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Background:Metabolism is critical for sustaining life, immunity and infection, but its role in COVID-19 is not fully
understood.
Methods: Seventy-nine COVID-19 patients, 78 healthy controls (HCs) and 30 COVID-19-like patients were re-
cruited in a prospective cohort study. Samples were collected from COVID-19 patients withmild or severe symp-
toms on admission, patients who progressed from mild to severe symptoms, and patients who were followed
from hospital admission to discharge. Themetabolomewas assayed using gas chromatography–mass spectrom-
etry.
Results: Serum butyric acid, 2-hydroxybutyric acid, L-glutamic acid, L-phenylalanine, L-serine, L-lactic acid, and
cholesterol were enriched in COVID-19 and COVID-19-like patients versus HCs. Notably, D-fructose and succinic
acid were enriched, and citric acid and 2-palmitoyl-glycerol were depleted in COVID-19 patients compared to
COVID-19-like patients and HCs, and these four metabolites were not differentially distributed in non-COVID-
19 groups. COVID-19 patients had enriched 4-deoxythreonic acid and depleted 1,5-anhydroglucitol compared
to HCs and enriched oxalic acid and depleted phosphoric acid compared to COVID-19-like patients. A combina-
tion of D-fructose, citric acid and 2-palmitoyl-glycerol distinguished COVID-19 patients fromHCs and COVID-19-
like patients, with an area under the curve (AUC) > 0.92 after validation. The combination of 2-hydroxy-3-
methylbutyric acid, 3-hydroxybutyric acid, cholesterol, succinic acid, L-ornithine, oleic acid and palmitelaidic
acid predicted patients who progressed from mild to severe COVID-19, with an AUC of 0.969. After discharge,
nearly one-third of metabolites were recovered in COVID-19 patients.
Conclusions: The serummetabolome of COVID-19 patients is distinctive and has important value in investigating
pathogenesis, determining a diagnosis, predicting severe cases, and improving treatment.

© 2021 Elsevier Inc. All rights reserved.
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sensitive approaches for disease diagnosis and progression prediction
are urgently needed.

Metabolism is the basic characteristic andmain activity of life. Meta-
bolomics is widely used in the mechanistic study and diagnosis of vari-
ous diseases, such as cancer, diabetes, cardiovascular or pulmonary
disorders [5]. For chronic obstructive pulmonary disease (COPD), the
levels of several serummetabolites, such as cysteinesulfonic acid, fuma-
rate, and myoinositol, are different from healthy smokers and are used
as promising signs of COPD at an early stage [6]. Certain plasmametab-
olites, such as ornithine, caprylic acid, azetidine, and iminodiacetic acid,
are potential biomarkers for predicting and determining the severity of
acute respiratory distress syndrome [7]. One small study noted that
serum metabolomic and lipidomic alterations were associated with
the clinical severity of COVID-19 and may be used as blood biomarkers
[8]. Somemetabolites, such as camostatmesylate, which is a serine pro-
tease inhibitor that blocks TMPRSS2 activity, may be considered as off-
label treatments for SARS-CoV-2-infected patients [9].

The present study examined alterations in the serummetabolome of
patients with COVID-19 and the associations of these alterations with
COVID-19 development to identify potential biomarkers and models
for distinguishing COVID-19 patients from healthy controls (HCs) and
suspected patients.

2. Methods

2.1. Diagnosis

Respiratory specimens (nasopharyngeal swabs, sputum, or endotra-
cheal aspirates) were collected daily to test for SARS-CoV-2 RNA using
real-time reverse transcription polymerase chain reaction (RT-PCR)
[10]. COVID-19 was diagnosed based on the WHO interim guidance
[11]. The severity of COVID-19 was evaluated according to the seventh
edition of the Guidelines for Diagnosis and Treatment of SARS-CoV-2 is-
sued by the National Health Commission of the People's Republic of
China [12]. Severe COVID-19 referred to cases that fulfilled any of the
following three criteria: 1) dyspnea, respiratory rate ≥ 30/min; 2)
blood oxygen saturation ≤ 93% and ratio of partial pressure of arterial
oxygen to fraction of inspired oxygen < 300; and 3) lung infiltrates >
50% within 24 to 48 h. A mild case was defined as a confirmed case
with mild symptoms that not fulfilling any of the above criteria.

Patients who had symptoms consistentwith COVID-19 but were not
infected with SARS-CoV-2 were defined as COVID-19-like patients ac-
cording the abovementioned guidelines andwho satisfied the following
criteria: 1) fever or respiratory symptoms; 2) imagingmanifestations of
pneumonia; and 3) optional reduction in white blood cell or lympho-
cyte count at an early stage. Patients with exposure to COVID-19 indi-
viduals only needed to satisfy two of the three criteria for inclusion.

2.2. Participants

This study was approved by the National Health Commission of
China and the Ethics Commission of the First Hospital of Zhejiang Prov-
ince (IIT2020040A). Written informed consent was obtained from all
participating patients. Seventy-nine patients with COVID-19 and 30
COVID-19-like patients were recruited from the First Affiliated Hospital
of Zhejiang University from January 19 to March 19, 2020. Seventy-
eight HCs (60 age- and gender-matched healthy, and 18 not matched
with COVID-19 patients) were also recruited. The clinical data included
demographic characteristics, medical comorbidities, progression, and
treatment of clinical illness.

