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Abstract: Most protein-coding genes in eukaryotes possess at least two poly(A) sites, and alternative
polyadenylation is considered a contributing factor to transcriptomic and proteomic diversity. Follow-
ing transcription, a nascent RNA usually undergoes capping, splicing, cleavage, and polyadenylation,
resulting in a mature messenger RNA (mRNA); however, increasing evidence suggests that transcrip-
tion and RNA processing are coupled. Plants, which must produce rapid responses to environmental
changes because of their limited mobility, exhibit such coupling. In this review, we summarize recent
advances in our understanding of the coupling of transcription with RNA processing in plants, and
we describe the possible spatial environment and important proteins involved. Moreover, we de-
scribe how liquid–liquid phase separation, mediated by the C-terminal domain of RNA polymerase II
and RNA processing factors with intrinsically disordered regions, enables efficient co-transcriptional
mRNA processing in plants.

Keywords: polyadenylation; RNA processing; transcription; coupling regulation; liquid–liquid
phase separation (LLPS); gene expression; plant

1. Introduction

Following their transcription from genomic DNA, most nascent RNAs in eukaryotes
are processed via multiple steps, including capping, splicing, polyadenylation, and chem-
ical modification, resulting in mature functional messenger RNAs (mRNAs) [1]. Many
studies have focused on the mechanisms of splicing and chemical modification, but rel-
atively few studies have considered polyadenylation. Polyadenylation is an important
step in gene expression; it affects transcript localization [2], mRNA stability [3,4], transla-
tion efficiency [5,6], the nuclear export of mRNAs [7,8], and other essential biochemical
processes [9]. The process of polyadenylation includes cleavage at a poly(A) site and
the addition of a poly(A) tract [4]. Polyadenylation at different sites of the same gene
is called alternative polyadenylation (APA), and it contributes greatly to the complexity
of gene expression [1]. APA is widespread among eukaryotes; more than 60% of plant
protein-coding genes express alternatively polyadenylated isoforms, and more than 70% of
Arabidopsis genes have at least two poly(A) sites [10,11].

In this review, we briefly introduce polyadenylation in plants, and we describe recent
advances in our understanding of the regulatory events that couple polyadenylation with
transcription, splicing, and the methylation of adenosine at the N6 position (m6A). We then
propose a possible spatial environment for this coupling and describe important proteins
that are part of the coupling machinery. Finally, we outline a possible pathway whereby
such coupling helps regulate gene expression in plants.

2. A Brief Overview of Polyadenylation in Plants

As sessile organisms, plants have evolved specific strategies for responding to envi-
ronmental changes, and the polyadenylation of pre-mRNAs, which is an important part of
gene regulation, plays a key role in plant development and stress responses.
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2.1. The Core Polyadenylation Apparatus in Plants

The polyadenylation of most eukaryotic mRNAs involves two steps: cleavage at
the appropriate site at the 3′ end of the molecule and the addition of a poly(A) tail. The
machinery includes about 85 proteins [12] and multiple sequence elements in the nascent
RNA [1]. According to studies of mammalian and yeast cells, the core 3′ cleavage and
polyadenylation apparatus includes four complexes: cleavage and polyadenylation speci-
ficity factor (CPSF), cleavage stimulation factor (CstF), cleavage factor I (CFI), and cleavage
factor II (CFII). These complexes cooperate with poly(A) polymerase (PAP) and various
RNA-binding proteins (RBPs) to cleave and polyadenylate nascent RNAs [12,13]. These
cleavage and polyadenylation factors work in close collaboration with each other via the
recognition of specific sequence elements along the nascent RNA, such as the highly con-
served hexamer AAUAAA and its 11 single-nucleotide variants; in humans, up to 82.5% of
pre-mRNAs possess this canonical polyadenylation signal (PAS) [13,14]. Nearly all of these
core cleavage and polyadenylation factors have homologues in plants (Table 1); however,
the hexamer AAUAAA and its 11 single-nucleotide variants are seen in only 8–12% of the
transcripts in Arabidopsis thaliana (L.) Heynh and rice [14]. How plants are able to cleave
and polyadenylate pre-mRNAs precisely without the use of highly conserved PASs is an
interesting question.

Table 1. Homologues of core cleavage and polyadenylation factors in plants.

