis, and length of hospital stay Factors associated with impairment in usual activities: age, heart failure, number of comorbidities, new onset hemodialysis, and length of hospital stay
Valiente-De Santis et al., 2020 ^a	Spain	Prospective Cohort	Outpatients' office of Regional University Hospital of Málaga	 N = 108 (all outpatient cases; both symptomatic, including 30 healthcare workers) Age Range: N/A Mean Age: 55.4 ± 15.4 Sex (%F/%M): 55.6/44.4 	12 weeks following acute COVID-19	Serology	Subjective self-report via telephone survey	 44.9% (48/107) reported asthenia 1.9% (2/108) reported loss of memory 1.9% (2/108) reported difficulty concentrating CRP > 2.9 mg/dL was detected in 24.5% (25/108) D-dimer > 500 ng/mL was detected in 31.4% (32/108) IL-6 > 40 pg/mL was detected in 3.9% (4/ 108) 	 Being a health-care worker was associated with symptom persis- tence, while age ≥ 65 years was protective

121

Study	Country	Study Design	Sample Source	Sample Characteristics	Follow-up Duration	Ascertainment of COVID-19	Ascertainment of Outcomes	Results	Factors Associated with persistent symptoms
van den Borst et al., 2020	The Netherlands	Prospective Cohort	Radboud University Medical Center (POSTCOVER study)	 <i>N</i> = 124 (all previously hospitalized cases) Age Range: N/A Mean Age: 59 ± 14 Sex (%F/%M): 40/60 	Mean 13.0 \pm 2.2 weeks following onset of symptoms	RT-PCR or clinically diagnosed	Objective assessment via laboratory testing (serological parameters), TICS, CFQ (cognitive function), SF-36 and NCSI (quality of life, fatigue)	 69% (86/124) reported fatigue 64% (79/124) reported functional impairments in daily life 36% (45/124) exhibited abnormal scores on all mental and cognitive status questionnaires 15% (19/124) exhibited abnormal cognitive status, operationalized as TICS score < 34 17% (21/124) exhibited self- reported cognitive impairment, oper- ationalized as CFQ > 43 scores on all domains of the SF-36 were lowered, especially on the domains func- tioning, energy/fa- tigue, and general health. median CRP (1 (1–3) mg/L) and D-dimer (500 (500–500) ng/ ml) were at normal levels in all participants 72% (89/124) reported impaired general quality of life 	
Van Veenendaal et al., 2021 ^a	The Netherlands	Prospective Cohort	University Medical Center Groningen, ICU (COFICS)	 <i>N</i> = 60 (all previously admitted cases to ICU) [50 at 6 months] Age Range: N/A Median Age: 62.5 (55.3-68.0) Sex (%F/%M): 32/68 	6 months following ICU discharge	RT-PCR	Objective assessment via SF-20 (quality of life), FAD-GF6+ (social functioning), as well as subjective self-report via telephone questionnaire conducted by research nurses (at 3 months), and mail questionnaire (at 6 months)	 24% (12/50) reported fatigue at 6-month follow-up 14% (7/50) reported cognitive problems Role activities were impaired in ICU-survivors with a median of 0 (IQR 0–0) Social functioning scored a median of 80.0 (IQR 60.0–100.0) 33% (10/30) of pre-ICU employed persons were too ill to return to were complexed a median of to terturn 	

(continued on next page)

to work, and employment rate was

122

udy	Country	Study Design	Sample Source	Sample Characteristics	Follow-up Duration	Ascertainment of COVID-19	Ascertainment of Outcomes	Results	Factors Associated with persistent symptoms
								decreased for the vast majority of patients; 90% did not reach their pre-ICU employ- ment level	
nturelli et al., 2021	Italy	Prospective Cohort	Papa Giovanni XXIII Hospital	 N = 767 (all previously hospitalized cases, including 66 in ICU) Age Range: 20–92 Mean Age: 63 ± 13.6 Sex (%F/%M): 32.9/ 67.1 	Median 105 (84–127) days following onset of symptoms	RT-PCR or Serology	Objective assessment via laboratory testing (serology), MoCA (cognitive function), Barthel index (functional impairment), and Brief Fatigue inventory (fatigue), as well as subjective self-report via questionnaire		 Women were more symptomatic than men, with fatigue reported almost twice as frequently
alle-Hansen et al., 2021	Norway	Retrospective Cohort	Four general hospitals in South- Eastern Norway	 N = 106 (all previously hospitalized cases, including 28 in ICU) Age range: 60–96 Mean age: 74.3 ± 8.5 Sex (%F/%M): 43/57 	6 months following hospitalization	RT-PCR	Objective assessment via MoCA (cognitive function), and EQ 5D-5L (quality of life)		• The mean sum score of MoCA were lower in the oldest age group, indicating lower cognitive and physical function in older compared to younger participants

F. Ceban et al.

tudy	Country	Study Design	Sample Source	Sample Characteristics	Follow-up Duration	Ascertainment of COVID-19	Ascertainment of Outcomes	Results	Factors Associated with persistent symptoms
								 35% (37/106) reported decline in mobility and ability to perform daily activities 17% (18/106) reported decline in ability to self-care 11% (12/106) reported major change in usual activities 	
ong et al., 2020	Canada	Prospective Cohort	Post-COVID-19 Respiratory Clinic in Vancouver	 N = 78 (all previously hospitalized cases) Age range: ≥18 Mean age: 62 ± 16 Sex (%F/%M): 36/64 	Median 13 (11–14) weeks following onset of symptoms	Laboratory test	Objective assessment via EQ-5D-5L (quality of life)		
foo et al., 2020	United Kingdom	Cross-sectional	University Medical Centre Hamburg- Eppendorf	 N = 28 (11 previously hospitalized cases, 6 previously outpatient cases, 1 case receiving no medical care, and 10 healthy controls) Age Range: 17–71 Mean Age: 42.2 ± 14.3 Sex (%F/%M): 57.9/ 42.1 	Median 85 (range 20–105) days following recovery	RT-PCR	Objective assessment via TICS-M (cognitive function), as well as subjective self-report via questionnaire		• Neurocognitive deficits after recover from COVID-19 were independent from fa tigue and mood alter ations and may therefore might be different from the classical post-viral syndrome
iong et. al., 2020	China	Prospective cohort	Renmin Hospital of Wuhan University	N = 722 (538 previously hospitalized cases, and	Median 97 (95–102) days following discharge	COVID-19 diagnosis according to WHO interim guidance	Subjective self-report via telephone survey		 Physical decline/ fatigue was more common in female (continued on next page)

Table 2	(continued)
---------	-------------

					COVID-19	Outcomes		persistent symptoms
			 184 healthy controls) Age range: 20–80 Median age: 52 (41–62) Sex (%F/%M): 30.3/ 			conducted by three experienced clinicians	(34% [52/152] males; 66% [100/152] females)	than male subjects, and in those aged 41–60
Zhao et al., 2020 China	Retrospective cohort	3 Tertiary Hospitals in Henan Province	69.7 N = 55 (all previously hospitalized cases)	3 months following discharge	RT-PCR	Self-report via clinical follow-up	• 16.4% (9/55) reported fatigue	
			 Age Range: ≥18 Mean Age: 47.74 ± 15.49 Sex (%F/%M): 41.82/ 58.18 					
hou et al., 2021 China	Cross-sectional	4 Hospitals in Wuhan		Mean 139.79 \pm 7.41 days following illness onset for severe cohort, mean 133.75 \pm 9.64 days following illness onset for mild cohort	RT-PCR or serology	Objective assessment via mesoscale-discovery (MSD) multiplexed immunoassay (immunological parameters)	 D-dimer median level in severe cohort: 0.34 (0.28–0.51) µg/ml (vs. healthy controls: 0.29 [0.29–0.38] µg/ml]) D-dimer median level in moderate cohort: 0.38 (0.29–0.46) µg/ml (vs. healthy controls: 0.29 [0.29–0.38] µg/ml]) D-dimer median level in asymptomatic cohort: 0.32 (0.25–0.46) µg/ml (vs. healthy controls: 0.29 [0.29–0.38] µg/ ml]) CRP median level in severe cohort: 1.30 (0.46–3.74) mg/L (vs. healthy controls: 0.42 [0.11–1.23] mg/L]) CRP median level in moderate cohort: 0.42 [0.11–1.23] mg/L]) CRP median level in asymptomatic cohort: 1.06 (0.56–1.50) mg/L (vs. healthy controls: 0.42 [0.11–1.23] mg/L]) CRP and D-dimer levels were not 	 Cytokines such as TNF-a were correlate with abnormal clinic features (continued on next page)

Study	Country	Study Design	Sample Source	Sample Characteristics	Follow-up Duration	Ascertainment of COVID-19	Ascertainment of Outcomes	Results	Factors Associated with persistent symptoms
								significantly elevated compared to healthy control levels ($p > 0.05$) Significant increases in SAA, TNF- α , and IL- 1RA in severe cohort (class 1,2,3 cytokines upregulated in cases) Higher than normal levels of IL-17A and IL-17D in severe cohort No difference across all cohorts in IL-1 α and IL-1 β Normal levels of IL-6 and IL-10 across all	
								 groups IL-7 was decreased in severe cohort 	

125

Proportions are reported as cases/total study sample size. 'Cases' refers to previous confirmed COVID-19 cases. Medians are reported as median (interquartile range), if the interquartile range was provided, or unless otherwise specified. Means are reported as mean ± standard deviation, if the standard deviation was provided. 'Previously hospitalized'/'admitted to ICU' refers to COVID-19 treatment. 'Admission' and 'discharge' refer to COVID-19 inpatient treatment. 'Infection' refers to infection with SARS-CoV-2. Ages are given in years. '%F/%M' refers to percentage of study sample which is female/percentage of study sample which is male. Acronyms: COVID-19: Coronavirus disease 2019, SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2, ICU: Intensive care unit, USA: United States of America, RT-PCR: Reverse transcription polymerase chain reaction, ESCAPE: Evaluation Study of Congestive Heart Failure and Pulmonary Artery Catheterization Effectiveness, DISCOVER: Diagnostic and Severity Markers of COVID-19 to Enable Rapid Triage, ISARIC: International Severe Acute Respiratory and Emerging Infection Consortium, SF-36: 36-Item Short Form Survey, CRP: C-reactive protein, IgG: Immunoglobulin G, CD4+: Cluster of differentiation 4+, CD8+: Cl ferentiation 8+. IL-2: Interleukin-2. IFN-y: Interferon gamma, TNF-y: Tumor necrosis factor alpha, ADAPT: Australians' Drug Use: Adapting to Pandemic Threats, SPHERE-34: 34-Item Somatic and Psychological Health Report, RAND-36: Rand 36-Item Health Survey, PHOSP-COVID: Post-hospitalization COVID-19 study, IOR: Interquartile range, FACIT: Functional Assessment of Chronic Illness Therapy, CFS/ME: Chronic Fatigue Syndrome/Myalgic Encephalomyelitis, MoCA: Montreal Cognitive Assessment, EuroQol: European Quality of Life Scale, EQ-VAS: EuroQol visual analog scale, EQ-5D-5L: EuroQol-5 Dimension-5 levels, EQ-5D-3L: EuroQol-5-Dimension-3 levels, EQ-5D-5L VAS: EuroQol-5 Dimension-5 levels visual analog scale, WG-SS: Washington Group Short Set on Functioning, CT: Computerized tomography, BRB-NT: Brief Repeatable Battery of Neuropsychological Tests, SSD: Subjective Scale of Damage, SDMT: Symbol Digit Modalities Test, ARDS: Acute respiratory distress syndrome, IL-6: Interleukin-6, NYC: New York City, CSQ: COVID-19 Symptom Ouestionnaire, SF-12: 12-Item Short Form Survey, SF-23: 23-Item Short Form Survey, ME/CFS: Myalgic encephalomyelitis/chronic fatigue syndrome, WPAI: Work Productivity and Activity Impairment Ouestionnaire, PCFS: Post-COVID-19 Functional Status, CFO: Cognitive Failures Questionnaire, HRTC: High Resolution Computed Tomography, SCIP-D: Screen for Cognitive Impairment in Psychiatry, TMT-B: Trail Making Test Part B, FSS: Fatigue Severity Scale, PICS: Post-intensive care syndrome, SF-35: 35-Item Short Form Survey, SD: Standard deviation, OMC: Orientation-Memory-Concentration Test, OR: Odds ratio, PTSD: Post-traumatic stress disorder, MMSE: Mini-Mental State Examination, BACS: Brief Assessment of Cognition in Schizophrenia, REDCap: Research Electronic Data Capture, FAS: Fatigue Assessment Scale, Q3PC: questionnaire of cognitive complaints, d-2R: D2 Test of Attention, MFI: Multidimensional fatigue inventory, WHO CRF: World Health Organization's Post COVID Case Report form, MIP-16: Macrophage inflammatory protein-1 beta, SDF-1a: Stromal Cell Derived Factor 1 alpha, IL-12p70: Interleukin-12p70, SCF: Stem cell factor, IL-17A: Interleukin-17A, BDNF: Brain-derived neurotrophic factor, VEGF: Vascular endothelial growth factor, IP-10: Interferon-inducible protein 10, IL-18: Interleukin-18, MCP-1: Monocyte chemoattractant protein-1, ELISA: Enzyme-linked immunosorbent assay, GOSE: Glasgow Outcome Scale-Extended, mRS: Modified Rankin Scale, BNST: Brief neurocognitive screening test, MFIS: Modified Fatigue Impact Scale, CIRCO: Coronavirus Immune Response and Clinical Outcome, TICS: Telephone interview for cognitive status, CFQ-11: Chalder Fatigue Scale 11, BMI: Body mass index, POSTCOVER: Post-COVID-19 Recovery Study, SF-20: 20-Item Short Form Survey, FAD-GF6+: McMaster Family Assessment Device-General Functioning subscale, MSD: Mesoscale-discovery multiplexed immunoassay.

