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Background: Hormones and immune imbalance are critical factors in polycystic ovary
syndrome (PCOS). The alternation of immune microenvironment of oocytes may play a
significant role in infertility of PCOS patients.

Objective: This study explores the role of follicular fluid microenvironment change in
inflammatory pathways activation of granulosa cells (GCs) in PCOS women infertility.

Methods: We enrolled 27 PCOS patients and 30 controls aged 22 to 38 years who
underwent IVF and collected their luteinized granulosa cells (LGCs). Meanwhile, a
granulosa-like tumor cell line (KGN) as a cell-model assisted this study. Key
inflammatory markers in human ovarian GCs and follicular fluid were detected by RT-
qPCR, Western blotting, or ELISA. The KGN cells were treated with follicle supernatant
mixed with normal medium to simulate the microenvironment of GCs in PCOS patients,
and the inflammation indicators were observed. The assembly of NLRP3 inflammasomes
was detected by immunofluorescence techniques. Dihydroethidium assay and EdU
proliferation assay were used to detect ROS and cell proliferation by flow cytometry.

Results: Compared with normal controls (n = 19), IL-1b (P = 0.0005) and IL-18 (P =
0.021) in the follicular fluid of PCOS patients (n = 20) were significantly increased. The NF-
kB pathway was activated, and NLRP3 inflammasome was formatted in ovarian GCs of
PCOS patients. We also found that inflammation of KGN cells was activated with LPS
irritation or stimulated by follicular fluid from PCOS patients. Finally, we found that
intracellular inflammation process damaged mitochondrial structure and function, which
induced oxidative stress, affected cellular metabolism, and impaired cell proliferation.

Conclusion: Inflammatory microenvironment alteration in the follicular fluid of PCOS
patients leads to activated inflammatory pathway in GCs, serving as a crucial factor that
org May 2021 | Volume 12 | Article 6857241
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causes adverse symptoms in patients. This study provides a novel mechanism in the
inflammatory process of PCOS.
Keywords: polycystic ovary syndrome (PCOS), granulosa cells (GCs), follicular fluid (FF), microenvironment, NF-kB,
NLRP3 inflammasomes
INTRODUCTION

Polycystic ovary syndrome (PCOS) causes essential public health
problems, including reproductive, metabolic, and psychological
disorders in women. It is one of the most common diseases
among women of childbearing age, and the general prevalence in
population is about 5-12% (1, 2). The cause of this syndrome
remains unclear, but increasing evidence shows that PCOS
may be a complex hereditary disease, and vulnerable to
environmental impact, including diet and lifestyle changes (2).
Moreover, the current diagnostic criteria for PCOS remain
incompletely unified, and Rotterdam criteria are still generally
accepted (3). The investigation for mechanisms of PCOS
progression will be beneficial to diagnosis and therapies
for PCOS.

Increasing shreds of evidence have shown that hormones and
immune cells play a crucial role in PCOS progression. PCOS also
has cross-talks in the role of these immune factors (4). Studies have
confirmed that peripheral blood of PCOS patients has elevated C-
Reactive Protein (CRP) levels and a significantly increased number
of white blood cells. These phenomena suggested that PCOS may
be a chronic low-grade inflammatory disease (5). The low-grade
chronic inflammation in PCOS patients is mainly attributed to
accumulated visceral fat (2, 4), in which adipocytes undergo
necrosis after hypoxia and gather many inflammatory cells to
produce numerous inflammatory cytokines (6, 7). Therefore,
chronic low-grade inflammation plays an irreplaceable role in
PCOS progression.

The follicle is the basic functional unit of oocyte generation and
development, it induces human germ cell maturation and
ovulation (7, 8). GCs control meiosis in mammalian follicles
before ovulation (9, 10). The cytokines secreted by GCs were
identified as the main component of follicular microenvironment
(11). In physiological conditions, adequate inflammatory stress is
necessary for normal follicular development and ovulation and
contributes to growth and development of oocytes (12, 13). Before
ovulation, GCs have a certain inflammatory and immune-like
phenotype that produces prostaglandins, inflammatory cytokines,
and chemokines, which promote ovulation and fertilization (14).
However, in pathological conditions, the development of oocytes
may be restricted, and follicles appear early atresia, resulting in
ovulatory dysfunction (15). The further development of chronic
inflammation induces mitochondrial dysfunction and affects
energy supply to oocytes, leading to ovum quality impairment
and especially affected ovulation (16). The inflammatory stress in
follicular microenvironment may be the underlying mechanism in
PCOS progression that we need to investigate further.

Toll-like receptors (TLRs) recognize different pathogen-related
molecular patterns (PAMPs) and play an indispensable role in
innate immune response (17). They are the first line of defense
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against pathogen invasion and play a key role in inflammation and
regulation, survival, and proliferation in the immune (18). The pro-
inflammatory cytokines, including interleukin-1b (IL-1b), IL-18,
PAMPs, and lipopolysaccharide (LPS), are activated and released
nuclear factor NF-kB complex through IL-1 receptor type 1(IL-1R)
and TLR4, respectively. Subsequently, NF-kB is further activated by
phosphorylation transported into the nucleus, and promotes the
expression of immune response genes (17–19). NF-kB p65
phosphorylation plays a crucial role in NF-kB activation, which
seems to be the optimal selection for its activation (20). NLRP3
(encoding protein 3 containing NOD, LRR, and Pyrin domain) is an
intracellular sensor that can recognize endogenous damage-
associated molecular patterns (DAMPs), and finally form a
cytoplasmic complex called NLRP3 inflammasome with ASC and
pro-Caspase-1 (21–23), which regulates the maturation and
secretion of IL-1b and IL-18 (21–24). The inflammasome
formation includes two stages: the first stage is the priming stage,
and the second stage is the activation stage (21). Inflammatory
cytokines activate NF-kB to participate in inflammation, cause
cascade signal amplification (25), and induce NLRP3
inflammasome formation. This signaling pathway regulates
cellular physiological processes, including cell cycle arrest,
proliferation, cell death, metabolism, stress response, and aging (26).