Complex Subunits Arabidopsis References Recognize
Sequence References

Cleavage and
polyadenylation
specificity factor

(CPSF)

CPSF160
(CPSF1) AtCPSF160 [15]

AAUAAA [16,17]

CPSF100
(CPSF2) AtCPSF100 [18]

CPSF73
(CPSF3) AtCPSF73-II [15]

CPSF30
(CPSF4) AtCPSF30 [19]

WDR33 FY [20]
Fip1 AtFIP1 [21]

Cleavage
stimulation
factor (CstF)

CstF50
(CstF1) \ \

U/G-rich region [22]
CstF64
(CstF2) AtCstF64 [23]

CstF77
(CstF3) AtCstF77 [23]

Cleavage factor I
(CFI)

CFIm25 \ \
UGUA [24]CFIm68 \ \

(CFIm59) \ \

Cleavage factor
II (CFII)

CLP1
Clp1-similar

protein 3
(CLPS3)

[25]

G-rich region [12,26]

PCF11

Pcf11p-
similar
protein
(PCFS4)

[27]
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2.2. Polyadenylation Is Crucial for Plant Development and Stress Responses

A variety of growth defects have been reported in several polyadenylation factor
mutants. For example, cstf77-2, a T-DNA insertion mutant of cleavage stimulation factor 77,
exhibits curled cotyledons, short roots, a long hypocotyl, and a reduced cell number in the
root meristem at the seedling stage, and late flowering and dwarfism in adult plants [28].
Meanwhile, a decreased number of emerged lateral roots, disorganized quiescent center,
and reduced stem cell niche were reported in fip1-2 (affecting factor interacting with poly[A]
polymerase 1 (Fip1), a core component of the CPSF complex) [29]. Other defects have been
detected, like reduced female gametophyte transmission in a mutant of CLPS3 (an ortholog
of the human polyadenylation factor CLP1) [25] and altered flowering time in a poly(A)
polymerase mutant [30]. Further, homozygous mutations affecting polyadenylation factors
have been shown to be lethal [31]. Together, these observations show the indispensable
role of polyadenylation in plant development.

Moreover, genome-wide induction of the 3′-untranslated region (UTR) extensions
has been observed under conditions of dehydration [32], and increased usage of proximal
poly(A) sites (within the 5′-UTR, introns, and protein-coding regions) was observed in
response to hypoxia in plants [33]. Global changes in APA have also been detected under
conditions of biotic stress (e.g., bacterial blight, rice blast, and rice stripe virus exposure) [34].
Additionally, some polyadenylation factors have been shown to be of great importance in
the response of plants to environment changes, including Fip1 and CPSF30 (a core subunit
of the CPSF complex). The extent of root inhibition by cadmium was significantly increased
in the fip1-2 compared to the wild-type Arabidopsis [29], and AtCPSF30 was shown to play
a critical role in modifying the sensitivity of plants to oxidative stress [35] and in resistance
to Pseudomonas syringae [36]. These findings suggest that polyadenylation promotes the
adaptation of plants to their environment and that correct polyadenylation is crucial for
plant development and stress responses.

3. Gene Expression Regulation in Plants via Coupled Transcription and RNA Processing

Nascent RNAs undergo several processing steps, including 5′ capping, splicing,
3′ polyadenylation, and chemical modification, to become mature mRNAs. Emerging
evidence has shown interconnections among these processes, which appear to occur
in series but may happen co-transcriptionally and even be coupled or interact with
each other [37–39].

To date, two models have been proposed to explain these coupling processes in yeast
and mammalian cells. In the first model, called the recruitment model, transcription is
central to the coupling of different RNA processing events, mainly through RNA poly-
merase II (RNAPII). RNAPII serves as a platform for the recruitment of various processing
factors to a nascent RNA, including capping factors, splicing factors, and polyadenylation
factors [27]. For example, RNAPII that has been phosphorylated at serine 5 (Ser5P) in
its carboxy-terminal domain (CTD) associates, specifically with the spliceosome during
co-transcriptional splicing [40]. Besides RNAPII, chromatin itself can act as a platform for
different processing factors; for instance, histone H3 trimethylated at lysine 36 (H3K36me3)
can recruit RNA-binding proteins [41], and H3K4me3 can recruit the U2 small nuclear
ribonucleoprotein (snRNP) to indirectly promote splicing [42].