^a This article is a pre-print as of June 8, 2021.

synthesis primarily evaluating the effect of COVID-19 exposure on cognition (i.e., cognitive impairment meta-analysis) included 43 studies. 48 studies were qualitatively analyzed via narrative synthesis, including 7 which were excluded from quantitative analyses (Breton et al., 2021; Shuwa et al., 2021; Sonnweber et al., 2021; Taboada et al., 2021; Todt et al., 2021; Wong et al., 2020; Zhou et al., 2021).

3.2. Study characteristics

Ten studies analyzed data from Italy, nine from Spain, eight from the US, seven from China, six from the UK, three from Denmark, France, and Norway, respectively, two from Australia, Austria, Brazil, Canada, Egypt, Germany, Israel, Russia, and the Netherlands, respectively, and one from Belgium, the Czech Republic, England, Faroe Islands, Iran, Japan, Mexico, Pakistan, Singapore, Sweden, Switzerland, and Turkey, respectively. Sample sizes ranged from 23 to 2649, and median or mean follow-up periods ranged from 2.8 to 11.2 months. Six study authors provided confirmation regarding mode of ascertainment of COVID-19 (Ghosn et al., 2021; Say et al., 2021; Pilotto et al., 2021; Liyanage-Don et al., 2021; Miyazato et al., 2020; González et al., 2021), and one author (Fernández-de-las-Peñas et al., 2021: Fernández-de-Las-Peñas et al., 2021) confirmed that there was no sample duplication amongst two component studies, as well as advised the exclusion of a third study on the basis of possible duplication. Table 2 provides detailed characteristics and summaries of applicable findings for all 81 component studies.

3.3. Methodological quality and risk of bias

Taken together, the NOS rating of the component studies was moderate, evidenced by mean scores of 6.0 out of 9.0 for prospective/ ambidirectional cohort studies, 4.1 out of 6.0 for retrospective cohort studies, and 5.6 out of 9.0 for cross-sectional studies. Common methodological limitations were the failure to include a non-exposed group in cohort studies, failure to ascertain whether outcomes were present prior to COVID-19 infection, and a lack of sample size justification in crosssectional studies. NOS scores within each category for all component studies organised by design are included (Table S1 in the supplementary material).

We conducted sensitivity analyses a posteriori to compare pooled proportions across high, moderate, and low NOS-ranked studies. Studies of moderate NOS rank reported higher proportions of individuals exhibiting cognitive impairment when compared to low and high NOS-ranked studies (p = 0.035; Table 3). However, the proportion of individuals experiencing fatigue did not significantly differ across NOS ranking categories (p = 0.885; Table 3).

3.4. Synthesis of results

Meta-analyses of the two primary outcomes indicated that 32% of individuals experienced fatigue and 22% of individuals exhibited cognitive impairment 12 or more weeks following COVID-19 diagnosis. Furthermore, 13 of 14 studies examining inflammatory parameters reported elevations in proinflammatory markers (i.e., proinflammatory cytokines, C-reactive peptide, D-dimer, and procalcitonin) in a subset of patients. All studies investigating functional outcomes reported marked functional impairment in a sample subset.

3.4.1. Fatigue Meta-Analysis

The pooled proportion of individuals experiencing fatigue amongst COVID-19 patients 12 or more weeks following diagnosis was 0.32 (95% CI, 0.27, 0.37; p < 0.001; n = 25,268; Fig. 2). A larger proportion of females reported fatigue as compared to males, but the inter-subgroup difference was not statistically significant (0.46 of females vs 0.30 of males; $p_{subgroup} = 0.067$; Table 3). Subgroup analysis for age category revealed that a significantly greater proportion of adults experienced

fatigue as compared to children (0.32 of adults vs 0.07 of children; $p_{subgroup} < 0.001$; Table 3). Moreover, studies which objectively assessed fatigue reported significantly greater proportions of individuals experiencing fatigue as compared to subjective modes of ascertainment (0.45 when assessed objectively vs 0.29 when assessed subjectively; $p_{subgroup} =$ 0.006; Table 3). However, there was no statistically significant difference in the proportion of persons reporting fatigue between hospitalized and non-hospitalized respondents (0.36 hospitalized vs 0.44 nonhospitalized; $p_{subgroup} = 0.185$; Table 3). Likewise, there was no significant difference in the proportions of persons experiencing fatigue at <6 months follow-up since COVID-19 diagnosis compared to ≥ 6 months (0.33 when <6 months vs 0.31 when ≥ 6 months; $p_{subgroup} = 0.755$; Table 3). Sensitivity analyses revealed that stratifying studies by design produced statistically significant differences in effect size, although the effect sizes between prospective cohort, retrospective cohort, crosssectional studies (i.e., the 3 most common study designs) did not significantly differ.

3.4.2. Cognitive Impairment Meta-Analysis

The pooled proportion of individuals exhibiting cognitive impairment amongst COVID-19 patients 12 or more weeks following diagnosis was 0.22 (95% CI, 0.17, 0.28; *p* < 0.001; *n* = 13,232; Fig. 3). There was a non-significant trend towards a greater proportion of females than males who exhibited cognitive impairment, (0.56 of females vs 0.36 of males; $p_{subgroup} = 0.063$; Table 3), however, the subgroup proportion for females was not statistically significant (0.56; 95% CI, 0.46, 0.66; p =0.960; Table 3). Only one study reported on cognitive impairment in children (Buonsenso et al., 2021), thus, significant differences between child and adult subgroups were not determined ($p_{subgroup} = 0.182$; Table 3). Studies which objectively assessed cognitive impairment reported significantly greater proportions of individuals with cognitive impairment as compared to those employing subjective modes of ascertainment (0.36 objectively assessed vs 0.18 subjectively assessed; $p_{subgroup} = 0.002$; Table 3). There was no statistically significant difference between hospitalized and non-hospitalized subgroup proportions reporting post-COVID cognitive impairment (0.30 hospitalized vs 0.20 non-hospitalized; $p_{subgroup} = 0.096$; Table 3). Likewise, there was no significant difference in the proportions reporting cognitive impairment at <6 and \geq 6 months follow-up (0.22 when <6 months vs 0.21 when \geq 6 months; $p_{subgroup} = 0.794$; Table 3). Unlike for fatigue, stratifying studies by design did not produce any statistically significant differences in effect sizes ($p_{subgroup} = 0.366$; Table 3).

3.4.3. Heterogeneity

The fatigue ($I^2 = 99.1\%$) and cognitive impairment ($I^2 = 98.0\%$) meta-analyses exhibited considerable heterogeneity. Select subgroup analyses resulted in a reduction of heterogeneity (Table 3).

3.4.4. Publication Bias

Visual inspection of funnel plot asymmetry for the fatigue metaanalysis did not suggest the presence of publication bias (Supplementary, Fig. S1), and neither the Egger regression intercept test (intercept = 0.538; SE = 0.061; p = 0.390) nor the Begg and Mazumdar rank correlation test (p = 0.857) were statistically significant. Conversely, visual inspection of funnel plot asymmetry for the cognitive impairment meta-analysis suggested the presence of publication bias (Supplementary, Fig. S2); the Egger regression intercept test was statistically significant (intercept = 0.187; SE = 0.040; p < 0.001), whereas the Begg and Mazumdar rank correlation test was not significant (p = 0.818).

3.4.5. Inflammatory Parameters

14 studies investigated peripheral inflammatory parameters in COVID-19 patients 12 or more weeks following diagnosis (Zhou et al., 2021; Breton et al., 2021; Shuwa et al., 2021; Sonnweber et al., 2021; Arnold et al., 2021; Fortini et al., 2021; García-Abellán et al., 2021; Ong et al., 2021; PHOSP-COVID Collaborative Group et al., 2021; Skala et al.,

Table 3

Subgroup and sensitivity analyses for the primary outcomes.

	No. of Studies	Proportion	95% CI	р	I^2	Q	$p_{ m subgroup}$ ($\chi 2$ test
FATIGUE							
Sex							
Females	7	0.46	(0.32, 0.60)	< 0.01	96.0%	3.36	0.067
Males	7	0.30	(0.22, 0.39)	< 0.01	92.6%		
Age Group ^a							
Adults (≥18 years)	65	0.32	(0.26, 0.37)	< 0.001	98.3%	13.83	< 0.001
Children (<18 years)	3	0.07	(0.03, 0.16)	< 0.01	78.5%		
COVID-19 Hospitalization Status							
Hospitalized	45	0.36	(0.30, 0.43)	< 0.001	99.4%	1.76	0.185
Non-Hospitalized	10	0.44	(0.34, 0.55)	< 0.01	92.9%		
Follow-up Duration							
<6 Months	46	0.33	(0.26, 0.39)	< 0.001	99.1%	0.10	0.755
>6 Months	26	0.31	(0.24, 0.37)	< 0.001	99.0%		
Iode of Ascertainment ^b	20	0101	(0121, 0107)	01001	551070		
Subjective	55	0.29	(0.24, 0.35)	< 0.001	99.2%	7.56	0.006
Dbjective	13	0.45	(0.35, 0.55)	< 0.01	96.4%	7.00	0.000
NOS Rating Category	10	0.75	(0.00, 0.00)	<0.01	JO.T /0		
ligh	24	0.28	(0.20, 0.37)	< 0.001	98.9%	0.59	0.750
Moderate	27	0.32	(0.25, 0.40)	< 0.001	96.6%	0.39	0.750
LOW	17	0.30	(0.23, 0.46)	<0.01	98.4%		
	17	0.30	(0.17, 0.40)	<0.01	90.4%		
Study Design	40	0.00	(0.00, 0.04)	-0.001	07 (0)	04.04	. 0. 001
Prospective Cohort	48	0.28	(0.22, 0.34)	< 0.001	97.6%	94.84	< 0.001
Retrospective Cohort	8	0.31	(0.17, 0.49)	< 0.01	98.7%		
Cross-sectional	10	0.36	(0.21, 0.53)	< 0.01	97.1%		
Ambidirectional Cohort	1	0.63	(0.60, 0.65)	N/A	N/A		
Retrospective Case-control	1	0.50	(0.38, 0.62)	N/A	N/A		
COGNITIVE IMPAIRMENT							
Sex							
Females	2	0.56	(0.46, 0.66)	0.960	0.0%	3.46	0.063
Males	2	0.36	(0.19, 0.55)	0.020	82.5%		
Age Group ^a							
Adults (\geq 18 years)	42	0.19	(0.14, 0.26)	< 0.01	97.0%	1.77	0.182
Children (<18 years)	1	0.12	(0.06, 0.22)	N/A	N/A		
COVID-19 Hospitalization Status	;						
Hospitalized	24	0.30	(0.22, 0.38)	< 0.01	96.7%	2.77	0.096
Non-Hospitalized	5	0.20	(0.12, 0.29)	< 0.01	70.8%		
Follow-up Duration							
<6 Months	31	0.22	(0.15, 0.30)	< 0.001	98.2%	0.07	0.794
≥6 Months	14	0.21	(0.13, 0.30)	< 0.01	97.3%		
Mode of Ascertainment $^{ m b}$							
Subjective	31	0.18	(0.12, 0.24)	< 0.01	97.9%	9.97	0.002
Objective	12	0.36	(0.27, 0.46)	< 0.01	94.9%		
NOS Rating Category							
High	12	0.18	(0.10, 0.29)	< 0.01	95.7%	10.95	0.004
Moderate	17	0.32	(0.21, 0.44)	< 0.01	92.6%		
Low	14	0.10	(0.05, 0.18)	< 0.01	97.4%		
Study Design							
Prospective Cohort	31	0.18	(0.12, 0.26)	< 0.01	97.4%	2.01	0.366
Retrospective Cohort	5	0.16	(0.06, 0.35)	< 0.01	92.5%		
Cross-sectional	7	0.26	(0.16, 0.44)	< 0.01	92.9%		

Acronyms: NOS: Newcastle-Ottawa Scale, N/A: not applicable.

Statistically significant subgroup effect sizes, ascertained as $p_{subgroup}$ ($\chi 2$ test) <0.05, are bolded.

^a Studies categorized by age group depending on mean or median age.

^b Refers to ascertainment of outcomes (see Table 1).

2021; Sykes et al., 2021; Santis et al., 2020; van den Borst et al., 2020; Venturelli et al., 2021). Of those which quantified intracellular cytokine levels, Breton et al. reported marked increases in the numbers of CD4+T cells expressing the inflammatory cytokines interleukin (IL)-2, interferon (IFN)- γ , and tumor necrosis factor (TNF)- α in individuals with prior COVID-19 as compared with healthy donors (Breton et al., 2021). Ong et al. reported that previously-hospitalized patients exhibited elevated levels of proinflammatory cytokines, including but not limited to macrophage inflammatory protein 1β , IL- 1β , and IL-17A (Ong et al., 2021). Ong et al. additionally reported that concentrations of the proinflammatory factors IL-1β, IL-17A, IL-12p70, stem cell factor (SCF), and MIP-1 β were significantly higher in prior COVID-19 patients compared to healthy controls, regardless of acute phase severity (Ong et al., 2021). Moreover, Shuwa et al. determined that patients with prior moderate to severe acute illness demonstrated an elevation in most cytokine-producing T cells, as well as increased production of cytokines,

whereas no significant differences in the frequency of TNF- α + B cells were observed (Shuwa et al., 2021). Zhou et al. reported significant increases in serum amyloid A, TNF- α , and IL-1RA in the severe COVID-19 cohort, higher than normal levels of IL-17A and IL-17D, and decreased IL-7 (Zhou et al., 2021). Between 3.9% and 32.2% of post-COVID individuals exhibited elevated IL-6 levels (Sonnweber et al., 2021; Fortini et al., 2021; Santis et al., 2020), and García-Abellán et al. reported a median serum IL-6 level of 3 pg/mL (García-Abellán et al., 2021), which exceeds the standard reference value of ≤ 1.8 pg/mL (IL6 - Clinical: Interleukin 6, 2021). Breton et al. similarly reported that post-COVID patients exhibited systemic cytokine profiles distinct from uninfected controls (Breton et al., 2021), whereas Zhou *et al.* reported normal levels of IL-6 and IL-10 across all groups (Zhou et al., 2021).