Given the critical role of IL-1 in regulating human follicular
function (15), NLRP3 inflammasome activation in human
ovaries is intimately associated with GCs disorder.
Investigating the clear inflammatory pathway is obligatory to
avoid low-grade inflammation stress in human ovarian GCs.
This study aimed to understand whether inflammatory cascade
amplification is launched under follicular microenvironment
alteration in GCs from PCOS patients and its outcomes.
Meanwhile, we also try to systematically elucidate the possible
inflammatory pathways and provide novel ideas for PCOS
etiology and disease evolution.
MATERIALS AND METHODS

Clinical Patient Data
This study was approved by Institutional Review Committee of
Guangdong Women and Children Health Hospital of
Guangzhou Medical University. We collected samples
according to ethics committee’s approval from Guangdong
Women and Children Hospital of Guangzhou Medical
University (number: 202001040) and also obtained informed
consent of all patients before starting the study. We collected and
separated human follicular fluid from oocytes of women
receiving IVF. These patients come from Reproductive Center
of Guangdong Women and Children Hospital of Guangzhou
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Medical University. All PCOS patients included in the case group
were diagnosed according to revised Rotterdam inclusion/
exclusion criteria.

Follicular Fluid Acquisition and Separation
Under the same GnRH antagonist protocol, ovarian stimulation
and oocyte recovery were performed on non-PCOS and PCOS
groups. Before aspiration, we measured individual follicles by
two-dimensional ultrasound. When the diameter of one follicle
was ≥ 18 mm, we provide 10,000 IU of human chorionic
gonadotropin (HCG) to induce ovulation. After 36 h, the
contents of follicles induced by patient’s stimulation were
aspirated through vagina. This process was carried out under
general anesthesia. We aspirated the follicles with a 16-gauge
single-cavity needle, and completely absorbed and processed
each one. After separating oocytes, follicular fluid (FF) is
collected in a sterile test tube.

Extraction and Culture of Human
Ovarian LGCs
The collected FF was transferred into 50 mL sterile centrifuge
tubes and centrifuged at 1800 rpm for 10 min at room
temperature. The above steps were repeated until the
supernatant becomes clear, followed by collection. The
precipitation is then resuspended in phosphate-buffered saline
(PBS) and transferred to a 15 mL centrifuge tube, centrifuged at
3000 rpm for 10 min at room temperature, and repeated once. A
new 15 mL centrifuge tube was prepared, and a 5 mL lymphocyte
separation solution (Ficoll) (Biosharp, BL 590, China) was added.
The precipitation was resuspended with PBS, and a suspension
was made with the same volume as Ficoll, spreading the cell
suspension evenly on Ficoll, followed by centrifugation by
density gradient at room temperature for 30 min. The cells in
the middle layer of separation solution were collected and
suspended with PBS, then centrifuged at 1800 rpm for 10 min
at room temperature. After washing twice with PBS, the cells
were resuspended by complete DMEM/F 12 medium (containing
DMEM/F 12, 10% fetal bovine serum, and 1% penicillin/
streptomycin). After spreading in a 6-well plate, the cells were
cultured in a 37°C CO2 incubator.

KGN Cell Line Culture
Human ovarian cancer granulosa cell line KGN cells (Procell CL-
0603) (27) were provided by Procell Life Science&Technology
Co., Ltd (Wuhan, China). The KGN cell line was cultured in
DMEM/F 12 culture (Gibco) (the medium contains 10% FBS
(TransSerum® FQ Fetal Bovine Serum) and 1% penicillin/
streptomycin. The cells were planted in a 6-well plate and
incubated in a 37°C CO2 incubator.

RNA Extraction Technology
The cells were planted in a 6-well plate and mixed with Trizol for
5 min for cell lysis. 0.2 mL chloroform was added to each 1 mL
TRIZOL, shaken for 15 s, and place at room temperature for 2 to
3 min. After centrifuging at 12,000 rpm for 15 min at 4°C, the
upper aqueous phase was taken to another Ep tube, and 0.5 mL
Frontiers in Immunology | www.frontiersin.org 3
isopropanol was added to mix well, leaving it at room
temperature for 10 min. After centrifuging at 12,000 rpm at
4°C for 10 min, we added 1 mL of 75% ethanol to the mix. Before
air drying for 5-10 min, we centrifuge the Ep tube at 7500 rpm at
4°C for 5 min. Finally, 40 mL diethylpyrocarbonate water (DEPC)
was added to resuspend RNA.

RT-qPCR Technology
HiScript® II Reverse Transcriptase master mixing system
(Vazyme) was used to convert RNA to cDNA. The PCR
reaction mixture includes 18 mL qPCR Master Mix premix
ChamQ SYBR (Vazyme, Nanjing, China), 2 mL cDNA sample,
0.4 mL forward primer, and 0.4 mL reverse primer. Then running
on the machine, the method follows the instructions on the kit.
The threshold period value (Ct) was used to determine the
expression level of NLRP3, NF-kB, IL-1b, IL-6, and TLR4;
then, b-actin was used as a unified parameter to calculate with
the equation 2-△△Ct. The sequences of all primers used in this
study are listed as followed:

NF-kB (forward: 5’-TGAACCGAAACTCTGGCAGCTG-3’,

reverse: 5’-CATCAGCTTGCGAAAAGGAGCC-3’);