In the second model, known as the kinetic model or kinetic competition model [43], the
relative rates of transcription elongation and splicing or poly(A) site cleavage can affect the
output of transcript isoforms and the relative content of different isoforms. The relatively
slow elongation rate of RNAPII assists RNA processing factors by allowing more time for
spliceosome assembly, the binding of processing factors, and recognition and cleavage
at certain poly(A) sites [44]. More recently, it has been reported that the transcription
elongation rate can also control RNA processing via changes in nascent RNA folding [45].
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Current evidence suggests that these two models function in an interdependent
fashion; the transcription elongation rate could influence the recruitment of different
processing factors, and, in turn, the transcription elongation rate could be influenced by
the differential recruitment of factors that control the elongation rate [37,46]. Studies in
which the RNAPII elongation rate was altered suggest that a slower elongation rate allows
more time for the recruitment of processing factors to a nascent RNA; however, this is
not compatible with both the recruitment coupling and kinetic coupling models [47,48].
High-resolution analyses of transcription elongation rates and the nascent RNA structure
are needed to understand the link between these two models. Moreover, it is unknown
how these processes are coupled in plants and whether such coupling occurs similarly to
that in mammals and yeasts.

3.1. Coupling of the Regulatory Events That Control Gene Expression in Plants

In addition to the coupling of transcription and RNA processing in mammals and
yeasts, similar phenomena have been found in plants, particularly in studies of the model
plant Arabidopsis thaliana (L.) Heynh. Here, we outline the current progress in understand-
ing such coupling in plants, with a focus on polyadenylation.

3.1.1. Coupling of Polyadenylation and Transcription in Delay of Germination 1
(DOG1) Expression

The coupling of polyadenylation and transcription in the control of DOG1 expression
is summarized in Figure 1A. Seed dormancy is important for plant survival; it is vital
that seeds germinate at the right time [49]. DOG1, which was first identified as a major
quantitative trait locus for seed dormancy in natural variations of different Arabidopsis
accessions [50], is a key regulator of seed dormancy in Arabidopsis thaliana (L.) Heynh and
other plants [51]. DOG1 has two alternative poly(A) sites: polyadenylation of DOG1 at the
proximal site results in functional DOG1 (known as shDOG1), while polyadenylation at the
less commonly used distal site results in the production of lgDOG1 [52]. 5′-RACE sequence
data indicate that the 5′-capped antisense transcript known as asDOG1 (or 1GOD) [53]
originates from the end of exon 2, which is close to the proximal poly(A) site of DOG1,
and its promoter is located in the region of intron 2 and exon 3 [53]. DOG1 is highly
and specifically expressed in seeds, while it is nearly undetectable in seedlings [50,52].
However, asDOG1 is mainly expressed in seedlings and has been shown to suppress DOG1
expression in a cis manner during seed maturation [53]. Under normal conditions, asDOG1
is expressed at a high level in seedlings and the expression of DOG1 is suppressed to
promote germination; however, when a stressor is applied, asDOG1 is down-regulated
and DOG1 accumulates to promote seed dormancy [54]. Thus, APA of sense transcripts
controls the antisense transcription of DOG1 in Arabidopsis thaliana (L.) Heynh [55], and
DOG1 affects the expression of asDOG1 in Arabidopsis thaliana (L.) Heynh through APA,
polyadenylation, and transcriptional co-regulation of seed dormancy (Figure 1A).
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Figure 1. Schematic diagram of the coupling of transcription and RNA processing in plants. (A) Coupling between
polyadenylation and the transcription of delay of germination 1 (DOG1) in Arabidopsis. Increasing usage of the DOG1
proximal poly(A) site promotes the expression of asDOG1, which subsequently suppresses DOG1 expression [55]. (B) Cou-
pling between the polyadenylation and splicing of flowering locus C (FLC) transcripts in Arabidopsis. PRP8 facilitates the
efficient splicing of the proximal intron in COOLAIR and promotes usage of the proximal poly(A) site in COOLAIR [31].
(C) Coupling between polyadenylation and m6A modification in plants. The m6A modification blocks binding of the
polyadenylation factors CPSF30 and FY to the poly(A) signal, resulting in reduced usage of the proximal poly(A) site [56].
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3.1.2. Coupling between Polyadenylation and Splicing in Flowering Locus C (FLC) Expression