2.3. Blood sampling and testing

Blood sampleswere collected fromCOVID-19 patients, including pa-
tients with mild or severe symptoms on admission, patients who
progressed from mild to severe in the hospital, and patients who were
2

followed from hospital admission to discharge, HCs and COVID-19-like
patients. Hematological biomarkers, such as full blood cell counts, in-
flammatory indicators, coagulation function, myocardial enzymes,
renal function and liver function, were determined. IL-2, IL-4, IL-6, IL-
10, and tumor necrosis factor-α (TNF-α) were detected using multiple
microsphere flow immunofluorescence according to themanufacturer's
instructions (BD Biosciences).

2.4. Design of metabolome studies

Age- and gender-matched cohorts were included to identify differ-
ences and predict biomarkers (Fig. 1). Among the 79 COVID-19 patients,
30 COVID-19-like patients and 78HCs recruited in this study, 60 COVID-
19 patients matched 60 HCs and 30 COVID-19-like patients in age and
gender. These matched participants were randomly and evenly divided
into two cohorts, the discovery and validation cohorts, of 30 COVID-19
patients, 30 HCs and 15 COVID-19-like patients. Serum samples of the
COVID-19 patients used in this analysis were collected upon admission.

Two random cohorts were created to confirm the reliability and the
universal applicability of the prediction result. These two cohorts en-
rolled serum samples from COVID-19 patients who did not match the
60 HCs and 30 COVID-19-like patients in age or gender and who were
at different time points of the SARS-CoV-2 infection. Random cohort 1
included the second samples from 51 individuals available in the 60
age- and gender-matched COVID-19 patients mentioned above after
3–7 days of treatment together with the first samples from 18 COVID-
19 patients at admission, whose samples were not used previously be-
cause they could not be age- and gender-matched to our available
HCs, together with 20 COVID-19-like patients and 49 HCs who were
randomly selected from all non-COVID-19 participants using the R
package “MatchIt”. Random cohort 2 included the third samples of 39
available COVID-19 patients after 7–14 days of treatment together
with 11 COVID-19-like patients and 28 HCs, who were randomly se-
lected using the method mentioned above.

We obtained blood samples from 15 COVID-19 patients who pro-
vided samples at three complete time points from admission, under
treatment and at discharge. Forty-five samples were used to analyze
the metabolome alterations from admission to discharge compared to
78 HC samples.

2.5. Assay of the serum metabolome

The metabolome was determined as previously described with
small modifications [13]. Briefly, 450 μL of methanol was added to and
mixed thoroughly with 50 μL of serum for extraction. After centrifuga-
tion, the supernatant was dried, and the dried products were further
methoxylated and trimethylsilylated. The concentrations of metabolites
were normalized against the internal control heptadecanoic acid
(Sigma-Aldrich, USA). The metabolites were analyzed using gas chro-
matography–mass spectrometry (GC–MS) (Agilent 7890A) coupled to
an inert mass selective detector system (Agilent 5975C, Agilent Tech-
nologies, Santa Clara, CA, USA). Qualitative Analysis software (version
B.07.00, Agilent, Santa Clara, CA, United States) was used for data anal-
yses. Metabolites were identified using the NIST 17 databases. Orthogo-
nal partial least squares-discriminant analysis (OPLS-DA) was
performed to visualize differences in the metabolome profiles between
groups. Differential metabolites were selected according to the statisti-
cally significant variable importance in the projection (VIP) values ob-
tained from the OPLS-DA model and the P values from the Mann-
Whitney U test on the normalized peak areas. Metabolites with VIP
values > 1 and P values < 0.05 were included.

2.6. Statistical analyses

Formost variables, descriptive statistics, such as themedianwith in-
terquartile range (IQR; for data with skewed distribution) and the



Fig. 1. Study design and flow diagram. A total of 79 COVID-19 patients, 30 COVID-19-like patients and 78 HCs were included and randomly divided into the discovery or validation cohort
with age- and gender-matched patients. Each cohort consisted of 30 COVID-19 patients, 30 HCs and 15 COVID-19-like patients. All serum samples were collected from patients upon
admission in each cohort to test the serum metabolites for potential biomarkers. Two random cohorts containing 216 samples from COVID-19 patients and non-COVID-19 patients
were created to confirm the reliability and the universal applicability of the prediction results. Random cohort 1 included the second samples from the 51 available COVID-19 patients
after 3–7 days of treatment together with the first samples from 18 COVID-19 patients at admission. Random cohort 2 included the third samples of 39 available COVID-19 patients
after 7–14 days of treatment. Each random cohort was matched with the same number of COVID-19-like patients and HCs who were randomly selected from all non-COVID-19
participants.
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proportion (%), were calculated. The Mann-Whitney U test was used to
compare any two data sets that were not normally distributed, and the
Kruskal-Wallis test was used for comparisons of more than two groups.
One-way ANOVA followed by the Student-Newman-Keuls method
were used for all other comparisons. The patients and controls were
matched by age and gender in the discovery and validation cohorts
using the R package “MatchIt”. The χ2 test and Fisher's exact test were
used for categorical variables. The potential predictive ability of factors
for COVID-19 was tested using receiver operating characteristic (ROC)
curves and random forest analysis. Spearman's rank correlation test
was used to analyze the correlations between two variables. Statistical
analyseswere performed using SPSS software, version 20.0 and R statis-
tical language (version R 3.0.2). For all analyses, probabilities were two-
tailed, and a two-tailed P value < 0.05was considered significant. A test
power calculation of this study was 0.99 using NCSS-PASS version
11.0.7. The raw data and details of the 75 detectedmetabolites in all co-
horts are provided in the Supplemental Material.
3. Results