NLRP3 (forward: 5’-GATCTTCGCTGCGATCAACAG-3’,

reverse: 5’-CGTGCATTATCTGAACCCCAC-3’);

IL-1b (forward: 5’-TTACAGTGGCAATGAGGATGAC-3’,

reverse: 5’-GTGGTGGTCGGAGATTCGTA-3’);

IL-6 (forward: 5’-AGACAGCCACTCACCTCTTCAG-3’,

reverse: 5’-TTCTGCCAGTGCCTCTTTGCTG-3’);

TLR4 (forward: 5’-CCCTGAGGCATTTAGGCAGCTA-3’,

reverse: 5’-AGGTAGAGAGGTGGCTTAGGCT-3’);

b-actin (forward: 5’-GTTGTCGACGACGAGCG-3’,

reverse: ‘5’-GCACAGAGCCTCGCCTT-3’).

Western-Blotting Technology
The protein extraction process was processed on ice. The cell
samples in the 6-well plate were gently washed three times with
PBS, and RIPA buffer (Beyotime, Shanghai, China) mixed with
1mM protease inhibitor phenylmethanesulfonyl fluoride (PMSF)
(Beyotime, Shanghai, China) and 100X Roche protease inhibitor
(cocktail) (Beyotime, Shanghai, China) was added to each dish
for 30 min. The cells were transferred to a centrifuge tube,
centrifuged at 15000 rpm for 15 min, and the supernatant was
saved. BCA kit (Beyotime, China) was used to determine protein
concentration). Every 1 mL 6X loading buffer was added in 5 mL
protein and heated in a 100°C water bath for 10 min. The gel
electrophoresis was performed using a 15% strength performed
gel to separate proteins and then transferred to PVDF
membrane. A pre-prepared blocking solution (5% BSA) was
used to seal the membrane for 1 h, followed by placing them in
an anti- 4°C refrigerator overnight. Washing with Tris-buffered
saline Tween (TBST) was done three times on the next day,
10 min each time. After washing, a secondary antibody was
added and incubated at room temperature for 1 h. The PVDF
membrane was successfully contacted with an enhanced
May 2021 | Volume 12 | Article 685724
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chemiluminescence reagent (Biosharp) and exposed to an
enhanced chemiluminescence detection system (Amersham,
Piscataway, NJ, China). Image J (National Institutes of Health,
Bethesda, Maryland, USA) software processing system was
employed for optical density analysis.

Immunofluorescence Staining
The cells were seeded in a 12-well plate in advance, and a cell
sheet was spread in each well. When the cell density is 80% -
90%, the culture medium was discarded, the cells were fixed with
4% paraformaldehyde for 25 min, and washed three times with
PBS. Then, infiltration was done using 0.5% TritonX-100
(Beyotime, Shanghai, China) for 10 min. After blocking with
fluorescent staining blocking solution (Beyotime, Shanghai,
China) for 15 min, the cells were washed with PBS three times.
The specific antibody was incubated with primary antibody
diluent (1:200 Beyotime, Shanghai, China) overnight in an
anti- 4°C refrigerator. After washing with PBS on next day, a
secondary antibody (1:200) was added to the cells at room
temperature for 1 h (in a dark box to avoid light). Then, the
cells were washed with PBS and were covered with a mounting
medium with DAPI. The cells were observed under a confocal
microscope after the mounting tablets were dried (Zeiss
LSM 800).

Enzyme-Linked Immunosorbent
Assay (ELISA)
ELISA analysis detects IL-1b and IL-18 levels in the supernatant
of isolated follicles. The test was carried out by manufacturer’s
agreement by ELISA kit (Solarbio, Beijing, China), and the test
was repeated three times for one sample.

Measurement of ROS by Flow Cytometry
Analysis (FCM)
The sample preparation was carried out according to
manufacturer’s instructions. The cells were digested with 25%
pancreatin and were collected in a 15 mL centrifuge tube. After
centrifugation, the supernatants were removed, and cell
suspensions were prepared by adding PBS 1 mL of cells
suspension mixed with 1mL of DHE or mixed with 2 mL of
EdU. The assay reagent and samples were incubated for 30 min
(DHE) or 2 h (EdU) at room temperature in dark. All
fluorescence signals of labeled cells were analyzed by the flow
cytometer CytoFLEX S (Beckman Coulter). A minimum of
10,000 cells were examined for each assay at a 100-150 cells/
second flow rate. PI red fluorescence (590–610 nm) or FITC
green fluorescence (488-519 nm) was analyzed in FL-2 channel.
The percentage of PI-positive or FITC-positive cells were
analyzed using flow cytometer software CytExpert, version
2.3.0.84 (Beckman Couter, Inc).

5-Ethynyl-2’- Deoxyuridine (EdU) Method
to Detect Cell Proliferation
We use BeyoClick™ EdU Cell Proliferation Kit with Alexa Fluor
488 to assess cell proliferation. The test was carried out following the
manufacturer’s agreement by this kit (Beyotime, Shanghai, China).
Frontiers in Immunology | www.frontiersin.org 4
After staining a part of cells, the number of stained cells was
counted under a confocal microscope and was compared with
the count of all cells in the field of view to calculate the
proportion of proliferating cells. Three fields of view were
counted for each group. The fluorescence intensity of the other
part of cells was observed under the flow cytometer to further
judge cell enhancement, and the method is explained above. This
test was repeated three times for one sample.