The most well-known model for the coupling of polyadenylation and splicing is the
regulation of Arabidopsis FLC antisense transcripts (Figure 1B). FLC, which encodes a MADS-
box transcription factor, plays a critical role in plant development as the primary inhibitor of
flowering. COOLAIR, a collection of long antisense noncoding transcripts produced at the
FLC locus, was first detected in 2007 [57]. Based on alternative splicing (AS) and APA, these
transcripts can be separated into two classes: class I uses the proximal polyadenylation
site located inside intron 6 of FLC, while class II uses the distal polyadenylation site within
the FLC promoter. In addition to the use of APA sites, splice variants are produced that
are closely related to different FLC expression states. For example, efficient splicing of the
intron in class I transcripts promotes the usage of the proximal poly(A) site. This triggers
the FLD-dependent demethylation of H3K4me2 in the FLC gene body, downstream of
COOLAIR’s proximal poly(A) site, leading to the suppression of FLC expression and the
promotion of flowering [31]. Initiation and elongation during FLC transcription are tightly
coordinated, and both steps are affected by the status of the chromatin [58], which is thought
to be controlled via a kinetic coupling mechanism. When the distal poly(A) site is used, the
FLC expression level increases, resulting in late flowering. Adaptive studies of Arabidopsis
accessions have shown that single, natural noncoding polymorphisms can significantly
change the splicing pattern of class II transcripts [59], resulting in an altered secondary
structure of COOLAIR [60] and the up-regulation of FLC expression. Taken together, these
results suggest that a precise regulatory network exists during FLC transcription to couple
polyadenylation and splicing.

3.1.3. Coupling between Polyadenylation and m6A Modification in Plants

Recent data suggest that m6A functions as a stabilizing factor by suppressing local
ribonucleolytic cleavage [61]. Other data show that m6A can suppress the use of proximal
poly(A) sites and that adenosines within the AAUAAA signal may be methylated [57]
(Figure 1C). CPSF30 (the 30 kDa subunit of CPSF) and WDR33 in mammals are responsible
for the recognition of AAUAAA via direct sequence binding [16]. Furthermore, CPSF30L,
a homologous isoform of CPSF30, has a YTH domain, enabling it to bind RNAs specif-
ically at the m6A position [17], while flowering locus Y (FLY), a homologue of human
WDR33 [16], is associated with the recognition of poly(A) signals in plants [62]. The m6A
modification may either directly block the binding of CPSF30 and FLY to poly(A) signals
or the binding of m6A by YTH domain-containing proteins, thereby inhibiting the recogni-
tion of poly(A) signals by CPSF30 and FLY [50]. In addition, FKBP12-interacting protein
(OsFIP) and mRNA adenosine methylase 2 (OsMTA2), two subunits of the RNA m6A
methyltransferase complex, which function in sporogenesis, can bind to mRNAs-encoding
threonine proteases and NTPases at the early microspore stage, mediating their m6A mod-
ification and affecting their expression and/or splicing [63] (Figure 1C). Meanwhile, a
transcriptome-wide analysis revealed that m6A modification is highly coordinated with
APA site usage [64]. Overall, despite the fact that little is known about m6A modifica-
tion in plants, evidence suggests that it plays a crucial regulatory role in the coupling of
transcription with RNA processing.

In summary, though the regulation of polyadenylation in plants is poorly understood,
the above findings confirm that coupling between polyadenylation and transcription,
splicing, or m6A modification exists in plants.



Int. J. Mol. Sci. 2021, 22, 3300 7 of 19

3.2. Critical Proteins Involved in the Coupling of Polyadenylation and Other RNA Processing Events

The above-mentioned studies showing the existence of coupling between polyadeny-
lation and other RNA processes in plants add several regulatory layers to gene expression
that may help fine-tune the response to stressful conditions or provide a benefit during
development. Still, important questions remain. For example, how are these seemingly
distinct processes integrated via the collaboration of different processing factors? When
and where does this regulation occur? In the next section, we provide a summary of pro-
teins that may participate in the coupling of regulatory processes during gene expression
in plants.

3.2.1. RNAPII

RNAPII is the best-known regulatory protein involved in this type of coupling; it has
been studied in plants, mammals, and fungi. In eukaryotes, RNAPII plays a fundamental
role in gene expression. RNAPII and various phosphorylated CTD isoforms are involved
in different stages of the transcription cycle [65,66]. RNAPII interacts with many cleavage
and polyadenylation factors, including polyadenylation factor protein 1 of cleavage factor
1 (Pcf11), a component of the CFII cleavage and polyadenylation core complex [67], and
Yhh1p/Cft1p, a yeast homologue of human CPSF160, which binds specifically to the
phosphorylated RNAPII CTD [68].

A genome-wide analyses of Arabidopsis demonstrated that RNAPII with an unphos-
phorylated CTD mainly gathers downstream of the transcription start site (TSS), while
RNAPII with a Ser5P CTD is required for co-transcriptional splicing; 5′ SS cleavage was
achieved through an interaction between the spliceosome complex and Ser5P CTD during
the elongation phase of transcription. In addition, RNAPII with a Ser2P CTD paused
immediately downstream of the polyadenylation site [69]. Pcf11p-similar protein (PCFS4),
a homologue of yeast Pcf11p in Arabidopsis thaliana (L.) Heynh, possesses a C-terminal
interaction domain (CID), which is responsible for its interaction with the RNAPII CTD,
while its C-terminal region mediates interactions with the polyadenylation factor Clp1-
similar protein 3 (CLPS3) [27,67]. RNAPII may thus act in plants as a platform to recruit
polyadenylation factors like PCFS4 to promote the cleavage and polyadenylation of a
nascent RNA as soon as it is synthetized.