3.1. Clinical characteristics of the participants

Seventy-nine COVID-19 patients, 30 COVID-19-like patients who
were primarily diagnosed with influenza (Supplementary Table 1),
and 78 HCs were recruited. Table 1 summarizes the demographic and
clinical characteristics of the COVID-19 patients. Hypertension (n =
19, 24.1%) and diabetes mellitus (n = 11, 13.9%) were the most com-
mon comorbidities in the COVID-19 patients. Forty-eight patients in
the COVID-19 group had no comorbidities, and 21 patients were in
the COVID-19-like group. At admission, the levels of leukocytes, neutro-
phils, prothrombin time, alanine transaminase (ALT), lactate dehydro-
genase (LDH), creatine kinase-MB (CK-MB), and C-reactive protein
(CRP) were significantly higher in COVID-19 patients than in HCs, and
lymphocyte counts and albumin levels were significantly lower.
3

Notably, none of these parameters were significantly different between
COVID-19-like patients and COVID-19 patients. Nearly 84.8% of COVID-
19 patients received antiviral treatments, including 62%who received a
combination of two antiviral treatments, arbidol (200mg 3 times daily)
and lopinavir/ritonavir (LPV/RTV, 400mg twice daily and 100mg twice
daily), and 22.8%who received single antiviral treatmentwith arbidol or
LPV/RTV (Table 1). More than half (56.9%) of COVID-19 patients re-
ceived glucocorticoid treatment, and 10.1% received antibiotics.
3.2. The serum metabolome of COVID-19 patients is distinct from COVID-
19-like patients and HCs

GC–MS identified 75metabolites fromall serumsamples used in this
study. OPLS-DA plots showed that COVID-19 patients, COVID-19-like
patients and HCs were clustered separately in the discovery and valida-
tion cohorts (Fig. 2A and B), which indicated that the composition of
their metabolomes was different. We created an OPLS-DA plot using
the data of COVID-19patientswithout comorbidities, COVID-19-like pa-
tients and HCs and found that this graphic (Supplementary Fig. 1A)was
highly similar to all COVID-19 patients (Supplementary Fig. 1B), which
suggests that the impact of comorbidities on the serum metabolome
profile of patients with COVID-19 patients was far lower than SARS-
CoV-2 infection. We also compared the serum metabolome profiles of
COVID-19 patients with andwithout comorbidities. The results showed
that none of the groups of patients with hypertension, diabetes or fatty
liver disease could be distinguished from patients without comorbidi-
ties in the OPLS-DA plots (Supplementary Fig. 1C–E). This result further
suggested that the effect of SARS-CoV-2 infection on the serummetab-
olome profile was much greater than the comorbidities.

We compared differences in the levels of each metabolite between
the paired COVID-19 patients, COVID-19-like patients and HCs in the
discovery cohort then validated these differences in the validation co-
hort. Several metabolites were changed significantly in the discovery
and validation cohorts (Fig. 2C). Compared to the HCs, the serum levels

Image of Fig. 1


Table 1
Clinical characteristics of COVID-19 patients, COVID-19-like patients and healthy controls.

Characteristic COVID-19 patients
(N = 79)

COVID-19-like patients
(N = 30)

Healthy controls
(N = 78)

p1

(COVID-19 vs. COVID-19-like)
p2

(COVID-19 vs. HCs)

Demographics, n (%)
Age, median (IQR) 51 (38, 59) 50.5 (37.5, 68.8) 52 (44.3, 59) 0.24 0.28
Male sex 47 (59.5%) 11 (36.7%) 38 (55.9%) 0.03 0.18

Comorbidity, n (%)
Hypertension 19 (24.1%) 6 (20%) 0 0.65 <0.001
Diabetes 11 (13.9%) 2 (6.7%) 0 0.29 <0.001
Fatty liver disease 10 (12.7%) 1 (3.3%) 0 0.28 <0.001
Chronic lung diseasea 4 (5.1%) 2 (6.7) 0 0.67 <0.001
Cardiac diseaseb 5 (6.3%) 1 (3.3%) 0 1.0 <0.001

No comorbidity, n (%) 48(60.7%) 21(70%) 78 0.38 <0.001
Disease severity
Mild 32 (40.5%) NA NA NA NA
Severe 47 (59.5%) NA NA NA NA

Initial laboratory findings, median (IQR)
Leukocyte count, 109/L 6.4 (4.1, 10.1) 7.1 (5, 10.2) 6 (5, 6.8) 0.14 0.005
Neutrophil count, 109/L 4.8 (2.8, 8.8) 4.7 (3.1, 8.1) 3.3 (2.6, 4.2) 0.99 <0.001