Between 1.8% and 24.5% of patients exhibited elevated CRP levels (Sonnweber et al., 2021; Arnold et al., 2021; PHOSP-COVID Collaborative Group et al., 2021; Skala et al., 2021; Santis et al., 2020),

operationalized as >10 mg/L or >2.9 mg/dL. Median CRP levels ranged between 0.6 and 2.9 mg/L (Zhou et al., 2021; García-Abellán et al., 2021; Sykes et al., 2021; van den Borst et al., 2020). Moreover, 9.8% to 38.0% of patients exhibited elevated levels of D-dimer (i.e., \geq 500 ng/ mL) (Sonnweber et al., 2021; Fortini et al., 2021; PHOSP-COVID Collaborative Group et al., 2021; Skala et al., 2021; Santis et al., 2020; Venturelli et al., 2021). Conversely, Zhou et al. reported that CRP and Ddimer levels were not significantly elevated in their post-COVID sample compared to healthy controls (p > 0.05), but that cytokines such as TNF- α were correlated with abnormal clinical features (Zhou et al., 2021). In addition, Sonnweber et al. reported elevated procalcitonin levels in 9.0% of patients (mean 0.07) (Sonnweber et al., 2021).

Taken together, 13 of 14 studies (all except van den Borst et al.) (van den Borst et al., 2020) examining inflammatory parameters report elevation in at least one measure of inflammation in a subset of patients or across the whole post-COVID sample (as a median/mean, compared to healthy controls or standard reference values). It should be noted that nine of 14 studies reported both the presence of proinflammatory markers as well as persistent fatigue and/or cognitive impairment within their sample (Fortini et al., 2021; García-Abellán et al., 2021; Ong et al., 2021; PHOSP-COVID Collaborative Group et al., 2021; Skala et al., 2021; Sykes et al., 2021; Santis et al., 2020), and several studies noted an association between elevation in measures of inflammation and PCS symptoms (PHOSP-COVID Collaborative Group et al., 2021; Skala et al., 2021; Sykes et al., 2021).

3.4.6. Functional Outcomes/Quality of Life

34 studies investigated functional outcomes, frequently subsumed under quality of life (QOL) measures, in COVID-19 patients 12 or more weeks following diagnosis (Huang et al., 2021; Ghosn et al., 2021; González et al., 2021; Fernández-de-Las-Peñas et al., 2021; Arnold et al., 2021; PHOSP-COVID Collaborative Group et al., 2021; Sykes et al., 2021; van den Borst et al., 2020; Venturelli et al., 2021; Taboada et al., 2021; Todt et al., 2021; Wong et al., 2020; Elkan et al., 2021; Frontera et al., 2021; Garrigues et al., 2020; Havervall et al., 2021; Jacobson et al., 2021; Johnsen et al., 2021; Latronico et al., 2020; Logue et al., 2021; Menges et al., 2021; Miskowiak et al., 2021; Munblit et al., 2021; Orrù et al., 2021; Osmanov et al., 2021; Pereira et al., 2021; Qu et al., 2021; Rass et al., 2021; Savarraj et al., 2020; Soldati et al., 2021; Soraas et al., 2021). Nine studies measured QOL using the European Quality of Life 5 dimension 5 levels (EQ-5D-5L) scale (Wong et al., 2020; PHOSP-COVID Collaborative Group et al., 2021; Garrigues et al., 2020; Johnsen et al., 2021; Miskowiak et al., 2021; Munblit et al., 2021), four used the EQ-5D-3L scale, (Huang et al., 2021; Todt et al., 2021; Orrù et al., 2021; Taboada et al., 2021) seven used the 36-Item Short Form Survey (SF-36/ RAND-36) (Arnold et al., 2021; van den Borst et al., 2020; Elkan et al., 2021; Latronico et al., 2020; Qu et al., 2021; Rass et al., 2021; Soraas et al., 2021), three used the Barthel Index (Venturelli et al., 2021; Frontera et al., 2021; Latronico et al., 2020), 11 used another scale (Taboada et al., 2021; González et al., 2021; PHOSP-COVID Collaborative Group et al., 2021; van den Borst et al., 2020; Havervall et al., 2021; Jacobson et al., 2021; Osmanov et al., 2021; Pereira et al., 2021; Rass et al., 2021; Savarraj et al., 2020; Soldati et al., 2021), and three via selfreport (Ghosn et al., 2021; Fernández-de-Las-Peñas et al., 2021; Logue et al., 2021). with some studies implementing multiple assessment tools. All studies demonstrated functional impairment or reduction in at least one QOL dimension (in up to 72% of patients) (van den Borst et al., 2020) compared to regional norms, uninfected controls, or pre-COVID status, and four studies reported decrements across all QOL dimensions in their post-COVID sample (González et al., 2021; Arnold et al., 2021; van den Borst et al., 2020; Munblit et al., 2021).

Functional impairment post-COVID was exhibited by 21% to 63% of individuals (Taboada et al., 2021; Savarraj et al., 2020; Taboada et al., 2021); activity impairment (including difficulties with performing daily tasks, self-care, and mobility) in 1.0% to 68.4% (Huang et al., 2021; Todt et al., 2021; Frontera et al., 2021; Menges et al., 2021; Miskowiak et al.,

2021; Orrù et al., 2021; Havervall et al., 2021; Jacobson et al., 2021; Johnsen et al., 2021; Soraas et al., 2021; Walle-Hansen et al., 2021; Taboada et al., 2021), social impairment in 5% to 15% (Elkan et al., 2021; Havervall et al., 2021; Latronico et al., 2020; Van Veenendaal et al., 2021), and 16.0% to 28.2% reportedly unable to partake in a sport/recreational activity (Fernández-de-Las-Peñas et al., 2021; Garrigues et al., 2020; Pereira et al., 2021). One in five previously hospitalized persons reached the threshold for an additional disability on the Washington Group Short Set on Functioning (WG-SS) scale (PHOSP-COVID Collaborative Group et al., 2021). Moreover, between 29.0% and 47.4% of those who were employed premorbidly were not able to return to work (Ghosn et al., 2021; Frontera et al., 2021; Garrigues et al., 2020; Jacobson et al., 2021; Latronico et al., 2020), 5% to 90% were unable to reach their pre-COVID employment level (PHOSP-COVID Collaborative Group et al., 2021; Latronico et al., 2020; Van Veenendaal et al., 2021), and between 8.0% and 38.9% reported disruption in work life (Havervall et al., 2021; Jacobson et al., 2021; Miskowiak et al., 2021; Soraas et al., 2021). Comprehensive results, including mean and median scores on QOL scales where reported, are available in Table 2. EQ-5D population norms are provided elsewhere (Szende et al., 2013).

3.4.7. Reported Factors Associated With Post-COVID-19 Syndrome

Overall, 53 of out 81 studies reported factors associated with increased incidence of PCS symptoms according to their respective analyses. Female sex was associated with an increased risk of developing PCS symptoms (including fatigue and cognitive impairment, in some instances), a greater number of persistent symptoms, or decrements in QOL dimensions in 24 studies (Taboada et al., 2021; Todt et al., 2021; Ghosn et al., 2021; Fernández-de-las-Peñas et al., 2021; García-Abellán et al., 2021; PHOSP-COVID Collaborative Group et al., 2021; Sykes et al., 2021; Venturelli et al., 2021; Menges et al., 2021; Munblit et al., 2021; Qu et al., 2020; Darley et al., 2021; Ferrucci et al., 2021; Kashif et al., 2021; O'Keefe et al., 2021; Peghin et al., 2021; Shang et al., 2021; Simani et al., 2021; Stavem et al., 2021; Xiong et al., 2021), while male sex predicted decreased functional status/QOL in one study (Taboada et al., 2021).

Increased age was associated with more reports of PCS symptoms or QOL diminution in 14 studies (Huang et al., 2021; Sonnweber et al., 2021; Todt et al., 2021; Ong et al., 2021; Jacobson et al., 2021; Qu et al., 2021; Savarraj et al., 2020; Walle-Hansen et al., 2021; Ferrucci et al., 2021; Xiong et al., 2021; González-Hermosillo et al., 2021; Petersen et al., 2021; Tawfik et al., 2021;18(3):em291.; Mei et al., 2021), whereas Menges et al. noted that younger individuals more frequently reported fatigue (Menges et al., 2021), and Valiente-De Santis et al. reported that age ≥65 years was protective against COVID-19 symptom persistence (Santis et al., 2020). Pre-existing comorbidities were associated with PCS symptoms or QOL decrements in 9 studies (Sonnweber et al., 2021; Todt et al., 2021; Fernández-de-las-Peñas et al., 2021; PHOSP-COVID Collaborative Group et al., 2021; Menges et al., 2021; Osmanov et al., 2021; Amin-Chowdhury et al., 2021; Stavem et al., 2021; Evlice et al., 2021). Furthermore, greater severity of acute disease, hospitalization, or increased length of hospital stay were associated with PCS symptoms or QOL decrements in 19 studies (Huang et al., 2021; Pilotto et al., 2021; Fernández-de-las-Peñas et al., 2021; Arnold et al., 2021; Ong et al., 2021; Taboada et al., 2021; Todt et al., 2021; Elkan et al., 2021; Jacobson et al., 2021; Menges et al., 2021; Taboada et al., 2021; Darley et al., 2021; Ferrucci et al., 2021; O'Keefe et al., 2021; Peghin et al., 2021; González-Hermosillo et al., 2021; Rauch et al., 2021). Interestingly, Jacobson et al. reported that the presence of fatigue was associated with long-term activity impairment (Jacobson et al., 2021), Miskowiak et al. reported that greater global cognitive impairment and executive dysfunction both correlated with greater difficulty within the EQ-5D 'usual activity' and 'anxiety and depression' domains (Miskowiak et al., 2021), and Soldati et al. reported that patients with mild cognitive impairment tended to have a low QOL score (Soldati et al., 2021).

Study	Events	Total		Proportion	95%-CI	Weight
Abdallah, 2021	45	63		0.71	[0.59; 0.82]	1.4%
Amin–Chowdhury, 2021	55	140	· · ·	0.39	[0.31; 0.48]	1.5%
Arnold, 2020	43	110		0.39	[0.30; 0.49]	1.5%
Augustin, 2021	52	353			[0.11; 0.19]	1.5%
Buonsenso, 2021	9	68			[0.06; 0.24]	1.4%
Cirulli, 2020	9	113			[0.04; 0.15]	1.5%
Darley, 2021	15	65			[0.14; 0.35]	1.4%
Elkan, 2021	33 429	66 763			[0.37; 0.63]	1.4% 1.5%
Evans, 2021 Evlice, 2021	429	266			[0.53; 0.60] [0.03; 0.08]	1.5%
Fernández–de–las–Peñas (1), 2021	695	1142			[0.58; 0.64]	1.5%
Fernández-de-las-Peñas (2), 2021	1206	1950			[0.60; 0.64]	1.5%
Ferrucci, 2021	15	30			[0.31; 0.69]	1.3%
Fortini, 2021	25	59		0.42	[0.30; 0.56]	1.4%
Froidure, 2021	32	126			[0.18; 0.34]	1.5%
Frontera, 2021	98	272			[0.30; 0.42]	1.5%
García–Abellán, 2021	12	116	-		[0.05; 0.17]	1.5%
Garrigues, 2020	66	120			[0.46; 0.64]	1.5%
Ghosn, 2021	538	944			[0.54; 0.60]	1.5%
González–Hermosillo, 2021 González, 2021	16 69	62 130			[0.16; 0.38] [0.44; 0.62]	1.4% 1.5%
Havervall, 2021	22	323			[0.04; 0.02]	1.5%
Huang, 2021	1038	1655	—		[0.60; 0.65]	1.5%
Jacobson, 2021	36	118			[0.22; 0.40]	1.5%
Kashif, 2021	101	242			[0.35; 0.48]	1.5%
Klein, 2021	23	103		0.22	[0.15; 0.32]	1.5%
Latronico, 2021	20	55		0.36	[0.24; 0.50]	1.4%
Leth, 2021	31	49	— • —	0.63	[0.48; 0.77]	1.4%
Liang, 2021	45	76			[0.47; 0.70]	1.4%
Liyanage–Don, 2021	31	153			[0.14; 0.28]	1.5%
Logue, 2021	24	177	<u> </u>		[0.09; 0.20]	1.5%
Mattioli, 2021	18	120			[0.09; 0.23]	1.5%
Mei, 2021 Menges, 2021	55 233	3677 426	-		[0.01; 0.02] [0.50; 0.59]	1.5% 1.5%
Miyazato, 2021	200	63			[0.04; 0.20]	1.4%
Morin, 2021	134	431			[0.27; 0.36]	1.5%
Munblit, 2021	551	2599	+ 1		[0.20; 0.23]	1.5%
O'Keefe, 2021	42	198			[0.16; 0.28]	1.5%
Ong, 2021	2	120	+	0.02	[0.00; 0.06]	1.5%
Orrù, 2021	113	152			[0.67; 0.81]	1.5%
Osmanov, 2021	53	518			[0.08; 0.13]	1.5%
Peghin, 2021	78	599	-		[0.10; 0.16]	1.5%
Pereira, 2021	22	38			[0.41; 0.74]	1.4%
Petersen, 2021 Pilotto, 2021	43 56	180 165			[0.18; 0.31] [0.27; 0.42]	1.5% 1.5%
Qu, 2021	159	540			[0.26; 0.33]	1.5%
Rass, 2021	35	130			[0.20; 0.35]	1.5%
Rauch, 2021	32	127			[0.18; 0.34]	1.5%
Romero–Duarte, 2021	176	797	E	0.22	[0.19; 0.25]	1.5%
Savarraj, 2021	19	45			[0.28; 0.58]	1.4%
Say, 2021	3	151			[0.00; 0.06]	1.5%
Shang, 2021	201	796			[0.22; 0.28]	1.5%
Shendy, 2021 Simoni, 2021	52 21	81			[0.53; 0.75]	1.4%
Simani, 2021 Skala, 2021	22	120 102			[0.14; 0.25]	1.5% 1.5%
Søraas, 2021	183	588			[0.27; 0.35]	1.5%
Stavem, 2021	211	458			[0.41; 0.51]	1.5%
Suárez-Robles, 2020	73	134			[0.46; 0.63]	1.5%
Sykes, 2021	53	134	-		[0.31, 0.48]	1.5%
Taboada (1), 2020	34	91		0.37	[0.27; 0.48]	1.5%
Tawfik, 2021	42	120			[0.27; 0.44]	1.5%
Valiente-De Santis, 2020	48	107			[0.35; 0.55]	1.5%
van den Borst, 2020	86	124			[0.60; 0.77]	1.5%
Van Veenendaal, 2021 Venturelli, 2021	12 539	50 767			[0.13; 0.38] [0.67; 0.73]	1.4% 1.5%
Woo, 2020	539	18			[0.07; 0.73]	1.5%
Xiong, 2020	152	538			[0.24; 0.32]	1.5%
Zhao, 2020	9	55			[0.08; 0.29]	1.4%
Random Effects Model		25268		0.22	[0 27: 0 27]	100 0%
Heterogeneity: $l^2 = 99\%$, $\tau^2 = 0.0498$, p		20200		7 0.32	[0.27; 0.37]	100.0%
= 0.0400, p	-	-0	.2 0 0.2 0.4 0.6 0.8	1		
			Proportion with Fatigue			

