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    Introduction 
 Chromosomes, subchromosomal domains, and individual gene 

loci occupy preferred positions within the 3D space of the cell nu-

cleus ( Cremer et al., 2006 ;  Meaburn and Misteli, 2007 ). The high 

degree of spatial organization inside the nucleus is rapidly emerg-

ing as an important factor in nuclear function ( Fraser and  Bickmore, 

2007 ;  Lanctot et al., 2007 ;  Misteli, 2007 ). The spatial organization 

of the genome varies between cell types ( Boyle et al., 2001 ;  Parada 

et al., 2004 ;  Mayer et al., 2005 ;  Neusser et al., 2007 ), upon differ-

entiation ( Kosak et al., 2002 ;  Chambeyron and Bickmore, 2004 ; 

 Kim et al., 2004 ;  Foster et al., 2005 ), and with exit from the cell 

cycle ( Bridger et al., 2000 ;  Solovei et al., 2004 ;  Meaburn et al., 

2007a ). Moreover, some, although not all, genes change their 

nuclear location upon changes in activity ( Lanctot et al., 2007 ; 

 Meaburn et al., 2007b ) and in some cases repositioning occurs 

before the start of expression ( Ragoczy et al., 2003 ,  2006 ). 

 The spatial organization of the genome is frequently altered 

in disease. For example, human chromosome (HSA) X becomes 

more internally located in neurons after epileptic seizures 

( Borden and Manuelidis, 1988 ). HSA 13 and 18 are relocated 

away from the nuclear periphery in fi broblasts of patients with 

laminopathies, a group of diseases caused by mutations in the 

nuclear envelope proteins lamin A/C ( Meaburn et al., 2007a ). 

In cancer, distinctive changes in number and morphology of 

nucleoli have long been used as indicators of cancerous trans-

formation ( Zink et al., 2004 ). Furthermore, distribution patterns 

of centromeres and telomeres can be altered in cancer cells 

( Chuang et al., 2004 ;  Sarkar et al., 2007 ). More specifi cally, 

chromosomes carrying cancerous translocations or fusion genes 

generated by translocations are sometimes found in different 

positions than their normal counterparts ( Cremer et al., 2003 ; 

 Taslerova et al., 2003 ,  2006 ;  Murmann et al., 2005 ). Further 

evidence for a reorganization of the genome in tumorigenesis 

comes from the observation that HSA 19 is commonly more 

peripherally located than HSA 18 in multiple cancers ( Croft 

et al., 1999 ;  Cremer et al., 2003 ). In pancreatic cancer, HSA 8 

is more peripheral compared with normal tissue and the centro-

mere of HSA 17 becomes more internally positioned in breast 

cancer tissues ( Wiech et al., 2005 ). Interestingly, gains in copy 

numbers of whole chromosomes do not appear to alter the 

spatial organization of the genome ( Croft et al., 1999   Sullivan 

et al., 2001 ;  Sengupta et al., 2007 ). 

 All studies on genome reorganization to date have been 

performed on late-stage tumor cells or tissues. It is not known 

whether the changes in spatial positioning are an early or late 

event in the disease and whether repositioning events are spe-

cifi c or occur by default as part of global genome reorganization. 

Here, we have used a 3D mammary epithelial differentiation 

system to characterize the positioning of individual gene loci 
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This system is highly physiologically relevant because  ERBB2  

is amplifi ed and/or overexpressed in  � 25% of breast cancers 

and 60 – 90% of ductal carcinoma in situ ( Hynes and Stern, 

1994 ;  Harari and Yarden, 2000 ). Using this system, we found 

changes in spatial positioning of a set of cancer-associated 

genes both during normal breast epithelial differentiation and 

early tumorigenesis. We found activity-independent specifi c 

repositioning events and identifi ed several genes that exhibit 

cancer-specifi c spatial repositioning. 

 Results 
 Global genome reorganization during normal 
and tumorigenic early mammary epithelial 
differentiation 
 To assess the spatial organization of the genome during early tu-

morigenesis, we used a well-characterized 3D cell culture model 

system for early breast cancer ( Muthuswamy et al., 1999 ,  2001 ). 

during early tumorigenesis. 3D mammary epithelial systems are 

accurate models of early tumorigenesis and are widely used 

to study the earliest events in tumor formation ( Debnath and 

Brugge, 2005 ;  Nelson and Bissell, 2005 ). In these systems, 

mammary epithelial cells (MECs) grown in contact with re-

constituted basement membrane form growth-arrested spheroid 

structures termed acini. Mature acini consist of a single layer 

of polarized cells surrounding a hollow lumen; they closely re-

semble in vivo mammary gland morphology and recapitulate 

some glandular functions including milk protein secretion 

 ( Petersen et al., 1992 ;  Muthuswamy et al., 2001 ;  Nelson and 

Bissell, 2005 ). Overexpression of an active form of epidermal 

growth factor receptor ErbB2 in acini triggers tumorigenesis, as 

indicated by an increase in proliferation and a decrease in apop-

tosis leading to lumen fi lling and enlargement of the structures, 

which frequently contain multi-acinar units. This phenotype 

closely mimics events of early breast cancer, particularly ductal 

carcinoma in situ ( Muthuswamy et al., 2001 ;  Debnath et al., 2002 ). 