Lymphocyte count, 109/L 0.9 (0.5, 1.4) 1.3 (0.9, 1.9) 1.9 (1.5, 2.2) 0.11 <0.001
Prothrombin time, s 11.6 (11.3, 12.1) 12.1 (11.6, 13.6) 11.1(10.7,11.3) 0.05 0.01
Albumin, g/L 39.1 (34.5, 43.7) 40.2 (35.8, 43.7) 45 (39.8, 48.2) 0.81 <0.001
ALT, U/L 22 (15, 40) 17.5 (12.8, 32.3) 17 (12, 24) 0.27 0.002
LDH, U/L 229 (193, 323) 192 (161, 228) 185 (158, 204) 0.67 <0.001
CK-MB, U/L 20 (15, 23) 16 (14, 22) 14 (9, 17) 0.21 0.007
CRP, mg/L 11.4 (3.6, 35.3) 20.9 (1.3, 96.1) 0.6 (0, 1.1) 0.073 <0.001
IL-2, pg/mL 0.95 (0.76, 1.65) NA NA NA NA
IL-4, pg/mL 1.77 (1.4, 1.77) NA NA NA NA
IL-6, pg/mL 15.21(5.67,34.26) NA NA NA NA
IL-10, pg/mL 3.64 (2.19, 7.16) NA NA NA NA
TNF-α, pg/mL 17.65(6.55,64.08) NA NA NA NA
IFN-γ, pg/mL 8.95 (4.07, 24.8) NA NA NA NA

Treatment,- No. (%)
Glucocorticoids 45 (56.9%) 0 0 <0.001 <0.001
Antibiotics 8 (10.1%) 6 (20%) 0 0.20 <0.001

Antivirals 67 (84.8%) 6 (20%) 0 <0.001 <0.001
Arbidol 9 (11.4%) NA NA NA NA
LPV/RTV 9 (11.4%) NA NA NA NA
Arbidol and LPV/RTV 49 (62%) NA NA NA NA

Abbreviations: HC, healthy control; IQR, interquartile range; ALT, alanine transaminase; LDH, lactate dehydrogenase; CK-MB, creatine kinase-MB; CRP, C-reactive protein; LPV/RTV,
lopinavir and ritonavir; NA, not applicable.

a Chronic lung disease includes chronic obstructive pulmonary disease and interstitial lung disease;
b Cardiac disease includes congestive heart disease and coronary atherosclerotic heart disease.
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of butyric acid, 2-hydroxybutyric acid, L-glutamic acid, L-phenylalanine,
L-serine, L-lactic acid, and cholesterol were higher in COVID-19 and
COVID-19-like patients, which suggests that respiratory tract infections
widely affect these metabolites. Notably, serum D-fructose and succinic
acid were enriched, and citric acid and 2-palmitoyl-glycerol were de-
pleted in COVID-19 patients compared to COVID-19-like patients and
HCs. The levels of these four serum metabolites were not significantly
different between COVID-19-like patients and HCs, which suggests
that thesemetabolites have important value in the pathogenesis and di-
agnosis of COVID-19. There was no significant difference in serum L-
tryptophan levels between COVID-19 patients and HCs, but the level
of this metabolite was higher in both of these groups than the COVID-
19-like patients, which suggests that L-tryptophan metabolism is not
as involved in COVID-19 patients as it is in other common respiratory
infections [14]. Compared to HCs, COVID-19 patients had enriched 4-
deoxythreonic acid and depleted 1,5-anhydroglucitol. Serum oxalic
acid was also enriched in COVID-19 patients versus COVID-19-like pa-
tients, and phosphoric acid was depleted, which suggests different
pathways in these two patient groups.

3.3. Serum metabolites distinguish COVID-19 patients from HCs and
COVID-19-like patients

The area under the ROC curve (AUC) of D-fructose, succinic acid and
2-hydroxybutyric acid ranged from 0.7 to 0.85 in distinguishing COVID-
19 patients from a group containing HCs and COVID-19-like patients in
4

the discovery and verification cohorts (Fig. 3A), which indicates good
predictive effects. In the random forest analysis of the discovery cohort,
we found that three compounds, D-fructose, citric acid and 2-palmitoyl-
glycerol, greatly contributed to distinguishing COVID-19 patients from
the group containing HCs and COVID-19-like patients (Fig. 3B and C).
Based on these three metabolites, we used binary logistic regression to
create a ROC joint curve, and the AUCs were 0.944 and 0.933 in the dis-
covery and validation cohorts, respectively, which indicates excellent
distinguishing effects (Fig. 3D).