Fig. 2. Pooled proportions of individuals experiencing fatigue 12 or more weeks following COVID-19 diagnosis.

Study	Events	Total		Proportion	95%-CI	Weight
Amin–Chowdhury, 2021	49	140		0.35	[0.27; 0.44]	2.4%
Buonsenso, 2021	8	68			[0.05; 0.22]	2.3%
Cirulli, 2020	15	119			[0.07; 0.20]	2.4%
Darley, 2021	32	97			[0.24; 0.43]	2.3%
Evans, 2021	150	888	+		[0.14; 0.20]	2.4%
Fernández-de-las-Peñas (1), 2021	217	1142	+	0.19	[0.17; 0.21]	2.4%
Ferrucci, 2021	23	38	— · —	0.61	[0.43; 0.76]	2.2%
Fortini, 2021	8	59		0.14	[0.06; 0.25]	2.3%
Frontera, 2021	106	215		0.49	[0.42; 0.56]	2.4%
Garrigues, 2020	41	120		0.34	[0.26; 0.43]	2.4%
González–Hermosillo, 2021	59	130		0.45	[0.37; 0.54]	2.4%
Havervall, 2021	6	323	+	0.02	[0.01; 0.04]	2.4%
Jacobson, 2021	20	118		0.17	[0.11; 0.25]	2.4%
Johnsen, 2021	26	45	—— •		[0.42; 0.72]	2.2%
Klein, 2021	6	103	-+		[0.02; 0.12]	2.3%
Latronico, 2021	12	55			[0.12; 0.35]	2.3%
Leth, 2021	22	49			[0.31; 0.60]	2.2%
Logue, 2021	4	177	+		[0.01; 0.06]	2.4%
Mattioli, 2021	14	120			[0.07; 0.19]	2.4%
Mazza, 2021	60	130			[0.37; 0.55]	2.4%
Mei, 2021	49	3677	• <u> </u>		[0.01; 0.02]	2.5%
Miskowiak, 2021	19	23			[0.61; 0.95]	2.0%
Morin, 2021	79	159			[0.42; 0.58]	2.4%
Munblit, 2021	237	2597			[0.08; 0.10]	2.4%
O'Keefe, 2021	27	198	_ =		[0.09; 0.19]	2.4%
Ong, 2021	1	120	• •		[0.00; 0.05]	2.4%
Orrù, 2021	74	152			[0.41; 0.57]	2.4%
Pereira, 2021	9	38			[0.11; 0.40]	2.2%
Pilotto, 2021	52	165			[0.25; 0.39]	2.4%
Rass, 2021	30 20	120 127			[0.18; 0.34]	2.4% 2.4%
Rauch, 2021 Savarraj, 2021	20 5	43			[0.10; 0.23]	2.4 % 2.2%
Savarraj, 2021 Skala, 2021	5	102			[0.04; 0.25] [0.02; 0.11]	2.2%
Soldati, 2021	3	23			[0.02; 0.11]	2.3%
Søraas, 2021	74	588			[0.10; 0.16]	2.4%
Sykes, 2021	, 4 50	134			[0.29; 0.46]	2.4%
Tawfik, 2021	4	120	-		[0.01; 0.08]	2.4%
Valiente–De Santis, 2020	2	108	÷		[0.00; 0.07]	2.4%
van den Borst, 2020	45	124			[0.28; 0.45]	2.4%
Van Veenendaal, 2021	7	50			[0.06; 0.27]	2.2%
Venturelli, 2021	69	304			[0.18; 0.28]	2.4%
Walle–Hansen, 2021	46	106			[0.34; 0.53]	2.3%
Woo, 2020	9	18			[0.26; 0.74]	2.0%
Random Effects Model		13232	•	0.22	[0.17; 0.28]	100.0%
Heterogeneity: $I^2 = 98\%$, $\tau^2 = 0.0525$, μ	o = 0	I				
		_0		1		
		Pro	oportion with Cognitive Impairm	ent		

Fig. 3. Pooled proportions of individuals exhibiting cognitive impairment 12 or more weeks following COVID-19 diagnosis.

Moreover, Woo et al. reported that persistent neurocognitive deficits were independent from fatigue and mood alterations, and may thus differ from the classical post-viral syndrome (Woo et al., 2020). Table 2 details all factors reportedly associated with PCS symptoms across individual component studies.

4. Discussion

Herein we identified that approximately a third of individuals experienced persistent fatigue and over a fifth of individuals exhibited cognitive impairment 12 or more weeks following confirmed COVID-19 diagnosis. Similar incidences of fatigue and cognitive impairment, respectively, were observed amongst hospitalized and non-hospitalized populations. Furthermore, in contradistinction to other persistent symptoms which may be self-limiting (e.g., anosmia) (Hopkins et al., 2020), fatigue and cognitive impairment appear to endure and may potentially worsen over time in susceptible individuals (Jason et al., 2021), as evidenced by similar proportions of affected individuals at <6 and ≥ 6 months follow-up. A lower incidence of fatigue and cognitive impairment, respectively, were identified amongst children as compared to adults. Moreover, we established that persistent inflammation was consistently reported in a subset of patients, and that symptoms of PCS (including fatigue and cognitive impairment) are associated with marked functional impairment. Frequently reported factors associated with a greater incidence of PCS symptoms amongst component studies included female sex, older age, greater severity of acute illness, and preexisting comorbidities.

Fatigue and cognitive impairment in PCS comprise a form of postinfectious fatigue syndrome, and exhibit phenotypic similarity to ME/ CFS, which is often precipitated by an infectious agent (Taboada et al., 2021). Similar incidence rates of fatigue, as well as decreased QOL measures, have been reported in the aftermath of previous coronavirus epidemics, including severe acute respiratory syndrome coronavirus (SARS) and Middle East respiratory syndrome coronavirus (MERS) (Lam et al., 2009; Rogers et al., 2020). Furthermore, PCS shares overlapping symptoms with the encephalitis lethargica epidemic (von Economo's encephalitis) of the 1920 s (e.g., fatigue, cognitive impairment, headache), which was hypothesized to be causally related to the 1918 Spanish influenza pandemic (Hoffman and Vilensky, 2017).

There are multiple mechanisms whereby SARS-CoV-2 infection can engender or exacerbate persistent fatigue and/or cognitive impairment. Neurological dysfunction can ensue due to non-mutually exclusive factors including but not limited to direct viral encephalitis, neuroinflammation (including damage to blood–brain barrier integrity) (Nalbandian et al., 2021; Lam et al., 2009; Rogers et al., 2020), hypoxia, and cerebrovascular disease (Nalbandian et al., 2021; Komaroff and Lipkin, 2021; Higgins et al., 2021). Multiple studies have identified neuroanatomical alterations and neurodegeneration (Douaud et al., 2021), cerebral microvascular injury (Lee et al., 2021), and metabolic aberrations (including hypometabolism in areas associated with motivation, such as the dorsolateral prefrontal cortex) (Guedj et al., 2021) in the brains of COVID-19 patients.

It is also recognized that systemic sequelae including endothelial dysfunction (Libby and Lüscher, 2020), hyperinflammation, autoimmunity, latent viral reactivation (Oronsky et al., 2021), multi-organ pathology, and autonomic nervous system dysfunction can interact with the foregoing in a synergistic manner (Yong, 2021). The causal relationship between specific pro-inflammatory cytokines, mood symptoms, and cognitive decline is firmly established (Sartori et al., 2012; Rosenblat et al., 2014). We report that a subset of individuals consistently exhibited markers of inflammation following the resolution of acute COVID-19 infection, suggesting hyperinflammation is an amenable cause of fatigue and/or cognitive impairment in PCS. Indeed, other post-infectious syndromes (e.g., post-infectious encephalitis) (Sonneville et al., 2009) have been previously associated with elevations in inflammatory parameters.

Several non-mutually exclusive hypotheses regarding the pathogenesis of PCS would suggest that anti-inflammatory pharmacologic approaches may be of some utility in select patients. Moreover, psychotropic medications (e.g., selective serotonin reuptake inhibitors) (Gałecki et al., 2018) may modulate pro-inflammatory cytokine levels, and possibly exert salutary effects on mood and cognition in COVID-19 survivors (Heckenberg et al., 2018). In addition to pharmacologic strategies, disparate psychosocial treatments (e.g., cognitive remediation) may also be effective in treating symptoms of PCS. There is also the need to determine whether the type and frequency of vaccines (i.e., boosters) influence the risk for incident, persistent and/or severity of PCS. Reports of breakthrough infections in persons previously receiving a full vaccination schedule invites the need for characterization of risk in that subset of individuals. Moreover, the influence of both medical and psychiatric comorbidity on the risk for PCS, notably cognitive impairment, as well as the moderating influence of social, economic, and spatial determinants of health should be evaluated.

5. Limitations

The results presented herein should be interpreted within the context of several limitations. First, component studies were observational, therefore causal relationships cannot be inferred. Second, the majority of studies did not ascertain whether outcomes were present prior to COVID-19 infection (i.e., period prevalence rather than incidence), although this is a limitation accounted for by the NOS. Thus, we cannot exclude the possibility that fatigue and cognitive impairment preceded SARS-CoV-2 infection (although infection may have exacerbated symptoms). Third, as most component studies were based on hospitalized individuals, the results may not be representative for the majority of individuals affected by COVID-19. Furthermore, it is firmly established that the incidence of depressive and anxious symptoms in the general population has increased since the pandemic onset (Xiong et al., 2020); fatigue and cognitive impairment may be consequences of chronic stress and/or depression resulting from social and economic challenges of COVID-19, rather than a result of infection, in a proportion of PCS patients. It is also noteworthy that social consequences may be exacerbated for infected individuals. The majority of cohort studies failed to include a non-exposed control group, providing no basis for comparison (see Table S1 in supplementary material).

With respect to selection bias, there is an overrepresentation of hospitalized cases in the analyses herein, and a subset of reports may be attributable to post-intensive care syndrome, comorbid conditions, and/ or medications (Heckenberg et al., 2018). Conversely, PCS patients not receiving healthcare for their symptoms are underrepresented. Moreover, fatigue and cognitive impairment may be secondary to other sequelae of SARS-CoV-2 infection, including but not limited to major depressive disorder (Taquet et al., 2021). Another limitation in most studies of objective cognitive functions was the use of dementia screening tools (e.g., MoCA, TICS) that have limited sensitivity to cognitive decline in younger populations and may thus have led to underestimation of cognitive impairments (McIntyre et al., 2019). Future studies would thus be recommended to apply more sensitive tools devoid of ceiling effects, for example the Screen for Cognitive Impairment for Psychiatry (SCIP) (Miskowiak et al., 2021; Miskowiak et al., 2017) and THINC-integrated tool (THINC-it) (McIntyre et al., 2020; McIntyre et al., 2017; McIntyre et al., 2013).

Another methodological limitation is the considerable level of heterogeneity exhibited in both meta-analyses, which may be attributable to variation in methods of data collection and sample characteristics amongst component studies. For example, the various subjective and objective assessment tools utilized differential scales (e.g., dichotomous Yes/No vs. Likert), providing varying levels of granularity. Stratifying studies by design, mode of ascertainment, and quality did not markedly reduce heterogeneity (Table 3). We also included preprints (Table 2), which have not undergone peer review.

6. Conclusion

In this systematic review and meta-analysis of 81 studies, we established that approximatelt a third of the included individuals experienced persistent fatigue and over a fifth of individuals exhibited cognitive impairment 12 or more weeks following COVID-19 diagnosis. Furthermore, a subset of individuals exhibited markers of systemic inflammation, and PCS was associated with marked levels of functional impairment. Limited evidence suggested a possible association between elevated pro-inflammatory markers and fatigue or cognitive impairment in PCS. Future research should endeavour to identify the underlying mechanisms, develop standardized diagnostic criteria, and establish therapies to prevent and treat fatigue and cognitive impairment in PCS patients.