3.2.2. U1 snRNP

Among the proteins that are critical in coupling RNA transcription and processing
is U1 snRNP, the most abundant snRNP in most eukaryotes [70]. U1 snRNP is known
for its vital role in the initial recognition of 5′ splice sites (SSs) [71]. Purified human U1
snRNP consists of U1 snRNA, Sm proteins, and three U1-specific proteins: U1A, U1C,
and U1-70K [72]. Among these subunits, U1A and U1-70K contain a polyA polymerase
(PAP) inhibition motif, which interacts with PAP to inhibit polyadenylation [73]. Early
studies indicated that U1 snRNP inhibits cleavage and polyadenylation in different ways
according to the position of its binding site relative to the poly(A) site. When U1 snRNP
binds to the 5′ SS downstream of the proximal poly(A) site, it inhibits cleavage but does
not affect the recruitment of other cleavage and polyadenylation factors. In contrast, when
U1 snRNP binds to the terminal exon upstream of the PAS, it inhibits polyadenylation [74].
Subsequent genome-wide studies found that the role of U1 snRNP is not carried out in a
gene-specific manner [70]. U1 snRNP usually binds to nascent RNAs through base pairing
with the U1 snRNA’s 5′ sequence to suppress actionable PASs located in introns, and the
binding is associated with RNAPII [66]. U1 snRNP participates in a complex with cleavage
and polyadenylation factors (U1-CPAFs) that is distinct from U1–spliceosome complexes; it
regulates 3′-end processing and the elongation and termination steps of transcription [75].
In addition, the impact of U1 snRNP is dose dependent [76].
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Most protein components of yeast U1 snRNP are conserved in plants [77,78] (Table 2),
suggesting a similar function for U1 snRNP in plants. Recently, Arabidopsis U1 (AtU1)A
was found to be closely associated with AtU1-70K and AtU1C, confirming its essential role
in pre-mRNA splicing in Arabidopsis thaliana (L.) Heynh [79].

Table 2. Homologues of critical proteins involved in the coupling regulation in plants.

Proteins Arabidopsis References

U1A AtU1A
[77]U1C AtU1C

U1-70K AtU1-70K

U2AF65
AtU2AF65a

[80]AtU2AF65b

Spt5 SPT5 [81]

THOC1 (Hpr1) HPR1

[82]

THOC2 THO2
THOC3 (TEX1) THO3 (TEX1)

THOC5
THO5A
THO5B

THOC6 THO6

THOC7
THO7A
THO7B

3.2.3. U2 snRNP

Previous studies also found that the interaction between CPSF and U2 snRNP con-
tributes to the coupling of splicing and 3′-end formation in mammals and fungi [83,84].
U2 snRNP binds the intron’s branch site near the 3′ SS through base pairing of the U2
snRNA with the branch site [85]. U2 snRNP auxiliary factor 65 (U2AF65), a splicing factor
that promotes pre-spliceosome assembly [86], interacts directly with the 59 kDa subunit
of CFIm (CFIm59), and CFIm59/25 heterodimers promote cleavage and polyadenyla-
tion [84]. U2 snRNP also interacts with subunits of CPSF directly through its component
SF3b [83]. The physical and genetic interactions between the spliceosomal RNA helicase
Prp5p and Spt8p/Spt3p, components of the Spt–Ada–Gcn5 acetyltransferase complex,
balance transcription initiation/elongation and pre-spliceosome assembly/proofreading
in yeast [87].

There are four U2AF65 homologues predicted in the Arabidopsis genome, but only two
of them have a U2AF homology motif [80] (Table 2). U2AF65 interacts with Arabidopsis
splicing factor 1. Intriguingly, plant SF1 homologues have an additional RNA recognition
motif (RRM), which is not present in their yeast and mammalian counterparts [88] and
which may be critical in the recognition of nascent RNAs.