We used two random cohorts to verify the predictive ability of the
above biomarkers. The AUCs of D-fructose (0.775), succinic acid
(0.807) and 2-hydroxybutyric acid (0.770) still indicated a good ability
to distinguish COVID-19 patients from HCs and COVID-19-like patients
in random cohort 1 (Supplementary Fig. 2A). Notably, the AUC of the
combination of these factors was 0.925 (Fig. 3E). We performed ROC
analysis in random cohort 2. Good predictions were also observed
from the AUCs of D-fructose (0.894), succinic acid (0.886), and 2-
hydroxybutyric acid (0.710) (Supplementary Fig. 2A) and from their
joint model (0.964) (Fig. 3E). We rebuilt a cohort that included 48
COVID-19 patients without comorbidities, 30 COVID-19-like patients
and 78 HCs to evaluate the predicted efficacy of these selected bio-
markers. The AUCs of D-fructose (0.773), succinic acid (0.749), 2-
hydroxybutyric acid (0.872) and the combination of the three com-
pounds (0.934) also showed good prediction ability (Supplementary
Fig. 2B), which indicates that comorbidities had little impact on the pre-
dictive ability of serum biomarkers.



Fig. 2. The serummetabolome of COVID-19 patients is distinct from COVID-19-like patients andHCs. (A) OPLS-DA shows that themetabolome profiles of the COVID-19 patients (n= 30),
COVID-19-like patients (n = 15) and HCs (n = 30) are clearly separated from each other in the discovery cohort. (B) OPLS-DA illustrates that the metabolome profiles of the COVID-19
patients (n= 30), COVID-19-like patients (n= 15) and HCs (n=30) are clearly separated from each other in the validation cohort. (C) Twenty-sixmetaboliteswere significantly altered
between at least two groups of COVID-19 patients (n = 60), COVID-19-like patients (n = 30) and HCs (n = 60) in the discovery and validation cohorts. Metabolites are marked in red
when there is a significant difference in metabolites in the COVID-19 group compared to either of the two other groups in the discovery and validation cohorts. * and # indicate
significance when comparing between two groups and “&” indicates significance in comparisons between three groups. *, P < 0.05; **, P < 0.01; ***, P < 0.001 in the discovery cohort;
#, P < 0.05; ##, P < 0.01; ###, P < 0.001 in the validation cohort. &, P < 0.05; &&, P < 0.01; &&&, P < 0.001 between the three groups.
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3.4. Serum metabolites predict progression from mild to severe symptoms
in COVID-19 patients

Among the 79COVID-19patients, 32 patients hadmild disease, and47
had severe disease at admission. Compared to the COVID-19patientswith
mild disease, the serum of patients with severe symptoms was enriched
with L-phenylalanine, 2-hydroxybutyric acid, mannobiose and lactic
acid in the experimental and the validation groups (Fig. 4A). To
5

investigate the potential role of serum metabolites in providing an early
warning for progression frommild to severe COVID-19, we created a co-
hort of patientswithmild disease at admission, some of whom continued
to suffer frommild disease later (n= 19) and some of whom progressed
to severe disease (n = 13) during hospitalization. ROC analysis revealed
that only serum3-hydroxybutyric acid (AUC=0.708) predicted progres-
sion from mild to severe COVID-19. Notably, the combination using bi-
nary logistic regression of 7 metabolites (2-hydroxy-3-methylbutyric

Image of Fig. 2


Fig. 3. Serum metabolites distinguish COVID-19 patients from COVID-19-like patients and HCs. (A) ROC curves of D-fructose, succinic acid and 2-hydroxybutyric acid for distinguishing
COVID-19 patients (n = 30) from COVID-19-like patients (n = 15) and HCs (n = 30). (B and C) Random forest analysis for biomarker screening and the top 15 metabolites ranked by
the mean decrease in accuracy. (D) ROC curves of the combination of D-fructose, citric acid and 2-palmitoyl-glycerol for distinguishing COVID-19 patients (n = 30) from COVID-19-
like patients (n = 15) and HCs (n = 30) in the discovery and validation cohorts. (E) ROC curves of the combination of D-fructose, citric acid and 2-palmitoyl-glycerol in the first and
second random cohorts from COVID-19 patients (n = 69 in random 1; n = 39 in random 2) and non-COVID-19 patients (n = 69 in random 1; n = 39 in random 2).
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acid, 3-hydroxybutyric acid, cholesterol, succinic acid, L-ornithine, oleic
acid and palmitelaidic acid) with AUCs greater than 0.6 in predicting
mild to severe or persistent mild COVID-19 showed near-perfect
6

prediction (AUC = 0.969) of patients who progressed from mild symp-
toms at admission to severe symptoms during treatment (Fig. 4B). How-
ever, this result must be verified in a larger multicenter cohort.

Image of Fig. 3
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3.5. Effects of treatment on the levels of serum metabolites in COVID-19
patients

We compared alterations in serum metabolic biomarkers between
79 COVID-19 patients who received different treatments (12 without
antiviral agents, 9 with oral arbidol, 9 with oral lopinavir/ritonavir, 49
with oral lopinavir/ritonavir and arbidol, 34 with glucocorticoids, and
45 without glucocorticoids) and 78 HCs. OPLS-DA analysis showed
that the serummetabolic profiles were different between COVID-19 pa-
tients and HCs, regardless of the treatment used (Fig. 5A and C), but the
profiles were not between patients with different antiviral treatment
schemes (Fig. 5B). In contrast, the serummetabolomeprofile of patients
treated with glucocorticoids was different (Fig. 5D). Notably, the serum
levels of D-fructose, 2-palmitoyl-glycerol and citric acid, which strongly
contributed to COVID-19 prediction, were significantly different be-
tween HCs and COVID-19 patients with different treatment schemes
but not between patients with different treatment schemes (Fig. 5E
and F).