Author contributions

RSM and FC conceptualized and designed study. FC and SL conducted literature search, study selection, and data extraction. FC and LMWL conducted quality and bias assessment of component studies. FC and YL conducted statistical analyses. FC interpreted statistical results, conducted qualitative analysis, and wrote the first draft of the manuscript with input from RSM, KWM, and MV. All authors provided critical review for important intellectual content, and approved the final version of the manuscript.

Funding

This research did not receive any grants or funding.

Financial disclosures

RSM has received research grant support from CIHR/GACD/Chinese National Natural Research Foundation; speaker/consultation fees from Lundbeck, Janssen, Purdue, Pfizer, Otsuka, Takeda, Neurocrine, Sunovion, Bausch Health, Novo Nordisk, Kris, Sanofi, Eisai, Intra-Cellular, NewBridge Pharmaceuticals, Abbvie. RSM is a CEO of Braxia Scientific Corp. JDR is the medical director of Braxia Health (formally known as the Canadian Rapid Treatment Center of Excellence and is a fully owned subsidiary of Braxia Scientific Corp) which provides ketamine and esketamine treatment for depression; he has received research grant support from the American Psychiatric Association, the American Society of Psychopharmacology, the Canadian Cancer Society, the Canadian Psychiatric Association, the Joseph M. West Family Memorial Fund, the Timeposters Fellowship, the University Health Network Centre for Mental Health, and the University of Toronto and speaking, consultation, or research fees from Allergan, COMPASS, Janssen, Lundbeck, and Sunovion. YL has received personal fees from Braxia Scientific Corp. LMWL has received personal fees from Braxia Scientific Corp and honoraria Medscape. KWM has received personal fees from Lundbeck and Janssen Cilag in the past three years and is supported by a five-year Lundbeck Foundation Fellowship (grant no. R215-2015-4121). MV has received a consultancy fee from Lundbeck, Janssen-Cilag and Sunovion. VM has received speaking/consulting and fees from: AbbVie/ Allergan, Acadia Pharmaceuticals, Inc., Alfasigma, USA, Inc., Alkermes, Inc., Eisai-Purdue, Intra-Cellular Therapies, Ironshore. Janssen, Lundbeck A/S, Jazz Pharmaceuticals, Noven Pharmaceuticals Inc, Otsuka America Pharmaceutical, Inc., Sage Pharmaceuticals, Sunovion Pharmaceuticals Inc., Supernus Pharmaceuticals, Inc., Takeda Pharmaceutical Company Limited. KMT has received personal fees from Braxia Scientific Corp. All other authors declare no conflicts of interest or financial disclosures.

Declaration of Competing Interest

interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.bbi.2021.12.020.

References

- Coronavirus disease (COVID-19) World Health Organization. Accessed June 27, 2021. https://www.who.int/emergencies/diseases/novel-coronavirus-2019.
- Wu, S.L., Mertens, A.N., Crider, Y.S., Nguyen, A., Pokpongkiat, N.N., Djajadi, S., Seth, A., Hsiang, M.S., Colford, J.M., Reingold, A., Arnold, B.F., Hubbard, A., Benjamin-Chung, J., 2020. Substantial underestimation of SARS-CoV-2 infection in the United States. Nat. Commun. 11 (1) https://doi.org/10.1038/s41467-020-18272-4.
- Havers, F.P., Reed, C., Lim, T., Montgomery, J.M., Klena, J.D., Hall, A.J., Fry, A.M., Cannon, D.L., Chiang, C.-F., Gibbons, A., Krapiunaya, I., Morales-Betoulle, M., Roguski, K., Rasheed, M.A.U., Freeman, B., Lester, S., Mills, L., Carroll, D.S., Owen, S.M., Johnson, J.A., Semenova, V., Blackmore, C., Blog, D., Chai, S.J., Dunn, A., Hand, J., Jain, S., Lindquist, S., Lynfield, R., Pritchard, S., Sokol, T., Sosa, L., Turabelidze, G., Watkins, S.M., Wiesman, J., Williams, R.W., Yendell, S., Schiffer, J., Thornburg, N.J., 2020. Seroprevalence of antibodies to SARS-CoV-2 in 10 sites in the United States, March 23-may 12, 2020. JAMA Intern Med. 180 (12), 1576. https://doi.org/10.1001/jamainternmed.2020.4130.
- Aizenman N. Why the pandemic is 10 times worse than you think. NPR. https://www. npr.org/sections/health-shots/2021/02/06/964527835/why-the-pandemic-is-10-t imes-worse-than-you-think. Published February 6, 2021. Accessed May 19, 2021.
- Tenforde, M.W., Kim, S.S., Lindsell, C.J., Billig Rose, E., Shapiro, N.I., Files, D.C., Gibbs, K.W., Erickson, H.L., Steingrub, J.S., Smithline, H.A., Gong, M.N., Aboodi, M. S., Exline, M.C., Henning, D.J., Wilson, J.G., Khan, A., Qadir, N., Brown, S.M., Peltan, I.D., Rice, T.W., Hager, D.N., Ginde, A.A., Stubblefield, W.B., Patel, M.M., Self, W.H., Feldstein, L.R., Hart, K.W., McClellan, R., Dorough, L., Dzuris, N., Griggs, E.P., Kassem, A.M., Marcet, P.L., Ogokeh, C.E., Sciarratta, C.N., Siddula, A., Smith, E.R., Wu, M.J., 2020. Symptom duration and risk factors for delayed return to usual health among outpatients with COVID-19 in a multistate health care systems network - United States, march-June 2020. MMWR Morb. Mortal. Wkly Rep. 69 (30), 993–998. https://doi.org/10.15585/mmwr.mm6930e1.
- Huang, Y., Pinto, M.D., Borelli, J.L., et al. COVID symptoms, symptom clusters, and predictors for becoming a long-hauler: Looking for clarity in the haze of the pandemic. *medRxiv*. Published online March 5, 2021:2021.03.03.2125208doi: 10.1101/2021.03.03.21252086.
- Huang, C., Huang, L., Wang, Y., Li, X., Ren, L., Gu, X., Kang, L., Guo, L.i., Liu, M., Zhou, X., Luo, J., Huang, Z., Tu, S., Zhao, Y., Chen, L.i., Xu, D., Li, Y., Li, C., Peng, L. u., Li, Y., Xie, W., Cui, D., Shang, L., Fan, G., Xu, J., Wang, G., Wang, Y., Zhong, J., Wang, C., Wang, J., Zhang, D., Cao, B., 2021. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet 397 (10270), 220–232. https://doi.org/10.1016/S0140-6736(20)32655-8.
- Renaud-Charest, O., Lui, L.M.W., Eskander, S., Ceban, F., Ho, R., Di Vincenzo, J.D., Rosenblat, J.D., Lee, Y., Subramaniapillai, M., McIntyre, R.S., 2021. Onset and frequency of depression in post-COVID-19 syndrome: A systematic review. J. Psychiatr. Res. 144, 129–137. https://doi.org/10.1016/i.jpsychires.2021.09.054.
- Nalbandian, A., Sehgal, K., Gupta, A., Madhavan, M.V., McGroder, C., Stevens, J.S., Cook, J.R., Nordvig, A.S., Shalev, D., Sehrawat, T.S., Ahluwalia, N., Bikdeli, B., Dietz, D., Der-Nigoghossian, C., Liyanage-Don, N., Rosner, G.F., Bernstein, E.J., Mohan, S., Beckley, A.A., Seres, D.S., Choueiri, T.K., Uriel, N., Ausiello, J.C., Accili, D., Freedberg, D.E., Baldwin, M., Schwartz, A., Brodie, D., Garcia, C.K., Elkind, M.S.V., Connors, J.M., Bilezikian, J.P., Landry, D.W., Wan, E.Y., 2021. Postacute COVID-19 syndrome. Nat. Med. 27 (4), 601–615. https://doi.org/10.1038/ s41591-021-01283-z.
- Accessed December 9, 2021. https://www.ncbi.nlm.nih.gov/pmc/articles/ PMC7992371/.
- Overview | COVID-19 rapid guideline: managing the long-term effects of COVID-19 | Guidance | NICE. Accessed June 29, 2021. https://www.nice.org.uk/guida nce/ng188.
- (hq) WH. A clinical case definition of post COVID-19 condition by a Delphi consensus, 6 October 2021. Published October 6, 2021. Accessed October 15, 2021. https://www. who.int/publications/i/item/WHO-2019-nCoV-Post_COVID-19_condition-Clinical_ case_definition-2021.1.
- Siegelman, J.N., 2020. Reflections of a COVID-19 Long Hauler. JAMA 324 (20), 2031–2032. https://doi.org/10.1001/jama.2020.22130.
- Rubin, R., 2020. As Their Numbers Grow, COVID-19 "Long Haulers" Stump Experts. JAMA 324 (14), 1381–1383. https://doi.org/10.1001/jama.2020.17709.
- Davis, H.E., Assaf, G.S., McCorkell, L., et al. Characterizing Long COVID in an international cohort: 7 months of symptoms and their impact. *bioRxiv*. Published online December 26, 2020:2020.12.24.20248802. doi:10.1101/ 2020.12.24.20248802.
- Marshall, M., 2020. The lasting misery of coronavirus long-haulers. Nature 585 (7825), 339–341. https://doi.org/10.1038/d41586-020-02598-6.
- Report: What does COVID-19 recovery actually look like? patient-led research collaborative. Published June 10, 2020. Accessed July 7, 2021. https://patien tresearchcovid19.com/research/report-1/.

The authors declare that they have no known competing financial

- Sabes-Figuera, R., McCrone, P., Hurley, M., King, M., Donaldson, A.N., Ridsdale, L., 2010. The hidden cost of chronic fatigue to patients and their families. BMC Health Serv. Res. 10 (1) https://doi.org/10.1186/1472-6963-10-56.
- Winston Wong P. Economic burden of Alzheimer disease and managed care considerations. AJMC. Published August 17, 2020. Accessed December 7, 2021. https://www.ajmc.com/view/economic-burden-of-alzheimer-disease-and-managedcare-considerations.
- Xu, J., Zhang, Y., Qiu, C., Cheng, F., 2017. Global and regional economic costs of dementia: a systematic review. Lancet 390, S47. https://doi.org/10.1016/s0140-6736(17)33185-9.
- Stroup, D.F., Berlin, J.A., Morton, S.C., et al., 2000. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA 283 (15), 2008–2012. https://doi. org/10.1001/jama.283.15.2008.
- Page, M.J., McKenzie, J.E., Bossuyt, P.M., et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. *BMJ*. 2021;372:n71. doi:10.1136/bmj. n71.

Better systematic review management. Published June 11, 2020. Accessed July 8, 2021. https://www.covidence.org.