Data Analysis
Statistical analysis was performed using IBM SPSS Statistics 25.0
(SPSS Inc, Chicago, IL, USA), and we used Graphpad Prism 8.3.0
software (Graphpad Software Inc., San Diego, CA, USA) to
generate graphs. Qualitative data were expressed as means ±
standard error of the mean (SEM) and P-values were analyzed by
two independent sample t-tests. It was considered that p < 0.05 is
significantly different.
RESULTS

Clinical Cases
Before IVF procedure, the patients should perform a general
clinical examination. Indicators, including anti-Müllerian
hormone (AMH; ng/mL), follicle-stimulating hormone (FSH;
IU/L), luteinizing hormone (LH; IU/L), estradiol (E2; ng/mL),
progesterone (P; ng/mL), and testosterone (T; ng/mL) were
calculated. Besides, the ratio of LH to FSH was also calculated
to make a diagnosis. The study results showed no significant
difference in age and FSH, E2, and P levels between PCOS
infertile patients and controls (Table 1, P > 0.05). However,
hormone levels such as AMH, T, LH, and LH/FSH ratio in PCOS
serum increased significantly compared with controls (P < 0.01).
Fasting blood glucose, fasting insulin, triglycerides, cholesterol,
and low-density lipoprotein (LDL) were higher than controls and
were statistically significant (P < 0.05). We also found that
peripheral white blood cell content of PCOS patients was
higher than that of normal control group (P = 0.013).

The Levels of IL-1b and IL-18 Increased in
the Follicular Fluid of PCOS Patients
To clarify that inflammatory cytokines in the peripheral
circulation may accumulate in the follicular fluid through
ovarian microcirculation. We collected the follicular fluid of
patients undergoing IVF. The primary GCs were isolated for
culture, and the supernatant was retained for ELISA detection of
IL-1b and IL-18. The results showed that the content of IL-1b
(Figure 1A) and IL-18 (Figure 1C) in the follicular supernatant
was higher in PCOS patients compared with controls (IL-1b: P =
0.0005, IL-18: P = 0.021). Simultaneously, we used ROC analysis
for the regression between levels of IL-1b and PCOS diagnosis,
and we obtained AUC (Area Under Curve) of 0.800 (Figure 1B).
IL-18 was analyzed in the same way, and we obtained AUC of
0.711 (Figure 1D). These data indicate that the content of IL-1b
and IL-18 in the follicular fluid of PCOS patients is abnormally
increased, which may underpin the pathogenesis of this disorder.
May 2021 | Volume 12 | Article 685724
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TABLE 1 | The clinical characteristics of PCOS patients and controls.

Characteristic Controls (N=30) PCOS(N=27) P value

Age (y) 29.530 ± 3.441 27.190 ± 3.317 0.836
BMI(kg/m2) 19.358 ± 0.897 24.561 ± 2.790 <0.0001****
AMH (ng/mL) 3.924 ± 1.984 13.467 ± 3.885 0.003**
Basal FSH (IU/L) 6.757 ± 1.707 5.624 ± 1.638 0.872
Basal LH (IU/L) 5.092 ± 1.470 10.747 ± 5.306 <0.0001****
Basal LH/FSH 0.776 ± 0.240 1.980 ± 0.930 <0.0001****
Basal E2 (ng/L) 45.548 ± 15.901 46.589 ± 12.142 0.238
Basal P (ng/L) 0.231 ± 0.130 0.283 ± 0.133 0.960
Basal T(ng/mL) 0.205 ± 0.077 0.622 ± 0.351 <0.0001***
WBC(g/L) 5.862 ± 0.872 7.348 ± 0.613 0.020*
Fasting blood glucose(mmol/L) 4.957 ± 0.257 5.061 ± 0.359 0.004**
Fasting insulin(uU/m) 7.537 ± 2.123 15.367 ± 10.400 0.0003***
Cholesterol(mmol/L) 4.716 ± 0.673 5.258 ± 0.9655 0.022*
Triglycerides(mmol/L) 0.9601 ± 0.409 1.845 ± 0.972 0.001**
LDL(mmol/L) 2.826 ± 0.516 3.195 ± 0.718 0.011*
HDL(mmol/L) 1.614 ± 0.329 1.419 ± 0.307 0.591
Frontiers in Immunology | www.frontiersin.org
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P-values reported are the results of independent sample t-tests for dichotomous variables; x ± s; *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. AMH, anti-Müllerian hormone; FSH,
follicle-stimulating hormone; LH, luteinizing hormone; E2, estradiol; P, progesterone; T, testosterone; LDL, low-density lipoprotein; HDL, high density lipoprotein.
A B

C D

FIGURE 1 | The levels of IL-1b and IL-18 increased in the follicular fluid of the PCOS patients. (A) The content of IL-1b in follicular fluid in PCOS patients and
controls were measured by ELISA (P = 0.0005). (B) ROC analysis for the regression between levels of IL-1b and PCOS diagnosis, AUC = 0.800. (C) The content of
IL-18 in follicular fluid in PCOS patients and controls were measured by ELISA (P = 0.021). (D) ROC analysis for the regression between levels of IL-18 and PCOS
diagnosis, AUC = 0.711. *P < 0.05 and ***P < 0.001. *P < 0.05 was considered statistically significant.
ticle 685724
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NF-kB Pathway Activation and NLRP3
Inflammasome Formation Were Promoted
in Ovarian GCs From PCOS Patients
To further identify whether follicular microenvironment affects the
inflammatory conditions of GCs, we experimented with primary
cells extracted from ovaries of PCOS patients and controls. Follicle-
stimulating hormone receptor (FSHR) immunocytochemical
Frontiers in Immunology | www.frontiersin.org 6
staining is the specific staining of ovarian GCs (27). We used this
method to ensure that we isolated GCs correctly. The FSHR (red)
positive staining is localized in cell membrane, suggesting that the
method is successful (Figure 2A). After confirming that GCs can be
successfully separated, we conducted a series of experiments on
them. As shown in Figures 2B, C, mRNA levels of TLR4 and
p65 in GCs of PCOS patients were increased compared with
A B C