We examined alterations in serum metabolites from hospital admis-
sion to discharge. The serum levels of L-glutamic acid, L-phenylalanine,
L-serine, glyceric acid, 3-hydroxybutyric acid and erythronic acid, which
were enriched in COVID-19 patients compared to HCs at admission, de-
creased to normal at discharge (Fig. 6A and B). Citric acid, which was de-
pleted in COVID-19 patients at admission, increased to normal levels at
discharge (Fig. 6B). 2-hydroxybutyric acid and cholesterol, which were
enriched in COVID-19 patients compared to HCs at admission, decreased
but remained at levels higher thanHCs at discharge. 2-Palmitoyl-glycerol,
which was depleted in COVID-19 patients, increased but remained at
levels lower than HCs at discharge (Fig. 6C). D-galactose and 1,5-
anhydroglucitol, which were depleted in COVID-19 patients compared
to HCs at admission, were further decreased at discharge. Fumaric acid,
oxalic acid, and 4-deoxythreonic acid, which were enriched in COVID-
19 patients compared to HCs at admission, were further increased at dis-
charge (Fig. 6D). The levels of D-fructose, succinic acid, butyric acid, L-lactic
acid, L-alanine, and L-alpha-aminobutyric acid were not significantly al-
tered from admission to discharge.
3.6. Serum metabolic biomarkers are closely associated with clinical
features

The associations of serummetabolites at admissionwith clinical fea-
tures were investigated using Spearman's rank correlation analysis.
Fig. 4. The combination of the levels of certain serummetabolites at admission predicts COVID
serum metabolites between COVID-19 patients with mild (n = 32) and severe (n = 47) dise
methylbutyric acid, 3-hydroxybutyric acid, cholesterol, succinic acid, L-ornithine, oleic acid an
severe disease in the hospital (n = 32). *, P < 0.05; **, P < 0.01; ***, P < 0.001 in the discovery
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Significant correlations were primarily observed for three biomarkers,
2-palmitoyl-glycerol, D-fructose and citric acid (Fig. 7 and Supplemen-
tary Fig. 3). The lymphocyte counts in peripheral blood positively corre-
lated with the levels of citric acid (P = 1.36E-8) and 2-palmitoyl-
glycerol (P=1.4E-5) but negatively correlatedwith the levels of D-fruc-
tose (P= 1.9E-5). The levels of CRP and GGT negatively correlatedwith
citric acid (CRP, P = 0.011; GGT, P = 7.0E-4) and 2-palmitoyl-glycerol
(CRP, P = 7.5E-3; GGT, P = 0.01) but positively correlated with D-fruc-
tose (CRP, P= 6.9E-5; GGT, P= 0.024). The level of citric acid also pos-
itively correlated with ALB but negatively correlated with cholesterol,
leukocytes, neutrophils, lactate dehydrogenase, hydroxybutyrate dehy-
drogenase, and fibrinogen. The level of D-fructose positively correlated
with the international normalized ratio (INR), prothrombin time (PT),
fibrinogen, direct bilirubin (DB), IL-6 and IL-10. The level of 2-
palmitoyl-glycerol negatively correlated with INR, prothrombin time,
direct bilirubin, IL-10 and procalcitonin.
4. Discussion

Metabolism is a general term for a series of orderly chemical reac-
tions that occur in organisms to maintain life [15]. It is the basis of
life-sustaining compounds and energy. Increasing evidence shows that
energy metabolism pathways, such as glycolysis and the tricarboxylic
acid cycle (TCA cycle), change during the differentiation and activation
of immune cells and play important roles in the functional regulation
of immune cells [16]. The intermediates of metabolic pathways are
also used as signaling molecules to regulate the occurrence, develop-
ment and outcome of the immune response [17]. Therefore, alterations
in metabolism in COVID-19 patients have attracted much attention
[18,19]. Metabolome differences between COVID-19 patients and HCs
were extensively examined using liquid chromatography combined
with mass spectrometry [20–22]. For example, guanosine
monophosphate (GMP) was significantly different between HCs and
COVID-19 patients, and between mild and fatal COVID-19 cases [22].
Some metabolites related to kynurenine and fatty acid metabolism
were altered and correlated with IL-6 levels and renal status [21].
Plasma monosialodihexosyl gangliosides (GM3s) negatively correlated
with CD4+ T cell count in COVID-19 patients, and GM3-enriched
exosomes positively correlated with disease severity [20]. The present
study enrolled COVID-19 patients, HCs and patients with COVID-19-
like symptoms. We used the GC–MS method and found that the
serum metabolites of patients with COVID-19 underwent specific
-19 patients who progress from mild to severe disease in the hospital. (A) Differences in
ase at admission. (B) ROC curve based on the combination of the levels of 2-hydroxy-3-
d palmitelaidic acid at admission for the prediction of patients who progress from mild to
cohort; #, P < 0.05; ##, P < 0.01; ###, P < 0.001 in the validation cohort.