3.2.4. Suppressor of Ty 5 (Spt5)

Another critical protein in the control of gene expression via coupled RNA pro-
duction/processing is the transcription elongation factor Spt5, which is conserved in all
domains of life [89]. The C-terminal repeat region (CTR) of Spt5 resembles the RNAPII
CTD, which is an intrinsically unstructured extension [90]. The Spt5 CTR sequence varies
across species; however, they all contain residues that can be phosphorylated [91]. Dynamic
phosphorylation of the Spt5 CTR acts as a switch to promote or suppress transcription
elongation [92]. In addition, DRB sensitivity-inducing factor, formed from Spt5 and Spt4,
regulates the processivity of RNAPII during elongation through direct interaction with
the polymerase [93] and is involved in efficient termination of transcription [94]. When
the transcription complex passes over the PAS, Spt5 is dephosphorylated and the Ser2P
form of the RNAPII CTD accumulates [95], causing RNAPII to decelerate and become a
viable target for the nuclear exonuclease Xrn2 [92]. This is in line with the binding peak
of Spt5 discovered downstream of poly(A) sites [94]. Additionally, a physical interaction
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was detected in yeast between Spt5 and pre-mRNA processing protein 40 (Prp40) [96],
which associates with U1 snRNP in the early steps of spliceosome assembly [97]. Further,
interactions have been observed between Spt5 and all five spliceosomal snRNAs (U1, U2,
U4, U5, and U6). Spts affect the recruitment of U5 snRNP to intron-containing genes [98].
Remarkably, the flexible nature of its CTR enables Spt5 to act as a landing platform for
different protein factors, including transcription elongation factors [99], splicing factors,
and 3′ cleavage and polyadenylation factors [100]. The first study of Spt5 in plants was
published in 2014; thus, research into its function in plants is ongoing [101]. Nevertheless,
studies have shown that the Spt4/Spt5 heterodimer is conserved in plants, and Spt5 both
co-localizes with RNAPII during transcription [101] and interacts with vernalization in-
dependence 5 (VIP5), a core component of the Arabidopsis RNA polymerase II-associated
factor 1 complex, through its phosphorylated CTR [81] (Table 2). Therefore, the conserved
CTR in Arabidopsis Spt5 may have similar functions to that in yeast and mammals and may
be essential for the coupling of multidimensional processes.

3.2.5. The THO/TREX complex

In human and yeast cells, mRNA synthesis and processing are coupled to nuclear
mRNA export, during which the TRanscription-EXport (TREX) complex plays an ex-
traordinary role. The TREX complex is composed of the THO complex and a group of
additional proteins that are conserved across species, including Saccharomyces cerevisiae,
Arabidopsis thaliana (L.) Heynh, Drosophila, and humans [102]. In yeast, the TREX complex
is recruited to RNAPII co-transcriptionally through the direct interaction of its subcomplex
(THO) with the Ser2-phosphorylated CTD of RNAPII [103]. Intriguingly, the pre-mRNA
processing factor 19 splicing complex, also called the NineTeen complex, was found to
facilitate the recruitment of the TREX complex to transcribed genes as well [104]. Moreover,
the RNA export adaptor yeast RNA annealing protein 1 (Yra1), a subunit of the TREX
complex, competes with cleavage factor polyribonucleotide kinase subunit 1 (Clp1) to in-
teract with the 3′-end processing factor Pcf11, and the dynamic balance between Pcf11-Yra1
and Pcf11-Clp1 complexes affects the final selection among different poly(A) sites [105].
Meanwhile, Pcf11 plays a central role in coupling 3′-end processing with transcription
via a direct interaction between its CID and the CTD of RNAPII [67]. Thus, the TREX
complex, together with these various factors, links transcription, RNA processing, and
nuclear export.

Notably, the Arabidopsis THO core complex consists of hyper recombination 1 (HPR1),
TEX1 (THO3), THO2, THO5A/B, THO6, and THO7A/B [82] (Table 2). HPR1 and TEX1
are the best studied of these components. Several reports have shown abnormal splicing
patterns in hpr1, tex1, and tho2 plants [106,107]. In addition, several splicing factors have
been co-purified with TEX1, and TEX1 was found to co-localize with the splicing factor
SEINE-ARGININE-RICH (SR) protein family members RSZ22 and RSZ33 [108]. HPR1 was
also found to co-localize with the SR protein family member SR33 in the nucleus [106],
indicating co-localization between the Arabidopsis THO/TREX complex and splicing factors,
consistent with observations in human and yeast cells [104]. More recently, aberrant 3′-
UTR extensions were discovered in tex1 and hpr1, the majority of which were shared,
suggesting their roles in polyadenylation [109]. PCFS4, the Arabidopsis ortholog of yeast
Pcf11, possesses a CID as well, which can interact with the RNAPII CTD [67]. CLPS3, an
ortholog of yeast Clp1, is also conserved in Arabidopsis thaliana (L.) Heynh [27]. However,
little is known about their roles associated with the TREX complex; instead, plant studies
of the THO/TREX complex have focused on the biogenesis of small RNAs, including
microRNAs, small interfering RNAs (siRNAs), and trans-acting siRNAs [107,110,111].
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3.3. LLPS Enables Efficient Coupling of Transcription and RNA Processing in Plants

In addition to the proteins mentioned above, specific cytosol condensates may provide
appropriate spatial environment for the coupling of transcription and RNA processing.