ED

GF

H

FIGURE 2 | NF-kB pathway activation and NLRP3 inflammasomes formation were promoted in ovarian granulosa cells from PCOS patients. (A) Identification of
GCs in primary cells extracted from ovaries of PCOS patients and controls by immunofluorescence assays. (FSHR, red; DAPI, blue; scale bar, 20 mm). (B) The
mRNA levels of TLR4 between PCOS patients and controls in GCs were measured by RT-qPCR assays (P = 0.0184). (C) The mRNA levels of p65 between PCOS
patients and controls in GCs were measured by RT-qPCR assays (P = 0.0292). (D) The phosphorylation levels of p65 were measured by western blotting assays.
(E) The mRNA levels of NLRP3 in GCs in PCOS patients and controls were measured by RT-qPCR assays (P = 0.0096). (F) NLRP3 protein levels in GCs in PCOS
patients and controls by western blotting assays. (G) The mRNA levels of IL-1b from PCOS patients and controls by RT-qPCR assays (P = 0.0005). (H) The levels of
NLRP3 inflammasome-related proteins (ASC, pro-caspase-1, and caspase-1) were measured by western blotting assays. *P < 0.05, **P < 0.01, ***P < 0.001 and
****P < 0.0001. *P < 0.05 was considered statistically significant.
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controls (TLR4: P = 0.0184, p65: P = 0.0292). We further confirmed
that increased phosphorylation of p65 protein was significant
(Figure 2D), suggesting that NF-kB inflammatory pathway was
activated through TLR4. In addition, we also found that mRNA
level of IL-6 in CGs of PCOS patients were increased (P=0.0071)
(Figure S1A). In PCOS patients, mRNA levels of NLRP3 (P =
0.0096) are higher than that in normal individuals (Figure 2E), and
the amount of NLRP3 increased equally (Figure 2F). To further
verify that NLRP3 inflammatory pathway was activated, we found
that mRNA expression of IL-1b in PCOS patients was significantly
increased (P = 0.0005) (Figure 2G). We used WB to detect levels of
NLRP3 inflammasome-related protein ASC, pro-Caspase-1, and
Caspase-1, and the increase of self-cleavage into a mature form of
Caspase-1 was observed (Figure 2H).

NF-kB and NLRP3 Inflammasome of
Human Ovarian Granulosa Cells Were
Activated After LPS Stimulation
To clarify that GCs can indeed activate NF-kB signaling pathway
and promote the activation of NLRP3 inflammasomes under
positive stimulation, we used LPS (200 ng/mL) and ATP (4 mM)
Frontiers in Immunology | www.frontiersin.org 7
as activators to induce inflammation in KGN cells (28). The
results suggested that after incubation with LPS (200 ng/mL) for
4 h and 6 h, mRNA levels of p65 were significantly up-regulated
in KGN cells (4 h: P = 0.0257, 6 h: P = 0.0074) (Figure 3A). The
phosphorylation of p65 protein increased after treatment with
LPS (200 ng/mL) for 6 h and ATP (4 mM) for 50 min
(Figure 3B). We found that mRNA levels of TLR4 in KGN
cells after treatment with LPS (200 ng/mL) for 4 h and 6 h were
up-regulated (4 h: P = 0.0096, 6 h: P = 0.0086) (Figure 3C). We
also observed that NF-kB was in an inactive state in cytoplasm at
first and then entered into nucleus after being activated
(Figure 3D). These data show that NF-kB pathway is activated
in KGN cells stimulated by LPS. At the same time, we also found
that mRNA level of IL-6 increased after LPS treatment (4 h: P =
0.0073, 6 h: P = 0.0374) (Figure S1B).

Next, we conducted experiments to explore the activation of
NLRP3 inflammasomes. After treating with LPS (200 ng/mL) for
4 h, the levels of IL-1b in primary GCs were significantly
increased (P < 0.0001) (Figure 4A). Similarly, when we use
LPS(200 ng/mL) to stimulate KGN cells, an increasing trend
emerged in the expression of IL-1b (4 h: P = 0.0004, 6 h:
A B

C

D

FIGURE 3 | NF-kB pathway was activated with treatment of LPS in the KGN cells. (A) After treatment with LPS (200 ng/mL) for 4 h or 6 h, the relative expression of
p65 was measured by RT-qPCR (4 h: P = 0.0257, 6 h: P = 0.0074). (B) The phosphorylation levels of p65 in KGN cells with the treatment of LPS (200 ng/mL) for 6 h
and ATP (4 mM) for 50 min. (C) After treatment with LPS (200 ng/mL) for 4 h or 6 h, the relative expression of TLR4 was measured by RT-qPCR (4 h: P = 0.0096, 6 h:
P = 0.0086). (D) The localization of p65 in KGN cells with LPS (200 ng/mL) stimulation for 3 h by immunofluorescent assays (p65, red; DAPI, blue; scale bar, 20 mm).
*P < 0.05, **P < 0.01 and ***P < 0.001. *P < 0.05 was considered statistically significant.
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P = 0.0271) (Figure 4B). Equally, we detect mRNA level of
NLRP3 after its treatment with LPS (200 ng/mL) and found its
up-regulation (4 h: P = 0.0024, 6 h: P = 0.0131) (Figure 4C).
Further evidence indicated that expression of NLRP3 protein
increased with prolonged stimulation time and had a remarkable
trend with 12 h treatment (Figure 4D). So we stimulated the cells
with LPS (200 ng/mL) for 12 h to induce inflammation.
Frontiers in Immunology | www.frontiersin.org 8
The expressions of NLRP3, ASC, pro-Caspase-1, and Caspase-
1 were up-regulated in KGN cells treated with LPS (200 ng/mL)
for 12 h and ATP (4 mM) for 50 min (Figure 4E). To investigate
whether inflammasomes have been assembled, we observed the
co-localization of NLRP3 and ASC in KGN cells under a confocal
microscope. We found that with LPS treatment (200 ng/mL) for
3 h and ATP (4 mM) for 50 min, co-localization was observed
A B C