Image of Fig. 4


Fig. 5. Effects of different therapies on the serummetabolome andmetabolic biomarkers. OPLS-DAplots based on themetabolomeprofiles of patients treatedwith no antiviral agents (n=
12), treatedwith arbidol (n=9), treatedwith lopinavir and ritonavir (n=9), or treatedwith arbidol togetherwith lopinavir and ritonavir (n=49), including (A) or not includingHCs (B).
OPLS-DA plots based on the metabolome profiles of patients treated with (n = 45) or without (n = 34) corticosteroids, including (C) or not including HCs (D). (E) Comparisons of the
levels of D-fructose, citric acid and 2-palmitoyl-glycerol between HCs (n = 78) and COVID-19 patients (n = 79) subjected to different antiviral treatments. (F) Comparisons of the
levels of D-fructose, citric acid and 2-palmitoyl-glycerol between HCs (n = 78) and COVID-19 patients (n = 79) treated with or without corticosteroids. *, P < 0.05; **, P < 0.01; ***, P
< 0.001.
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changes that were closely related to immune and clinical features.
Taken together, these studies provide new prospective information for
the pathogenesis, diagnosis and treatment of COVID-19.
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Our results showed that D-fructose and succinic acid were enriched,
and citric acid and 2-palmitoyl-glycerol were depleted in COVID-19 pa-
tients compared to COVID-19-like patients and HCs. The concentration

Image of Fig. 5


Fig. 6.Alterations in the levels of serummetabolites in COVID-19 patients from admission to discharge. Serum samples from 15 COVID-19 patients from admission, treatment to discharge
and 78 samples fromHCswere used. (A), (B) Serummetabolites levels thatwere different between COVID-19 andHCs at admission butwere not significantly different between these two
groups at discharge. (C) Serummetabolites levels that were different between COVID-19 andHCs at admission but tended to become not significantly different between these two groups
at discharge. (D) Serummetabolites levels that were different between COVID-19 andHCs at admission andwhose differences between these two groups became larger at discharge. Fold
change was that of COVID-19 patients versus HCs; significant differences between patients at admission and at discharge are marked with “*”, *, P < 0.05; **, P < 0.01; ***, P < 0.001;
significant differences between patients at discharge and HCs are marked with “#”, #, P < 0.05; ##, P < 0.01; ###, P < 0.001; Inf is the abbreviation of “infinite”, which indicates that
the metabolite was undetectable in HCs.
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of serum D-fructose is generally stable. Nearly 90% of low-dose fructose
is transformed into glucose, lactic acid and glyceric acid in the intestine,
and only trace fructose enters the liver. High-dose fructose leads to an
increase in the proportion of fructose entering the liver, where fructose
is phosphorylated to generate fructose-1-phosphate [23]. High levels of
D-fructose enhance inflammation in dendritic cells (DCs) by promoting
IL-6 and IL-1β production. Acute SARS-CoV-2 infection impairs DC and
CD8 T-cell responses and interactions, and the immune dysfunction as-
sociatedwith D-fructose-inducedmetabolic disordersmay contribute to
acute COVID-19 pathogenesis [24,25]. Citric acid is a bridge between the
metabolism of carbohydrates and fatty acids, and it promotes the prolif-
eration and differentiation of immune cells, such as B cells [26]. Succinic
acid is also an inflammatory signaling molecule. Succinic acid, together
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with citrate and fumarate, mediates the function of myelocytes during
infection and inflammation, [27]. Citric acid and succinate are the key
substances in the TCA cycle [28]. TCA cycle metabolites play important
roles in non-metabolic signaling regulation of innate and adaptive im-
munity, lipid and nucleotide synthesis and DNA methylation, which
may contribute to SARS-CoV-2 pathogenesis [29]. 2-palmitoyl-glycerol
is a product of animal digestion of dietary fat, and it is directly absorbed
by intestinal cells and participates inmetabolism in vivo. It enhances the
binding ability of 2-arachidonoyl-glycerol with CB1 and CB2 cannabi-
noid receptors to regulate cytokine release and migration in immune
cells, and it inhibits adenylate cyclase [30]. 2-palmitoyl-glycerol is an
endogenous activator of peroxisome proliferator-activated receptor
alpha (PPARα), and the reduction in PPARα induced by the decrease

Image of Fig. 6


Fig. 7.Associations between significantly altered clinical parameters and potential metabolic biomarkers in COVID-19 patients from 78 samples at admission. *, P < 0.05; **, P < 0.01; ***, P
< 0.001. Abbreviations: ALB, albumin; CHOL, total cholesterol; LDH, lactate dehydrogenase; HBDH, hydroxybutyrate dehydrogenase; GGT, gamma-glutamyl transpeptidase; CRP, C-
reactive protein; PCT, procalcitonin; DB, direct bilirubin; PT, prothrombin time; INR, international normalized ratio. The values 0.2, 0.4 and 0.6 were the correlation coefficients
represented by the right segments that were used as the reference rulers of the line thickness in this figure to evaluate the correlation coefficients.
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in 2-palmitoyl-glycerol from COVID-19 may be an important effector of
pulmonary inflammation and mechanistically involved in the patho-
genesis of acute lung injury [31,32].