- Stang, A., 2010. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur. J. Epidemiol. 25 (9), 603–605. https://doi.org/10.1007/s10654-010-9491-z.
- Balduzzi, S., Rücker, G., Schwarzer, G., 2019. How to perform a meta-analysis with R: a practical tutorial. Evid. Based. Ment Health. 22 (4), 153–160. https://doi.org/ 10.1136/ebmental-2019-300117.
- Kenward, M.G., Roger, J.H., 1997. Small sample inference for fixed effects from restricted maximum likelihood. Biometrics. 53 (3), 983–997. https://doi.org/ 10.2307/2533558.
- Miller, J.J., 1978. The Inverse of the Freeman Tukey Double Arcsine Transformation, 138 Am. Stat. 32 (4), 138. https://doi.org/10.1080/00031305.1978.10479283.
- Deeks, J.J., Higgins, J.PT., Altman, D.G., 2008. In: Cochrane Handbook for Systematic Reviews of Interventions. John Wiley & Sons, Ltd, Chichester, UK, pp. 243–296. https://doi.org/10.1002/9780470712184.ch9.
- Schünemann, H.J., Higgins, J.PT., Vist, G.E., Glasziou, P., Akl, E.A., Skoetz, N., Guyatt, G.H., 2019. In: Cochrane Handbook for Systematic Reviews of Interventions. Wiley, pp. 375–402. https://doi.org/10.1002/9781119536604.ch14.
- Breton, G., Mendoza, P., Hägglöf, T., Oliveira, T.Y., Schaefer-Babajew, D., Gaebler, C., Turroja, M., Hurley, A., Caskey, M., Nussenzweig, M.C., 2021. Persistent cellular immunity to SARS-CoV-2 infection. J. Exp. Med. 218 (4) https://doi.org/10.1084/ jem.20202515.
- Shuwa, H.A., Shaw, T.N., Knight, S.B., Wemyss, K., McClure, F.A., Pearmain, L., Prise, I., Jagger, C., Morgan, D.J., Khan, S., Brand, O., Mann, E.R., Ustianowski, A., Bakerly, N.D., Dark, P., Brightling, C.E., Brij, S., Felton, T., Simpson, A., Grainger, J. R., Hussell, T., Konkel, J.E., Menon, M., Ahmed, R., Avery, M., Birchall, K., Charsley, E., Chenery, A., Chew, C., Clark, R., Connolly, E., Connolly, K., Dawson, S., Durrans, L., Durrington, H., Egan, J., Filbey, K., Fox, C., Francis, H., Franklin, M., Glasgow, S., Godfrey, N., Gray, K.J., Grundy, S., Guerin, J., Hackney, P., Hayes, C., Hardy, E., Harris, J., John, A., Jolly, B., Kästele, V., Kerry, G., Lui, S., Lin, L., Mathioudakis, A.G., Mitchell, J., Moizer, C., Moore, K., Moss, S., Baker, S.M., Oliver, R., Padden, G., Parkinson, C., Phuycharoen, M., Saha, A., Salcman, B., Scott, N.A., Sharma, S., Shaw, J., Shaw, J., Shepley, E., Smith, L., Stephan, S., Stephens, R., Tavernier, G., Tudge, R., Wareing, L., Warren, R., Williams, T., Willmore, L., Younas, M., 2021. Alterations in T and B cell function persist in convalescent COVID-19 patients. Med (N Y). 2 (6), 720–735.e4. https://doi.org/10.1016/j.medj.2021.03.013.
- Sonnweber, T., Sahanic, S., Pizzini, A., Luger, A., Schwabl, C., Sonnweber, B., Kurz, K., Koppelstätter, S., Haschka, D., Petzer, V., Boehm, A., Aichner, M., Tymoszuk, P., Lener, D., Theurl, M., Lorsbach-Köhler, A., Tancevski, A., Schapfl, A., Schaber, M., Hilbe, R., Nairz, M., Puchner, B., Hüttenberger, D., Tschurtschenthaler, C., Aßhoff, M., Peer, A., Hartig, F., Bellmann, R., Joannidis, M., Gollmann-Tepeköyli, C., Holfeld, J., Feuchtner, G., Egger, A., Hoermann, G., Schroll, A., Fritsche, G., Wildner, S., Bellmann-Weiler, R., Kirchmair, R., Helbok, R., Prosch, H., Rieder, D., Trajanoski, Z., Kronenberg, F., Wöll, E., Weiss, G., Widmann, G., Löffler-Ragg, J., Tancevski, I., 2021. Cardiopulmonary recovery after COVID-19: an observational prospective multicentre trial. Eur. Respir. J. 57 (4), 2003481. https:// doi.org/10.1183/13993003.03481-2020.
- Taboada, M., Cariñena, A., Moreno, E., Rodríguez, N., Domínguez, M.J., Casal, A., Riveiro, V., Diaz-Vieito, M., Valdés, L., Álvarez, J., Seoane-Pillado, T., 2021. Post-COVID-19 functional status six-months after hospitalization. J. Infect. 82 (4), e31–e33. https://doi.org/10.1016/j.jinf.2020.12.022.
- Todt, B.C., Szlejf, C., Duim, E., Linhares, A.O.M., Kogiso, D., Varela, G., Campos, B.A., Baghelli Fonseca, C.M., Polesso, L.E., Bordon, I.N.S., Cabral, B.T., Amorim, V.L.P., Piza, F.M.T., Degani-Costa, L.H., 2021. Clinical outcomes and quality of life of COVID-19 survivors: A follow-up of 3 months post hospital discharge. Respir. Med. 184, 106453. https://doi.org/10.1016/j.rmed.2021.106453.
- Wong, A.W., Shah, A.S., Johnston, J.C., Carlsten, C., Ryerson, C.J., 2020. Patientreported outcome measures after COVID-19: a prospective cohort study. Eur. Respir. J. 56 (5), 2003276. https://doi.org/10.1183/13993003.03276-2020.
- Zhou, M., Yin, Z., Xu, J., et al. Inflammatory profiles and clinical features of COVID-19 survivors three months after discharge in Wuhan, China. J Infect Dis. Published online April 4, 2021. doi:10.1093/infdis/jiab181.
- Ghosn, J., Piroth, L., Epaulard, O., et al. Persistent COVID-19 symptoms are highly prevalent 6 months after hospitalization: results from a large prospective cohort. *Clin Microbiol Infect*. Published online April 30, 2021. doi:10.1016/j.cmi.2021.03.012.
- Say, D., Crawford, N., McNab, S., Wurzel, D., Steer, A., Tosif, S., 2021. Post-acute COVID-19 outcomes in children with mild and asymptomatic disease. The Lancet Child &

Adolescent Health. 5 (6), e22–e23. https://doi.org/10.1016/S2352-4642(21)00124-3

- Pilotto, A., Cristillo, V., Piccinelli, S.C., et al. Long-term neurological manifestations of COVID-19: prevalence and predictive factors. *bioRxiv*. Published online January 2, 2021. doi:10.1101/2020.12.27.20248903.
- Liyanage-Don, N.A., Cornelius, T., Sanchez, J.E., Trainor, A., Moise, N., Wainberg, M., Kronish, I.M., 2021. Psychological Distress, Persistent Physical Symptoms, and Perceived Recovery After COVID-19 Illness. J. Gen. Intern. Med. 36 (8), 2525–2527.
- Miyazato, Y., Morioka, S., Tsuzuki, S., Akashi, M., Osanai, Y., Tanaka, K., Terada, M., Suzuki, M., Kutsuna, S., Saito, S., Hayakawa, K., Ohmagari, N., 2020. Prolonged and Late-Onset Symptoms of Coronavirus Disease 2019. Open Forum Infect Dis. 7 (11) https://doi.org/10.1093/ofid/ofaa507.
- González, J., Benítez, I.D., Carmona, P., Santisteve, S., Monge, A., Moncusí-Moix, A., Gort-Paniello, C., Pinilla, L., Carratalá, A., Zuil, M., Ferrer, R., Ceccato, A., Fernández, L., Motos, A., Riera, J., Menéndez, R., Garcia-Gasulla, D., Peñuelas, O., Bermejo-Martin, J.F., Labarca, G., Caballero, J., Torres, G., de Gonzalo-Calvo, D., Torres, A., Barbé, F., Villar, R.A., Añón, J.M., Barberà, C., Barberán, J., Ortiz, A.B., Bustamante-Munguira, E., Caballero, J., Carbajales, C., Carbonell, N., Catalán-González, M., Galbán, C., Gumucio, V.D., de la Torre, M.D.C., Díaz, E., Estella, Á., Gallego, E., García Garmendia, J.L., Garnacho-Montero, J., Gómez, J.M., Huerta, A., Jorge García, R.N., Loza-Vázquez, A., Marin-Corral, J., de la Gándara, A.M., Varela, I.M., Messa, J.L., Albaiceta, G.M., Novo, M.A., Peñasco, Y., Pozo-Laderas, J. C., Martí, P.R., Roche-Campo, F., Sánchez-Miralles, A., Chinesta, S.S., Socias, L., Solé-Violan, J., Sipmann, F.S., Lomas, L.T., Trenado, J., 2021. Pulmonary function and radiologic features in survivors of critical COVID-19: A 3-month prospective cohort. Chest 160 (1), 187–198. https://doi.org/10.1016/j.chest.2021.02.062.
- Fernández-de-las-Peñas, C., Palacios-Ceña, D., Gómez-Mayordomo, V., Rodríuez-Jiménez, J., Palacios-Ceña, M., Velasco-Arribas, M., Guijarro, C., de-la-Llave-Rincón, A.I., Fuensalida-Novo, S., Elvira-Martínez, C.M., Cuadrado, M.L., Arias-Navalón, J.A., Florencio, L.L., Ortega-Santiago, R., Molina-Trigueros, L.J., Sebastián-Viana, T., Torres-Macho, J., Canto-Diez, G., Plaza-Canteli, S., Cigarán-Méndez, M., Ambite-Quesada, S., Hernández-Barrera, V., Arias-Buría, J.L., Arendt-Nielsen, L., 2021. Long-term post-COVID symptoms and associated risk factors in previously hospitalized patients: A multicenter study. J. Infect. 83 (2), 237–279.
- Fernández-de-Las-Peñas, C., Guijarro, C., Plaza-Canteli, S., Hernández-Barrera, V., Torres-Macho, J., 2021. Prevalence of post-COVID-19 cough one year after SARS-CoV-2 infection: A multicenter study. Lung 199 (3), 249–253. https://doi.org/ 10.1007/s00408-021-00450-w.
- Arnold, D.T., Hamilton, F.W., Milne, A., Morley, A.J., Viner, J., Attwood, M., Noel, A., Gunning, S., Hatrick, J., Hamilton, S., Elvers, K.T., Hyams, C., Bibby, A., Moran, E.d., Adamali, H.I., Dodd, J.W., Maskell, N.A., Barratt, S.L., 2021. Patient outcomes after hospitalisation with COVID-19 and implications for follow-up: results from a prospective UK cohort. Thorax 76 (4), 399–401. https://doi.org/10.1136/thoraxjnl-2020-216086.
- Fortini, A., Torrigiani, A., Sbaragli, S., et al. COVID-19: persistence of symptoms and lung alterations after 3-6 months from hospital discharge. *Infection*. Published online June 6, 2021. doi:10.1007/s15010-021-01638-1.
- García-Abellán J, Padilla S, Fernández-González M, et al. Long-term clinical, virological and immunological outcomes in patients hospitalized for COVID-19: antibody response predicts long COVID. *bioRxiv*. Published online March 8, 2021: 2021.03.08.21253124. doi:10.1101/2021.03.08.21253124.
- Ong, S.W.X., Fong, S.-W., Young, B.E., Chan, Y.-H., Lee, B., Amrun, S.N., Chee, R.-L., Yeo, N.-W., Tambyah, P., Pada, S., Tan, S.Y., Ding, Y., Renia, L., Leo, Y.-S., Ng, L.F.P., Lye, D.C., 2021. Persistent symptoms and association with inflammatory cytokine signatures in recovered Coronavirus disease 2019 patients. Open Forum Infect Dis. 8 (6) https://doi.org/10.1093/ofid/ofab156.
- PHOSP-COVID Collaborative Group, Evans RA, McAuley H, et al. Physical, cognitive and mental health impacts of COVID-19 following hospitalisation – a multi-centre prospective cohort study. *bioRxiv*. Published online March 24, 2021: 2021.03.22.21254057. doi:10.1101/2021.03.22.21254057.
- Skala, M., Svoboda, M., Kopecky, M., Kocova, E., Hyrsl, M., Homolac, M., Chrobok, V., Bostik, P., Fajfr, M., Prasil, P., Plisek, S., Sleha, R., Koblizek, V., 2021. Heterogeneity of post-COVID impairment: interim analysis of a prospective study from Czechia. Virol J. 18 (1) https://doi.org/10.1186/s12985-021-01546-8.
- Sykes, D.L., Holdsworth, L., Jawad, N., Gunasekera, P., Morice, A.H., Crooks, M.G., 2021. Post-COVID-19 symptom burden: What is long-COVID and how should we manage it? Lung 199 (2), 113–119. https://doi.org/10.1007/s00408-021-00423-z.
- Santis, L.V.-D., Pérez-Camacho, I., Sobrino, B., et al. Clinical and immunoserological status 12 weeks after infection with COVID-19: prospective observational study. *bioRxiv*. Published online October 8, 2020. doi:10.1101/2020.10.06.20206060.
- van den Borst, B., Peters, J.B., Brink, M., et al. Comprehensive health assessment three months after recovery from acute COVID-19. *Clin Infect Dis.* Published online November 21, 2020. doi:10.1093/cid/ciaa1750.

Venturelli, S., Benatti, S.V., Casati, M., Binda, F., Zuglian, G., Imeri, G., Conti, C., Biffi, A. M., Spada, M.S., Bondi, E., Camera, G., Severgnini, R., Giammarresi, A., Marinaro, C., Rossini, A., Bonaffini, P.A., Guerra, G., Bellasi, A., Cesa, S., Rizzi, M., 2021. Surviving COVID-19 in Bergamo province: a post-acute outpatient re-evaluation. Epidemiol. Infect. 149 https://doi.org/10.1017/S0950268821000145.

- IL6 Clinical: Interleukin 6, Plasma. Accessed June 26, 2021. https://www.mayoclinicl abs.com/test-catalog/Clinical+and+Interpretive/63020.
- Elkan, M., Dvir, A., Zaidenstein, R., et al. Patient-reported outcome measures after hospitalization during the COVID-19 pandemic, a survey among COVID-19 and non-COVID-19 patients. *Research Square*. Published online June 7, 2021. doi:10.21203/ rs.3.rs-559099/v1.
- Frontera, J.A., Yang, D., Lewis, A., Patel, P., Medicherla, C., Arena, V., Fang, T., Andino, A., Snyder, T., Madhavan, M., Gratch, D., Fuchs, B., Dessy, A., Canizares, M.,

Jauregui, R., Thomas, B., Bauman, K., Olivera, A., Bhagat, D., Sonson, M., Park, G., Stainman, R., Sunwoo, B., Talmasov, D., Tamimi, M., Zhu, Y., Rosenthal, J., Dygert, L., Ristic, M., Ishii, H., Valdes, E., Omari, M., Gurin, L., Huang, J., Czeisler, B. M., Kahn, D.E., Zhou, T., Lin, J., Lord, A.S., Melmed, K., Meropol, S., Troxel, A.B., Petkova, E., Wisniewski, T., Balcer, L., Morrison, C., Yaghi, S., Galetta, S., 2021. A prospective study of long-term outcomes among hospitalized COVID-19 patients with and without neurological complications. J. Neurol. Sci. 426, 117486. https://doi.org/10.1016/j.jns.2021.117486.

Garrigues, E., Janvier, P., Kherabi, Y., Le Bot, A., Hamon, A., Gouze, H., Doucet, L., Berkani, S., Oliosi, E., Mallart, E., Corre, F., Zarrouk, V., Moyer, J.-D., Galy, A., Honsel, V., Fantin, B., Nguyen, Y., 2020. Post-discharge persistent symptoms and health-related quality of life after hospitalization for COVID-19. J. Infect. 81 (6), e4-e6. https://doi.org/10.1016/j.jinf.2020.08.029.

Havervall, S., Rosell, A., Phillipson, M., Mangsbo, S.M., Nilsson, P., Hober, S., Thålin, C., 2021. Symptoms and functional impairment assessed 8 months after mild COVID-19 among health care workers. JAMA 325 (19), 2015. https://doi.org/10.1001/ jama.2021.5612.