D E

F G

FIGURE 4 | NLRP3 inflammasomes were activated in KGN cells with LPS stimulation. (A) The mRNA level of IL-1b in primary human GCs treated with LPS
(200 ng/mL) for 4 h was measured by RT-qPCR assays (P < 0.0001). (B) With LPS stimulation (200 ng/mL) in KGN cells, IL-1b mRNA levels were detected
by RT-qPCR assays (4 h: P = 0.0004, 6 h: P = 0.0271). (C) The mRNA level of NLRP3 in KGN cells stimulated with LPS (200 ng/mL) (4 h: P = 0.0024, 6 h:
P = 0.0131). (D) NLRP3 protein levels in KGN cells with LPS treatment (200 ng/mL) for 2, 4, 6, 12, and 24 h. (E) The protein levels of NLRP3, ASC,
pro-Caspase-1, and Caspase-1 in KGN cells were treated with LPS (200 ng/mL) for 12 h and ATP (4 mM) for 50 min. (F) Immunofluorescent staining for
co-localization of NLRP3 with ASC in KGN cells with LPS treatment (200 ng/mL) for 3 h and ATP (4 mM) for 50 min. (NLRP3, green; ASC, red; DAPI, blue;
scale bar, 20mm). (G) Immunofluorescent staining for co-localization of NLRP3 with mitochondria in the KGN cells with LPS stimulation (200 ng/mL) for 3 h
and ATP (4 mM) for 50 min (NLRP3, green; MitoTracker indicated mitochondria, red; DAPI, blue; scale bar, 100mm). *P < 0.05, **P < 0.01, ***P < 0.001 and
****P < 0.0001. *P < 0.05 was considered statistically significant.
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(Figure 4F). Interestingly, we also observed that NLRP3 protein
was located on mitochondria and accumulated around the
nucleus, which further confirmed the formation of
inflammasomes (29) (Figure 4G).

The NF-kB Pathway and NLRP3
Inflammasomes Were Activated in KGN
Cells Stimulated With Follicular Fluid From
PCOS Patients
To further explore that changes in fol l icular fluid
microenvironment may promote an inflammatory cascade in
GCs from PCOS patients, we mix the follicular fluid isolated
Frontiers in Immunology | www.frontiersin.org 9
from patients with a culture medium in a certain ratio of 1:2 (FF:
DMEM/F 12) to cultivate KGN cells. We observed that the level
of phosphorylated p65 protein in KGN cells increased after 6 h of
culture with follicular fluid of PCOS patients (Figure 5A). To
further clarify our conjecture, we performed NF-kB staining. It
revealed that NF-kB protein entered the nucleus and was located
in the nucleus after incubating the follicular fluid of PCOS
patients (Figure 5B). All suggest that NF-kB pathway was
activated. To further explore whether NLRP3 inflammasomes
were activated, we cultured KGN cells in the same way on the
above. After culturing KGN cells with patient’s follicular fluid for
3 h, mRNA level in IL-1b (P = 0.0097) (Figure 5C) and NLRP3
A B

C D

D

F

FIGURE 5 | NF-kB pathway and NLRP3 inflammasomes in KGN cells were activated by stimulation of with follicular fluid from PCOS patients. (A) With treatment of
follicular fluid in KGN cells of PCOS patients and controls for 3 h, the phosphorylation levels of p65 were measured by western blotting assays. (B) The localization of
p65 in KGN cells with follicular fluid treatment of PCOS patients and controls for 3 h by immunofluorescent assays. (p65, red; DAPI, blue; scale bar, 50 mm). (C) The
KGN cells were treated with follicular fluid of PCOS patients and controls for 3 h, and IL-1b mRNA levels were measured by RT-qPCR (P = 0.0097). (D) The mRNA
level of NLRP3 was detected in KGN cells with treatment of follicular fluid of PCOS patients and controls for 3 h (P = 0.0011). (E) NLRP3 inflammasome-related
proteins (NLRP3, ASC, pro-Caspase-1, and Caspase-1) were measured by western blotting assays. (F) With treatment of follicular fluid of PCOS patients and
controls for 3 h, the localization of NLRP3 in KGN cells is measured by immunofluorescent assays (NLRP3, green; DAPI, blue; scale bar, 50 mm). *P < 0.05,
**P < 0.01, ***P < 0.001 and ****P < 0.0001. *P < 0.05 was considered statistically significant.
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(P = 0.0011) (Figure 5D) was increased. Besides, NLRP3
inflammasome-related proteins such as NLRP3, ASC, pro-
Caspase-1, and Caspase-1 were also significantly increased
(Figure 5E). Furthermore, under the immunofluorescence
confocal microscope, the expression of NLRP3 protein
increased (Figure 5F). Overall, these data show that activated
NF-kB pathway and NLRP3 inflammasomes in KGN cells were
stimulated with follicular fluid from PCOS patients.