Our results showed that serum 1,5-anhydroglucitol and 4-
deoxythreonic acid were depleted in COVID-19 patients compared to
HCs, and oxalic acid andphosphoric acidwere enriched in COVID-19pa-
tients compared to COVID-19-like patients. Serum oxalic acid remained
nearly 5-fold higher in COVID-19 patients at discharge compared to
HCs. The non-metabolizable glucose analogue, 1,5-anhydroglucitol, is
primarily derived from a plant-based diet. Its stable serum concentra-
tion reflects a steady balance between ingestion and urinary excretion.
The serum concentration of 1,5-anhydroglucitol decreases when its re-
covery is reduced under hyperglycemic conditions. Therefore, its serum
concentration reflects the average level of serumglucose in the past 1–2
weeks [33]. 4-Deoxythreonic acid is a metabolite of L-threonine, and its
10
presence in adults negatively correlates with age. Its level increases in
childrenwith early-onset type I diabetes, but little is known about its bi-
ological functions [34]. Similar to 1,5-anhydroglucitol, oxalic acid is pri-
marily derived from a plant-based diet. Oxalic acid is also derived from
themetabolism of oxaloacetic acid, isocitrate, and ascorbic acid. It is not
well metabolized in the human body. Approximately 2/3 of serum
oxalic acid is excreted in urine and 1/3 in feces [35]. Therefore, the accu-
mulation of oxalic acid in serummay be caused by an increase in endog-
enous production and/or the obstruction of excretion. Oxalic acid binds
minerals, and it has been linked to kidney stones and other health prob-
lems [36]. Some cases of oxalate nephropathy in COVID-19 patients
were reported [37].

Our results showed that serum lactic acid, butyric acid and choles-
terol were enriched in COVID-19 and COVID-19-like patients compared
to HCs. Lactic acid is an intermediate of anaerobic glycolysis. Its increase

Image of Fig. 7
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in serum reflects a reduced oxygen supply and hypoperfusion. Lactic
acid can be oxidized to propionic acid or converted to glucose in the
liver. Lactic acid plays a key role in regulating thepolarization anddiffer-
entiation of immune cells [38]. Butyric acid is primarily derived from the
decomposition of dietary fiber by gutmicrobes. It is rapidly absorbed by
cells and converted to acetyl-CoA via β-oxidation. Nearly 70% of the en-
ergy of intestinal epithelial cells comes from butyric acid. Butyric acid
also has antibacterial and anti-inflammatory effects [39]. Nearly 80% of
cholesterol comes from synthesis in the liver, which regulates choles-
terol in the circulating blood. Although the cholesterol accumulated by
the proinflammatory response may play a beneficial role in the re-
sponse to infection, it worsens diseases related to chronic metabolic in-
flammation, such as atherosclerosis [40].

Our results showed that serum L-glutamic acid, L-phenylalanine, L-
serine and 2-hydroxybutyric acid were enriched in COVID-19 patients
and COVID-like patients compared to HCs. L-glutamic acid is converted
from glutamine and may be converted into α-ketoglutaric acid. L-
glutamic acid is a regulator of T cell function. Inflammatory mediators
also regulate the extracellular glutamate concentration by affecting
glial cells [41]. L-phenylalanine is an essential amino acid. Nearly 60%
of L-phenylalanine is transformed into tyrosine by phenylalanine hy-
droxylase and its cofactor, 5,6,7,8-tetrahydrobiopterin, in hepatocytes.
Serum L-phenylalanine was increased in patients with posttraumatic
sepsis, and this increase was related to activation of the immune re-
sponse. The accumulation of phenylalanine also magnified inflamma-
tion [42]. L-serine comes from nutrition absorption or the serine
synthesis pathway of glycolysis. Serine is a key immune metabolite
that directly regulates adaptive immunity by controlling T cell prolifer-
ation [43]. 2-hydroxybutyric acid is primarily produced in the process of
L-threonine metabolism or glutathione synthesis, and it may be in-
creased by oxidative stress or the detoxification of exogenous sub-
stances in the liver. 2-hydroxybutyric acid is often increased in
patients with energy metabolism deficiency, lactic acidosis and
ketoacidosis [44].

Although our investigations attempt to provide comprehensive in-
sight into the potential contribution of metabolism to the pathogenesis,
diagnosis and treatment of COVID-19, there are several limitations to be
addressed in future studies. First, although our cohort included COVID-
19, COVID-19-like patients and HCs, there were no asymptomatic pa-
tients with COVID-19 whose inclusion in future investigations will im-
prove our understanding of COVID-19. Second, we used blood
samples, which were easy to obtain but primarily reflected the overall
metabolic alterations of patients and cannot specifically reflect themet-
abolic disorders of important infection sites, such as the lung. Third, our
results obtained by GC–MS were limited by the intrinsic nature of this
method, particularly, its sensitivity or separation and/or extraction
efficiency, which also exist in LC-MS methods [45]. Finally, the impor-
tance of the data provided here and the potential for clinical application
merit further investigation in purposely designed, large, confirmatory
studies.

In summary, the serum metabolism of patients with COVID-19
changed specifically and reflected the influence of the lung, liver, intes-
tine and kidney on the disease. These findings are of great significance
for our understanding of the pathogenesis of COVID-19 and the diagno-
sis, early prognosis prediction and treatment of COVID-19.
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