Jacobson, K.B., Rao, M., Bonilla, H., et al. Patients with uncomplicated COVID-19 have long-term persistent symptoms and functional impairment similar to patients with severe COVID-19: a cautionary tale during a global pandemic. *Clin Infect Dis.* Published online February 7, 2021. doi:10.1093/cid/ciab103.

Johnsen, S., Sattler, S.M., Miskowiak, K.W., et al. Descriptive analysis of long COVID sequela identified in a multidisciplinary clinic serving hospitalised and nonhospitalised patients. *ERJ Open Res.* Published online April 29, 2021:00205-02021. doi:10.1183/23120541.00205-2021.

Latronico, N., Peli, E., Rodella F, et al. Six-month outcome in survivors of COVID-19 associated acute respiratory distress syndrome. SSRN Electron J. Published online December 29, 2020. doi:10.2139/ssrn.3756865.

Logue, J.K., Franko, N.M., McCulloch, D.J., McDonald, D., Magedson, A., Wolf, C.R., Chu, H.Y., 2021. Sequelae in adults at 6 months after COVID-19 infection. JAMA Netw Open. 4 (2), e210830. https://doi.org/10.1001/jamanetworkopen.2021.0830

Menges D, Ballouz T, Anagnostopoulos A, et al. Burden of post-COVID-19 syndrome and implications for healthcare service planning: A population-based cohort study. *bioRxiv.* Published online March 1, 2021. doi:10.1101/2021.02.27.21252572.

Miskowiak, K.W., Johnsen, S., Sattler, S.M., Nielsen, S., Kunalan, K., Rungby, J., Lapperre, T., Porsberg, C.M., 2021. Cognitive impairments four months after COVID-19 hospital discharge: Pattern, severity and association with illness variables. Eur. Neuropsychopharmacol. 46, 39–48. https://doi.org/10.1016/j. euroneuro.2021.03.019.

Munblit D, Bobkova P, Spiridonova E, et al. Risk factors for long-term consequences of COVID-19 in hospitalised adults in Moscow using the ISARIC Global follow-up protocol: StopCOVID cohort study. *bioRxiv*. Published online February 19, 2021: 2021.02.17.21251895. doi:10.1101/2021.02.17.21251895.

Orrù, G., Bertelloni, D., Diolaiuti, F., Mucci, F., Di Giuseppe, M., Biella, M., Gemignani, A., Ciacchini, R., Conversano, C., 2021. Long-COVID syndrome? A study on the persistence of neurological, psychological and physiological symptoms. Healthcare (Basel). 9 (5), 575. https://doi.org/10.3390/healthcare9050575.

Osmanov IM, Spiridonova E, Bobkova P, et al. Risk factors for long covid in previously hospitalised children using the ISARIC Global follow-up protocol: A prospective cohort study. *medRxiv*. Published online April 26, 2021:2021.04.26.21256110. doi: 10.1101/2021.04.26.21256110.

Pereira, C., Harris, B.H.L., Di Giovannantonio, M., Rosadas, C., Short, C.-E., Quinlan, R., Sureda-Vives, M., Fernandez, N., Day-Weber, I., Khan, M., Marchesin, F., Katsanovskaja, K., Parker, E., Taylor, G.P., Tedder, R.S., McClure, M.O., Dani, M., Fertleman, M., 2021. The association between antibody response to severe acute respiratory syndrome Coronavirus 2 infection and post-COVID-19 syndrome in healthcare workers. J. Infect. Dis. 223 (10), 1671–1676. https://doi.org/10.1093/ infdis/iiab120.

Qu, G., Zhen, Q.i., Wang, W., Fan, S., Wu, Q., Zhang, C., Li, B., Liu, G., Yu, Y., Li, Y., Yong, L., Lu, B., Ding, Z., Ge, H., Mao, Y., Chen, W., Xu, Q., Zhang, R., Cao, L.u., Chen, S., Li, H., Zhang, H., Hu, X., Zhang, J., Wang, Y., Zhang, H., Liang, C., Sun, L., Sun, Y., 2021. Health-related quality of life of COVID-19 patients after discharge: A multicenter follow-up study. J. Clin. Nurs. 30 (11-12), 1742–1750. https://doi.org/ 10.1111/jocn.15733.

Rass, V., Beer, R., Schiefecker, A.J., et al., 2021. Neurological outcome and quality of life 3 months after COVID-19: A prospective observational cohort study. Eur. J. Neurol. 14803. https://doi.org/10.1111/ene.14803.

Savarraj JPJ, Burkett AB, Hinds SN, et al. Three-month outcomes in hospitalized COVID-19 patients. *bioRxiv*. Published online October 18, 2020. doi:10.1101/ 2020.10.16.20211029.

Soldati, A.B., Almeida, C., Lima, M., Araujo, A., Araujo-Leite, M.A., Silva, M.T.T., 2021. Telephone Screening of Cognitive Status (TICS) in severe COVID-19 patients: Utility in the era of social isolation. eNeurologicalSci. 22, 100322. https://doi.org/ 10.1016/j.ensci.2021.100322.

Soraas A, Ro R, Kalleberg KT, Ellingjord-Dale M, Landro NI. Self-reported memory problems eight months after non-hospitalized COVID-19 in a large cohort. *bioRxiv*. Published online February 26, 2021. doi:10.1101/2021.02.25.21252151.

Walle-Hansen, M.M., Ranhoff, A.H., Mellingsæter, M., Wang-Hansen, M.S., Myrstad, M., 2021. Health-related quality of life, functional decline, and long-term mortality in older patients following hospitalisation due to COVID-19. BMC Geriatr. 21 (1), 199. https://doi.org/10.1186/s12877-021-02140-x.

Taboada, M., Moreno, E., Cariñena, A., Rey, T., Pita-Romero, R., Leal, S., Sanduende, Y., Rodríguez, A., Nieto, C., Vilas, E., Ochoa, M., Cid, M., Seoane-Pillado, T., 2021. Quality of life, functional status, and persistent symptoms after intensive care of COVID-19 patients. Br. J. Anaesth. 126 (3), e110–e113. https://doi.org/10.1016/j. bja.2020.12.007. Van Veenendaal N, Meulen IV der, Onrust M, Paans W, Dieperink W, Voort PV der. Longterm outcomes in COVID-19 ICU patients: A prospective cohort study. *Research Square*. Published online April 7, 2021. doi:10.21203/rs.3.rs-395294/v1.

Szende A, Janssen B, Cabases J, eds. Self-Reported Population Health: An International Perspective Based on EQ-5D. 2014th ed. Springer; 2013.

Amin-Chowdhury Z, Harris RJ, Aiano F, et al. Characterising post-COVID syndrome more than 6 months after acute infection in adults; prospective longitudinal cohort study, England. *bioRxiv*. Published online March 24, 2021. doi:10.1101/ 2021.03.18.21253633.

Augustin, M., Schommers, P., Stecher, M., Dewald, F., Gieselmann, L., Gruell, H., Horn, C., Vanshylla, K., Cristanziano, V.D., Osebold, L., Roventa, M., Riaz, T., Tschernoster, N., Altmueller, J., Rose, L., Salomon, S., Priesner, V., Luers, J.C., Albus, C., Rosenkranz, S., Gathof, B., Fätkenheuer, G., Hallek, M., Klein, F., Suárez, I., Lehmann, C., 2021. Post-COVID syndrome in non-hospitalised patients with COVID-19: a longitudinal prospective cohort study. Lancet Reg Health Eur. 6, 100122. https://doi.org/10.1016/j.lanepe.2021.100122.

Cirulli ET, Schiabor Barrett KM, Riffle S, et al. Long-term COVID-19 symptoms in a large unselected population. *bioRxiv*. Published online October 11, 2020. doi:10.1101/ 2020.10.07.20208702.

Darley DR, Dore GJ, Byrne A, et al. Limited recovery from post-acute sequelae of SARS-CoV-2 (PASC) at eight months in a prospective cohort. *bioRxiv*. Published online March 31, 2021. doi:10.1101/2021.03.29.21254211.

Ferrucci, R., Dini, M., Groppo, E., Rosci, C., Reitano, M.R., Bai, F., Poletti, B., Brugnera, A., Silani, V., D'Arminio Monforte, A., Priori, A., 2021. Long-lasting cognitive abnormalities after COVID-19. Brain Sci. 11 (2), 235. https://doi.org/ 10.3390/brainsci11020235.

Kashif A, Chaudhry M, Fayyaz T, et al. Follow-up of COVID-19 recovered patients with mild disease. *Research Square*. Published online February 17, 2021. doi:10.21203/ rs.3.rs-120819/v1.

O'Keefe JB, Minton HC, Johnson C, et al. High proportion of post-acute sequelae of SARS-CoV-2 infection in individuals 1-6 months after illness and association with disease severity in an outpatient telemedicine population. Published online April 27, 2021. doi:10.1101/2021.04.24.21256054.

Peghin M, Palese A, Venturini M, et al. Post-COVID-19 symptoms 6 months after acute infection among hospitalized and non-hospitalized patients. *Clin Microbiol Infect.* Published online June 7, 2021. doi:10.1016/j.cmi.2021.05.033.

Shang, Y.F., Liu, T., Yu, J.N., Xu, X.R., Zahid, K.R., Wei, Y.C., Wang, X.H., Zhou, F.L., 2021. Half-year follow-up of patients recovering from severe COVID-19: Analysis of symptoms and their risk factors. J. Intern. Med. 290 (2), 444–450. https://doi.org/ 10.1111/joim.13284.

Simani, L., Ramezani, M., Darazam, I.A., Sagharichi, M., Aalipour, M.A., Ghorbani, F., Pakdaman, H., 2021. Prevalence and correlates of chronic fatigue syndrome and post-traumatic stress disorder after the outbreak of the COVID-19. J Neurovirol. 27 (1), 154–159. https://doi.org/10.1007/s13365-021-00949-1.

Stavem, K., Ghanima, W., Olsen, M.K., Gilboe, H.M., Einvik, G., 2021. Prevalence and determinants of fatigue after COVID-19 in non-hospitalized subjects: A populationbased study. Int. J. Environ. Res. Public Health 18 (4), 2030. https://doi.org/ 10.3390/ijerph18042030.

Xiong, Q., Xu, M., Li, J., Liu, Y., Zhang, J., Xu, Y.u., Dong, W., 2021. Clinical sequelae of COVID-19 survivors in Wuhan, China: a single-centre longitudinal study. Clin. Microbiol. Infect. 27 (1), 89–95. https://doi.org/10.1016/j.cmi.2020.09.023.

González-Hermosillo, J.A., Martínez-López, J.P., Carrillo-Lampón, S.A., Ruiz-Ojeda, D., Herrera-Ramírez, S., Amezcua-Guerra, L.M., Martínez-Alvarado, M.D.R., 2021. Postacute COVID-19 symptoms, a potential link with Myalgic Encephalomyelitis/ Chronic Fatigue Syndrome: A 6-month survey in a Mexican cohort. Brain Sci. 11 (6), 760. https://doi.org/10.3390/brainsci11060760.

Petersen, M.S., Kristiansen, M.F., Hanusson, K.D., Danielsen, M.E., á Steig, B., Gaini, S., Strøm, M., Weihe, P., 2021. Long COVID in the Faroe Islands: A Longitudinal Study Among Nonhospitalized Patients. Clin. Infect. Dis. 73 (11), e4058–e4063.

Tawfik, H.M., Shaaban, H.M., Tawfik, A.M., 2021;18(3):em291.. Post-COVID-19 syndrome in Egyptian healthcare staff: Highlighting the carers sufferings. Electron J Gen Med. 18 (3). em291. https://doi.org/10.29333/eigm/10838.

Gen Med. 18 (3), em291. https://doi.org/10.29333/ejgm/10838.
Mei, Q.i., Wang, F., Yang, Y., Hu, G., Guo, S., Zhang, Q., Bryant, A., Zhang, L., Kurts, C., Wei, L.i., Yuan, X., Li, J., 2021. Health issues and immunological assessment related to wuhan's COVID-19 survivors: A multicenter follow-up study. Front Med (Lausanne). 8 https://doi.org/10.3389/fmed.2021.617689.

Evlice, O., Kuş, F., Bektas, M., 2021. Persistent symptoms after discharge of COVID-19 patients. Infect Dis Clin Microbiol. 3 (1), 22–29. https://doi.org/10.36519/ idcm.2021.40.

Rauch B, Kern-Matschilles S, Haschka SJ, et al. COVID-19-related symptoms 6 months after the infection - Update on a prospective cohort study in Germany. *bioRxiv*. Published online February 13, 2021. doi:10.1101/2021.02.12.21251619.

Woo, M.S., Malsy, J., Pöttgen, J., Seddiq Zai, S., Ufer, F., Hadjilaou, A., Schmiedel, S., Addo, M.M., Gerloff, C., Heesen, C., Schulze Zur Wiesch, J., Friese, M.A., 2020. Frequent neurocognitive deficits after recovery from mild COVID-19. Brain Commun. 2 (2) https://doi.org/10.1093/braincomms/fcaa205.

Hopkins, C., Surda, P., Whitehead, E., Kumar, B.N., 2020. Early recovery following new onset anosmia during the COVID-19 pandemic - an observational cohort study. J Otolaryngol Head Neck Surg. 49 (1), 26. https://doi.org/10.1186/s40463-020-00423-8.

Jason, L.A., Islam, M.F., Conroy, K., Cotler, J., Torres, C., Johnson, M., Mabie, B., 2021. COVID-19 symptoms over time: comparing long-haulers to ME/CFS. Fatigue: Biomedicine, Health & Behavior 9 (2), 59–68.