Follicular Fluid From PCOS Patients and
LPS Impaired Mitochondria Structure and
Function, Caused Oxidative Stress, and
Arrested Cellular Proliferation
To further judge the influence of inflammation on cells, we
observe the mitochondrial morphology under a confocal
microscope. We found that mitochondrial morphology of GCs
was fragmented in PCOS patients (Figure 6A). Then we
stimulated KGN cells with LPS or follicular fluid respectively
and observed fragmented mitochondria (Figures 6B, C). An
article pointed out that fragmented mitochondria produce more
ROS (30), so our next experiment tested ROS levels in KGN cells
with LPS or follicular fluid treatments. After using DHE to detect
ROS and measure it by FCM, we observed an increase in
generating ROS after LPS treatment, and the stimulate was
more obvious after ATP addition (Figure 6D). Follicular fluid
in controls seems to have a protective mechanism to inhibit ROS
generation, so ROS levels were decreased. Conversely, the anti-
oxidation ability of follicular fluid of PCOS patients on the cells is
weakened, so ROS decrease is not obvious or even increased
(Figure 6E). To investigate whether cell growth is impaired, we
used EdU proliferation assay to measure cell proliferation. We
observed that cell proliferation rate was slowed down after LPS
treatment under immunofluorescent assays (Figure 6F). The
same phenomenon was observed in KGN cells co-cultured with a
follicular fluid of PCOS patients (Figure 6G). Using flow
cytometry to detect cell proliferation also verified the above
results (Figures 6H, I).
DISCUSSION

PCOS is generally identified as a metabolic disorder. Abnormal
metabolic products, including oxidative stress products caused
by breakdown and destruction of fat cells, induce the
accumulation of inflammatory cytokines (4). Subsequently,
these inflammatory cytokines may accumulate and promote
chronic low-grade inflammation. This abnormal accumulation
of inflammation seems to impair ovarian function and may
aggravate PCOS development.

Early studies have further confirmed that in PCOS patients,
peripheral blood circulating CRP and inflammatory cytokines
such as IL-6 are increased (31). There have been a significant
number of studies on estimating IL-6 levels in association with
PCOS, no matter in a vast number of murine models or human
subjects (32). This chronic low-grade inflammation promotes the
onset of PCOS disease (31). According to our clinical dates
collected from PCOS patients and controls, we found an increase
Frontiers in Immunology | www.frontiersin.org 10
in white blood cells in the serum. These immune cells produce
large amounts of inflammatory cytokines and result in
systemically chronic inflammation (33). Adams et al. found
elevated levels of inflammatory cytokines IL-6 and TNF in
follicular fluid (34). Our results also revealed that the mRNA
level of IL-6 were increased in GCs of PCOS patients. Thus, we
conjecture that inflammatory cytokines enter the ovary from
blood circulation, and accumulate in follicular fluid from ovarian
microcirculation (34).

The latest majority of results demonstrate that levels of typical
pro-inflammatory cytokines (including IL-1b and IL-18) in the
serum, ovarian and follicular fluid of PCOS were increased
significantly (6, 15). Our results also showed that levels of IL-
1b and IL-18 in follicular fluid of PCOS patients were increased.
However, some research seems to hold the opposite opinion (35).
To investigate whether inflammatory cytokines in follicles are
predictive factors for PCOS diagnosis, we demonstrated the
regression between levels of IL-1b and IL-18 and PCOS
diagnosis with ROC curves. We found that the expression of
related genes was indeed up-regulated. This is a possible cause of
GCs inflammatory initiation in PCOS patients, and may even be
the root of PCOS disease progression, but its mechanism remains
to be further explored.

PCOS patients are more prone to intestinal flora imbalance
and microbiota abnormalities caused by enteral malnutrition,
which can producing metabolic endotoxin (LPS) that invades the
intestinal wall and aggravates systemic inflammation (36).
Therefore, we used LPS as a classic inducer to activate NF-kB
pathway to simulate the similar inflammatory status of PCOS
patients (19). Thus, we stimulated KGN cells with LPS to
promote the expression of inflammasome components
(signal 1) and ATP to activate the further assembly of these
components (signal 2) (21). As stimulated by LPS, TLR4 was
profoundly enhanced in both GCs and KGN cells. Ultimately, we
pleasantly found that NF-kB pathway was activated and NLRP3
inflammasome assembled in GCs. Therefore, exogenous LPS
may also enter follicular fluid from periphery to further induce
inflammatory activation.

A suitable microenvironment is required for oocyte growth and
maturation, and the signal transduction between somatic cells and
oocytes in follicles constructs a dynamic homeostasis internal
environment (37). The microenvironments stability would be
controlled by internal and external environments simultaneously
(38). To explore whether altered follicular microenvironment
provides inflammatory stress to GCs, we incubated KGN cells
with follicular fluid in PCOS patients and detected intracellular
inflammatory indicators.We found that with treating follicular fluid
in PCOS patients, KGN cells showed consistent phenotypes
with GCs in PCOS patients. By treating LPS and ATP, NF-kB
inflammatory pathways were activated, andNLRP3 inflammasomes
were formed in KGN cells. It suggested that internal
microenvironment of follicles undergoes adaptive alteration,
which induces innate inflammatory responses in GCs.