3.3.1. Phase-Separated Membraneless Organelles

Membraneless organelles formed through liquid–liquid phase separation (LLPS) may
play a general role in the machinery that is responsible for co-transcriptional mRNA pro-
cessing; they could provide spatial possibilities for diverse biochemical reactions to take
place efficiently at the same time without disturbing each other or perturbing the intracel-
lular environment. Over the past decade, phase separation has become an emerging field,
with studies aimed at determining how cells organize diverse functions while maintaining
cellular homeostasis [112].

LLPS is a subtype of phase separation that is known to be sensitive to environmental
changes; it can respond rapidly to intracellular fluctuations because of its reversible and
dynamic nature [113]. Phase separation is driven by interactions among molecules with multi-
valent domains or intrinsically disordered regions (IDRs) [114]. The proteins involved in LLPS
exhibit low sequence complexity and no defined tertiary structure and can alternate between
multiple conformations rapidly [115]. The highly flexible structure of intrinsically disordered
proteins (IDPs) is of great importance in the establishment and maintenance of nuclear compart-
ments [116]. IDPs are essential for optimal enzyme activity [117], function as hubs in signaling
networks [118], act in metabolic regulation [119], and enable stress responses [120,121] through
interactions with various partners in membraneless compartments [122].

Various functions in plants rely on proteins with IDRs, including DELLA, CRY, BKI1,
BAK1, and ELF3 [121–123]. A specific nuclear LLPS condensate of the polyadenylation
complex has been observed in Arabidopsis thaliana (L.) Heynh. The RNA-binding protein
flowering control locus A (FCA) associates with a coiled-coil protein, FLX-like 2 (FLL2), to
promote the formation of liquid-like bodies, which concentrate near 3′-end processing fac-
tors at specific poly(A) sites. Both FCA and FLL2 are IDPs with disordered domains [124].
IDPs are widespread in eukaryotes; a genome-wide analyses indicated that the Arabidopsis
proteome consists of approximately 30% IDPs [125]. These IDPs can lead to spontaneous
nucleation, form phase-separated condensates that resemble non-membrane-bound or-
ganelles, and separate from the surrounding phase [126]. A concentrated reaction zone
can thus be created, allowing for more efficient biochemical interactions among IDPs
and their partners. As a result, different types of regulation (including the coupling
of transcription with RNA processing) can take place in distinct spaces in the crowded
intracellular environment.

3.3.2. The Underlying Coupling Regulation Model

It is worth stressing that the membraneless compartments and important proteins
mentioned above are not isolated from each other, but interrelated. For instance, Spt5
interacts physically with Prp40, a core protein in the U1 snRNP [96]. Additional evidence
has been provided by proteomic analyses; numerous interactions among the transcription
elongation complex, splicing factors, and cleavage and polyadenylation factors were found
in Arabidopsis thaliana (L.) Heynh through co-purification with RNAPII and transcription
elongation factors [127]. The RNAPII CTD, which is conserved across eukaryotes, contains
tandem heptapeptide repeats that form a mobile extension from the catalytic core of
RNAPII [128]. This IDR of the RNAPII CTD confers physicochemical properties beyond
those predicted by its sequence that can mediate multivalent interactions during LLPS [129].
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We used a variety of tools to predict the disorder tendency of the other proteins
mentioned above, with a focus on proteins from Arabidopsis thaliana (L.) Heynh (Figure 2).
Interestingly, all of the proteins and some protein complex subunits were predicted to
have highly disordered regions, suggesting that they have the ability to form or promote
LLPS. Consistent with our predictions, U1-70K was reported to undergo LLPS via its
low-complexity regions [130]. In addition, a few reports have suggested specific roles for
the chemical modifications involved in phase separation. For example, H3K9me3 governs
heterochromatin formation via phase separation [131], while the number and distribution
of m6A modifications affect the phase separation potential of mRNAs [132]. Additionally,
phosphorylation of the RNAPII CTD oversees the partition of RNAPII into phase-separated
condensates, thereby ensuring that RNAPII functions normally in transcription and RNA
processing [133]. Strikingly, the CTR of Spt5, which is a low-complexity region, can be
phosphorylated by cyclin-dependent kinase 9, which also controls the phosphorylation
state of the CTD of RNAPII [95]. Apart from these reports of proteins (e.g., the RNAPII CTD
and U1-70K) and chemical modifications that can undergo or promote LLPS, additional
proteins and protein complexes have the potential to participate in LLPS based on our
disorder prediction results (Figure 2). Some of them, like the RNAPII CTD, may act as a
scaffold or driver of the condensate, while others may participate as client proteins that
are mobile depending on the detailed functional requirements, and still others may play
different roles in distinct condensates. These membraneless biomolecular condensations
can be quite beneficial for achieving efficient regulation in a crowded environment.