Lam, M.-H.-B., Wing, Y.-K., Yu, M.-W.-M., et al., 2009. Mental morbidities and chronic fatigue in severe acute respiratory syndrome survivors: long-term follow-up. Arch.

F. Ceban et al.

Intern. Med. 169 (22), 2142–2147. https://doi.org/10.1001/ archinternmed.2009.384.

Rogers, J.P., Chesney, E., Oliver, D., Pollak, T.A., McGuire, P., Fusar-Poli, P., Zandi, M.S., Lewis, G., David, A.S., 2020. Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: a systematic review and meta-analysis with comparison to the COVID-19 pandemic. Lancet Psychiatry. 7 (7), 611–627. https://doi.org/10.1016/S2215-0366(20)30203-0.

Hoffman, L.A., Vilensky, J.A., 2017. Encephalitis lethargica: 100 years after the epidemic. Brain. 140 (8), 2246–2251. https://doi.org/10.1093/brain/awx177.

Komaroff, A.L., Lipkin, W.I., 2021. Insights from myalgic encephalomyelitis/chronic fatigue syndrome may help unravel the pathogenesis of postacute COVID-19 syndrome. Trends Mol. Med. 27 (9), 895–906. https://doi.org/10.1016/j. molmed.2021.06.002.

Higgins, V., Sohaei, D., Diamandis, E.P., Prassas, I., 2021. COVID-19: from an acute to chronic disease? Potential long-term health consequences. Crit. Rev. Clin. Lab. Sci. 58 (5), 297–310.

Douaud G, Lee S, Alfaro-Almagro F, et al. Brain imaging before and after COVID-19 in UK Biobank. *bioRxiv*. Published online June 15, 2021:2021.06.11.21258690. doi: 10.1101/2021.06.11.21258690.

Lee, M.-H., Perl, D.P., Nair, G., Li, W., Maric, D., Murray, H., Dodd, S.J., Koretsky, A.P., Watts, J.A., Cheung, V., Masliah, E., Horkayne-Szakaly, I., Jones, R., Stram, M.N., Moncur, J., Hefti, M., Folkerth, R.D., Nath, A., 2021. Microvascular injury in the brains of patients with covid-19. N. Engl. J. Med. 384 (5), 481–483. https://doi.org/ 10.1056/NEJMc2033369.

Guedj, E., Campion, J.Y., Dudouet, P., Kaphan, E., Bregeon, F., Tissot-Dupont, H., Guis, S., Barthelemy, F., Habert, P., Ceccaldi, M., Million, M., Raoult, D., Cammilleri, S., Eldin, C., 2021. 18F-FDG brain PET hypometabolism in patients with long COVID. Eur. J. Nucl. Med. Mol. Imaging 48 (9), 2823–2833.

Libby, P., Lüscher, T., 2020. COVID-19 is, in the end, an endothelial disease. Eur. Heart J. 41 (32), 3038–3044. https://doi.org/10.1093/eurheartj/ehaa623.

Oronsky B, Larson C, Hammond TC, et al. A review of persistent post-COVID syndrome (PPCS). Clin Rev Allergy Immunol. Published online February 20, 2021. doi:10.1007/ s12016-021-08848-3.

Yong, S.J., 2021. Long COVID or post-COVID-19 syndrome: putative pathophysiology, risk factors, and treatments. Infectious Diseases 53 (10), 737–754.

Sartori, A.C., Vance, D.E., Slater, L.Z., Crowe, M., 2012. The impact of inflammation on cognitive function in older adults: implications for healthcare practice and research. J. Neurosci. Nurs. 44 (4), 206–217. https://doi.org/10.1097/ JNN 04013e3185227690

Rosenblat, J.D., Cha, D.S., Mansur, R.B., McIntyre, R.S., 2014. Inflamed moods: a review of the interactions between inflammation and mood disorders. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 53, 23–34. https://doi.org/10.1016/j. pnpbp.2014.01.013.

Sonneville, R., Klein, I., de Broucker, T., Wolff, M., 2009. Post-infectious encephalitis in adults: diagnosis and management. J. Infect. 58 (5), 321–328. https://doi.org/ 10.1016/j.jinf.2009.02.011.

Gałecki, P., Mossakowska-Wójcik, J., Talarowska, M., 2018. The anti-inflammatory mechanism of antidepressants – SSRIs. SNRIs. Prog Neuropsychopharmacol Biol Psychiatry. 80, 291–294. https://doi.org/10.1016/j.pnpbp.2017.03.016.
Heckenberg, R.A., Eddy, P., Kent, S., Wright, B.J., 2018. Do workplace-based

Heckenberg, R.A., Eddy, P., Kent, S., Wright, B.J., 2018. Do workplace-based mindfulness meditation programs improve physiological indices of stress? A systematic review and meta-analysis. J. Psychosom. Res. 114, 62–71. https://doi. org/10.1016/j.jpsychores.2018.09.010.

Xiong, J., Lipsitz, O., Nasri, F., Lui, L.M.W., Gill, H., Phan, L., Chen-Li, D., Iacobucci, M., Ho, R., Majeed, A., McIntyre, R.S., 2020. Impact of COVID-19 pandemic on mental health in the general population: A systematic review. J. Affect. Disord. 277, 55–64. https://doi.org/10.1016/j.jad.2020.08.001.

Taquet, M., Geddes, J.R., Husain, M., Luciano, S., Harrison, P.J., 2021. 6-month neurological and psychiatric outcomes in 236 379 survivors of COVID-19: a retrospective cohort study using electronic health records. Lancet Psychiatry. 8 (5), 416–427. https://doi.org/10.1016/S2215-0366(21)00084-5.

McIntyre, R.S., Anderson, N., Baune, B.T., Brietzke, E., Burdick, K., Fossati, P., Gorwood, P., Harmer, C., Harrison, J., Harvey, P., Mansur, R.B., Medalia, A., Miskowiak, K., Ramey, T., Rong, C., Rosenblat, J.D., Young, A., Stahl, S.M., 2019. Expert Consensus on Screening and Assessment of Cognition in Psychiatry. CNS Spectr. 24 (1), 154–162. https://doi.org/10.1017/S1092852918001189.

Miskowiak, K.W., Burdick, K.E., Martinez-Aran, A., Bonnin, C.M., Bowie, C.R., Carvalho, A.F., Gallagher, P., Lafer, B., López-Jaramillo, C., Sumiyoshi, T., McIntyre, R.S., Schaffer, A., Porter, R.J., Torres, I.J., Yatham, L.N., Young, A.H., Kessing, L.V., Vieta, E., 2017. Methodological recommendations for cognition trials in bipolar disorder by the International Society for Bipolar Disorders Targeting Cognition Task Force. Bipolar Disord. 19 (8), 614–626. https://doi.org/10.1111/ bdi.12534.

McIntyre, R.S., Subramaniapillai, M., Park, C., Zuckerman, H., Cao, B., Lee, Y., Iacobucci, M., Nasri, F., Fus, D., Bowie, C.R., Tran, T., Rosenblat, J.D., Mansur, R.B., 2020. The THINC-it Tool for Cognitive Assessment and Measurement in Major Depressive Disorder: Sensitivity to Change. Front. Psychiatry 11. https://doi.org/10.3389/fpsyt.2020.00546.

McIntyre, R.S., Best, M.W., Bowie, C.R., Carmona, N.E., Cha, D.S., Lee, Y., Subramaniapillai, M., Mansur, R.B., Barry, H., Baune, B.T., Culpepper, L., Fossati, P., Greer, T.L., Harmer, C., Klag, E., Lam, R.W., Wittchen, H.-U., Harrison, J., 2017. The THINC-Integrated Tool (THINC-it) Screening Assessment for Cognitive Dysfunction: Validation in Patients With Major Depressive Disorder. J. Clin. Psychiatry 78 (7), 873–881. https://doi.org/10.4088/JCP.16m11329.

McIntyre, R.S., Cha, D.S., Soczynska, J.K., Woldeyohannes, H.O., Gallaugher, L.A., Kudlow, P., Alsuwaidan, M., Baskaran, A., 2013. Cognitive deficits and functional outcomes in major depressive disorder: determinants, substrates, and treatment interventions. Depress Anxiety. 30 (6), 515–527. https://doi.org/10.1002/ da.22063.

Ustün, B., Kennedy, C., 2009. What is "functional impairment"? Disentangling disability from clinical significance. World Psychiatry. 8 (2), 82–85. https://doi.org/10.1002/ j.2051-5545.2009.tb00219.x.

Abdallah, S.J., Voduc, N., Corrales-Medina, V.F., McGuinty, M., Pratt, A., Chopra, A., Law, A., Garuba, H.A., Thavorn, K., Reid, R.E.R., Lavoie, K.L., Crawley, A., Chirinos, J.A., Cowan, J., 2021. Symptoms, pulmonary function and functional capacity four months after COVID-19. Ann Am Thorac Soc. 18 (11), 1912–1917. https://doi.org/10.1513/AnnalsATS.202012-1489RL.

Buonsenso, D., Munblit, D., De Rose, C., Sinatti, D., Ricchiuto, A., Carfi, A., Valentini, P., 2021. Preliminary evidence on long COVID in children. Acta Paediatr. 110 (7), 2208–2211. https://doi.org/10.1111/apa.15870.

Froidure, A., Mahsouli, A., Liistro, G., De Greef, J., Belkhir, L., Gérard, L., Bertrand, A., Koenig, S., Pothen, L., Yildiz, H., Mwenge, B., Aboubakar, F., Gohy, S., Pilette, C., Reychler, G., Coche, E., Yombi, J.-C., Ghaye, B., 2021. Integrative respiratory followup of severe COVID-19 reveals common functional and lung imaging sequelae. Respir. Med. 181, 106383. https://doi.org/10.1016/j.rmed.2021.106383.

Klein, H., Asseo, K., Karni, N., Benjamini, Y., Nir-Paz, R., Muszkat, M., Israel, S., Niv, M. Y., 2021. Onset, duration and unresolved symptoms, including smell and taste changes, in mild COVID-19 infection: a cohort study in Israeli patients. Clin. Microbiol. Infect. 27 (5), 769–774. https://doi.org/10.1016/j.cmi.2021.02.008.

Leth, S., Gunst, J.D., Mathiasen, V., Hansen, K., Søgaard, O., Østergaard, L., Jensen-Fangel, S., Storgaard, M., Agergaard, J., 2021. Persistent symptoms in patients recovering from COVID-19 in Denmark. *Open Forum*. Infect Dis. 8 (4) https://doi. org/10.1093/ofid/ofab042.

Liang, L., Yang, B., Jiang, N., Fu, W., He, X., Zhou, Y., Ma, W.-L., Wang, X., 2020. Threemonth follow-up study of survivors of Coronavirus disease 2019 after discharge. J. Korean Med. Sci. 35 (47) https://doi.org/10.3346/jkms.2020.35.e418.

Mattioli, F., Stampatori, C., Righetti, F., Sala, E., Tomasi, C., De Palma, G., 2021. Neurological and cognitive sequelae of Covid-19: a four month follow-up. J. Neurol. 268 (12), 4422–4428.

Mazza, M.G., Palladini, M., De Lorenzo, R., Magnaghi, C., Poletti, S., Furlan, R., Ciceri, F., Rovere-Querini, P., Benedetti, F., 2021. Persistent psychopathology and neurocognitive impairment in COVID-19 survivors: Effect of inflammatory biomarkers at three-month follow-up. Brain Behav. Immun. 94, 138–147. https:// doi.org/10.1016/j.bbi.2021.02.021.

Morin, L., Savale, L., Pham, T., Colle, R., Figueiredo, S., Harrois, A., Gasnier, M., Lecoq, A.-L., Meyrignac, O., Noel, N., Baudry, E., Bellin, M.-F., Beurnier, A., Choucha, W., Corruble, E., Dortet, L., Hardy-Leger, I., Radiguer, F., Sportouch, S., Verny, C., Wyplosz, B., Zaidan, M., Becquemont, L., Montani, D., Monnet, X., 2021. Four-month clinical status of a cohort of patients after hospitalization for COVID-19. JAMA 325 (15), 1525. https://doi.org/10.1001/jama.2021.3331.

Romero-Duarte, Á., Rivera-Izquierdo, M., Guerrero-Fernández de Alba, I., Pérez-Contreras, M., Fernández-Martínez, N.F., Ruiz-Montero, R., Serrano-Ortiz, Á., González-Serna, R.O., Salcedo-Leal, I., Jiménez-Mejías, E., Cárdenas-Cruz, A., 2021. Sequelae, persistent symptomatology and outcomes after COVID-19 hospitalization: the ANCOHVID multicentre 6-month follow-up study. BMC Med. 19 (1) https://doi. org/10.1186/s12916-021-02003-7.

W, Shendy, Ezzat MM, Md DAE, Elsherif AA. Prevalence of fatigue in patients post covid-19. European Journal of Molecular & Clinical Medicine. 2021;8(3):1330-1340. Accessed July 8, 2021. https://ejmcm.com/article_9929.html.

Suárez-Robles, M., Iguaran-Bermúdez, M.D.R., García-Klepizg, J.L., Lorenzo-Villalba, N., Méndez-Bailón, M., 2020. Ninety days post-hospitalization evaluation of residual COVID-19 symptoms through a phone call check list. Pan Afr Med J. 37, 289. https://doi.org/10.11604/pamj.2020.37.289.27110.

Zhao, Y.-M., Shang, Y.-M., Song, W.-B., Li, Q.-Q., Xie, H., Xu, Q.-f., Jia, J.-l., Li, L.-M., Mao, H.-I., Zhou, X.-M., Luo, H., Gao, Y.-F., Xu, A.-G., 2020. Follow-up study of the pulmonary function and related physiological characteristics of COVID-19 survivors three months after recovery. EClinicalMedicine. 25, 100463. https://doi.org/ 10.1016/j.eclinm.2020.100463.