The physiological conditions of energy metabolism in GCs play
an integral role in maintaining oocyte growth (39, 40).
Physiologically, pro-inflammatory cytokines produce during
follicular development and participate in inducting ovulation,
May 2021 | Volume 12 | Article 685724

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Liu et al. Inflammation in PCOS Follicular Microenvironment
while continuous chronic inflammation can impair follicular
growth and affect subsequent reproductive potential (11, 34).
Under stimulation of several inflammatory cytokines, GCs make
specific physiological responses and adapt to the damage of external
Frontiers in Immunology | www.frontiersin.org 11
factors by altering follicle microenvironment. Excessive and
sustained inflammatory stress impacts the function of GCs and
inevitably disturbs the quality of oocytes, resulting in subsequent
infertility (41). Studies have shown that NF-kB can inhibit the
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FIGURE 6 | Follicular fluid from PCOS patients and LPS impaired mitochondria structure and function, caused oxidative stress, and arrested cellular proliferation.
(A) Immunofluorescence imaging of mitochondria in GCs from PCOS patients and controls (MitoTracker, red; DAPI, blue; scale bar, 20 mm). (B) Immunofluorescence
imaging of mitochondrial morphology in KGN cells with LPS stimulation (200 ng/mL) for 3 h and ATP (4 mM) for 50 min (MitoTracker indicated mitochondria, red;
DAPI, blue; scale bar, 20 mm). (C) Immunofluorescence imaging of mitochondrial morphology in KGN cells incubated with follicular fluid for 3 h (MitoTracker indicated
mitochondria, red; DAPI, blue; scale bar, 20 mm). (D) After DHE staining, flow cytometry assays were used to detect ROS levels in KGN cells with LPS (200 ng/mL)
treatment for 3 h and ATP (4 mM) for 50 min. (E) After DHE staining, flow cytometry assays were used to detect ROS levels in KGN cells with follicular fluid
stimulation for 3 h. (F) Immunofluorescence imaging of EdU to indicate the KGN cells proliferation with LPS (200 ng/mL) treatment for 3 h and ATP (4 mM) for 50 min
(EdU, green; DAPI, blue; scale bar, 50 mm). (G) Immunofluorescence imaging of EdU to indicate the KGN cells proliferation with follicular fluid treatment for 3 h (EdU,
green; DAPI, blue; scale bar, 50 mm). (H) With EdU staining, flow cytometry assays were used to detect fluorescence in KGN cells with LPS (200 ng/mL) stimulation
for 3 h and ATP (4 mM) for 50 min treatment. (I) After EdU staining, flow cytometry assays were used to detect fluorescence in KGN cells with treatment of follicular
fluid for 3 h. **P < 0.01. *P < 0.05 was considered statistically significant.
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telomerase activity of GCs (42), thereby shortening the lifespan of
GCs and preventing oocytes from sufficient nutrients. By producing
NLRP3 inflammasomes, this inflammatory response promotes GC
pyroptosis and ovarian fibrosis, and disrupts follicular formation
(43). While the inflammatory factor IL-1 can inhibit FSHR and
LHR, thereby inhibiting follicular maturation and inhibiting
ovulation (15). As our study results revealed, inflammation
harmed the proliferation of GCs.

However, inflammatory and metabolic diseases are associated
with perturbed mitoROS production (44). In this study, we found
that with LPS treatment, the mitochondrial morphology of cells was
Frontiers in Immunology | www.frontiersin.org 12
changed significantly, which may be the direct cause of
inflammation-induced mitochondrial damage to destroy energy
generation of GCs (45). As our results show, the intracellular
ROS content also increases significantly after inflammation is
induced. Excessive abnormal ROS production would cause redox
imbalance in the body, causing mitochondrial structure and
function damage (30, 46). Mitochondrial dysfunction may affect
follicle growth and development, leading to early follicle atresia (47–
49). All the above factors may cause a follicular development
disorder in PCOS patients and serve as a key reason for
anovulation and sparse ovulation (Figure 7).
FIGURE 7 | A proposed model for inflammatory cascade in ovarian granulosa cells with PCOS. The inflammatory cytokines derived from the peripheral circulation
enter into the follicles through the ovarian circulation system. Subsequently, by the IL-1R and TLR4 on the GCs, the inflammatory cytokines in follicular fluid alternate
follicular microenvironment, resulting in the activation of nuclear factors NF-kB and its transfer into the nucleus. Activated NF-kB promotes the gene expression of
key components of the NLRP3 inflammasome. Under the stress of mitochondrial ROS, these key components including NLRP3, ASC, caspase-1 assemble,
promote the cleavage of IL-1b and amplify the inflammatory cascade. The inflammatory cascade further damage mitochondria, which aggravates the generation of
mitoROS and forms a vicious circle. Thereby, the alternation of the follicular microenvironment affects the function of GCs and leads to slowing down of cell
proliferation, ultimately affecting the growth and development of oocytes.
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Because PCOS pathogenesis is unclear and etiology is
complicated, it is a technical problem that needs to be
overcome urgently. Some scholars believed that inflammation-
related signaling pathways are not the main contributors to
PCOS (50, 51). Most studies suggested that inflammatory
conditions in PCOS are caused by associated obesity or insulin
resistance rather than an independent feature of the syndrome
(50). Some scholars have pointed out the expression of IL-1b
gene in PCOS and non-PCOS was non-significantly different, but
overweight PCOS patients had higher levels of IL-1b in serum
(35). So whether IL-1b is the cause of PCOS disease remains
controversial. According to our study, chronic low-grade
inflammation plays an indelible role in its occurrence and
development. If this chronic inflammation can be attenuated, it
will likely have important significance for improving fertility of
PCOS patients. Yang et al., in their work silenced UCA1 and
inhibited most pathological progression in PCOS, such as
preventing pro-inflammation production and promoting GC
proliferation (52). So the target for inflammatory is crucial in
PCOS therapy. At present, we have found that alternating
follicular microenvironment activated inflammatory pathway,
influenced the ability of GCs to proliferation, exacerbates
oocyte maturation arrest. Therefore, improving follicular
microenvironment can provide a novel direction for treating
PCOS patients and remains to be further studied.
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Supplementary Figure 1 | The mRNA lever of IL-6 were increased in ovarian
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stimulation. (A) IL-6 mRNA levels between PCOS patients and controls in GCs were
measured by RT-qPCR assays (P = 0.0071). (B) With LPS (200 ng/mL) stimulation
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significant.
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