A model of the events involved in coupling transcription with RNA processing has
emerged (Figure 3). In this model, diverse factors interact with each other at the right time
according to the requirements for transcription and RNA processing. A relatively slow
RNAPII elongation rate leaves much more time for polyadenylation factors to assemble
properly. Conversely, a fast RNAPII elongation rate may lead to improper polyadenylation,
affecting the recognition of a weak poly(A) site or modification site and resulting in
chaotic consequences for the cell. With so many processing factors around RNAPII and
the nascent RNA, how do the diverse biochemical reactions proceed in order without
disturbing each other? Multivalent regulation could allow reactions to occur efficiently
inside phase-separated condensates formed by the RNAPII CTD or RNA processing factors
with IDRs.
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Figure 2. Disorder tendency predictions for proteins involved in the coupling of transcription and RNA processing in plants.
All protein sequences were downloaded from TAIR (https://www.arabidopsis.org/ (accessed on 6 November 2020)). (For
each figure, top panel) Protein disorder tendency curve. The disorder tendency score of each amino acid was predicted
using IUPred2A [134] and subsequently fit to a smooth curve using the R ggplot2 package. The predicted scores were
between 0 and 1, with a score above 0.5 (dashed line) indicating disorder. (For each figure, middle panel) Prediction of
disordered regions using D2P2 [135]. (For each figure, bottom panel) A domain map of the proteins in Arabidopsis based on
previous studies [81,88] and the protein databases UniPro [136], Pfam [137], and SMART [138]. The disorder predictions for
full-length proteins, except for AtRPB1 (C-terminal domain), are displayed. Abbreviations: WD40, tryptophan-aspartic
acid motif repeats; RRM, RNA recognition motif; UHM, U2AF homology motif; NGN, NusG N-terminal domain; KOW,
Kyrpides–Ouzounis–Woese motif; CTR, C-terminal repeat region.
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using different processing factors. The various regulatory processes are carried out efficiently inside the phase-separated
condensate, which may be driven by the carboxy-terminal domain (CTD) of RNAPII or RNA processing factors with
intrinsically disordered regions (IDRs).



Int. J. Mol. Sci. 2021, 22, 3300 14 of 19

4. Conclusions and Perspectives

Once a primary RNA transcript has been synthesized, it must be processed before
becoming a fully functional mRNA. Processing includes 5′ capping, splicing within the
transcript body, 3′ polyadenylation, and (sometimes) chemical modification. These complex
events cannot be easily separated from each other in time and space; however, partitioned
membraneless organelles formed by LLPS may greatly improve the accuracy and efficiency
of this process.

One interesting question is how plants achieve cleavage and polyadenylation at a
precise position using conserved core factors when they lack the conserved PAS sequences
found in animals and yeast. One possibility is that plant-specific proteins, such as plant-
specific RBPs, are involved in the regulation of polyadenylation in plants. RBPs are of
great importance in RNA–protein interactions, which are characterized by the recogni-
tion of a specific sequence or structural element in the target RNA by an RNA-binding
domain (RBD) such as an RRM or K homology domain [139]. In addition, RBPs appear
frequently in LLPS [140]; the sequence-binding specificity of different RBDs may determine
the processing of a certain subset of nascent RNAs in a particular droplet. High-throughput
studies have shown that the RNA-binding proteomes of plants can be divided into three
categories: RBPs containing classical RBDs (22%), RBPs containing non-classical RBDs
(39%), and RBPs containing unknown RBDs (39%) [141]. RBPs lacking known RBDs are
suspected to be plant specific, and several plant-specific RBPs have been reported to func-
tion in plant-specific biological processes such as flowering and photosynthesis (reviewed
in [142]). Together, these results provide direction for further study of polyadenylation in
plants, with an emphasis on the importance of plant-specific RBPs.
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