 Figure 1.    The nucleolus during mammary epithelial differentia-
tion and early mammary tumorigenesis.  (A) MCF-10.B2 cells were 
stained with ANA-N antibody to detect nucleoli (green) and counter-
stained with DAPI to delineate nuclei (blue). Projected image stacks 
are shown. For acini structures, projected stacks are approximately one 
nucleus thick and taken from the midsection of the acini. Bar, 10  � m. 
(B) Quantitation of nucleoli in proliferating 2D culture (Day 0), 
quiescent 2D cultures (Quiescent), and cells grown for 20 d under 3D 
growth conditions with 10 d of constitutive activation of ErbB2 (Day 
20, ErbB2) or without activation (Day 20 control). Values represent 
means  ±  SEM from a minimum of three independent experiments. 
 n  = 270 – 1,000.   
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within the nuclear space during differentiation, their radial dis-

tribution, normalized to the size of the nucleus, was determined. 

Typically,  � 200 nuclei were analyzed per experiment and 

only nuclei with two signals per gene were incorporated in the 

anal ysis (see Materials and methods; Fig. S1). Statistical differ-

ences between samples were probed using the 1D Kolmogorov-

Smirnov test (KS test) on cumulative distribution graphs ( Fig. 3 ). 

7 of the 11 genes analyzed were found to be repositioned dur-

ing differentiation, with only  BCL2 ,  ERBB2IP ,  FGFR1 , and 

 TP53  not altering their location ( Fig. 3 ). Six of the seven genes 

became more internally localized during differentiation ( Figs. 

2 and 3 ). One gene,  TGFB3 , shifted from two subpopulations 

at day 0 to a single population at the end of differentiation 

 (  Figs. 3 J  and S1 J). Because mature acini consist of nonpro-

liferative cells, it was important to rule out the possibility that 

the differentiation-associated repositioning events merely re-

fl ected the quiescent nature of acini. To this end, we mapped 

gene positions in quiescent undifferentiated cultures. 9 out 

of 11 analyzed genes were positioned signifi cantly differently 

between quiescent undifferentiated cultures and day-20 acini 

( Fig. 3 L ,  Table II ), which demonstrates that quiescence alone 

cannot account for the observed repositioning during differen-

tiation. These data demonstrate that the transition from growth 

in a monolayer to 3D tissue architecture alters the position of 

some but not all genes. 

 The repositioning events were gene specifi c, as indicated 

by the fact that  AKT1  and  TGFB3  both map to HSA 14 yet re-

position differently from each other after exit from the cell cycle 

and during differentiation ( Fig. 3, A, J, and L ). Furthermore, 

endogenous  ERBB2  and  TP53  both map to HSA 17 and, al-

though the position of endogenous  ERBB2  was affected by 

MCF-10A.B2 cells are nontransformed, near-diploid, immortal-

ized MECs that express a synthetic ligand-inducible active 

ErbB2 variant ( Soule et al., 1990 ;  Muthuswamy et al., 2001 ). 

When grown in the presence of recombinant basement mem-

brane extract, these cells undergo normal differentiation into 

acini within 20 d ( Fig. 1 A ;  Muthuswamy et al., 2001 ;  Debnath 

et al., 2003 ). Tumorigenesis can be triggered by the addition of 

the small molecule ligand AP1510, which induces homodimer-

ization of the ErbB2 variant but not endogenous ErbB2 ( Fig. 1 A ; 

 Muthuswamy et al., 1999 ). MCF-10A.B2 cells grown under 

these conditions replicate many features of early breast cancer 

and have been widely used to study mechanisms of early breast 

cancer formation ( Muthuswamy et al., 1999 ,  2001 ;  Seton-Rogers 

et al., 2004 ;  Aranda et al., 2006 ;  Witt et al., 2006 ). 

 We fi rst assessed global genome rearrangements during 

differentiation and early tumorigenesis by analyzing nucleolar 

distribution patterns ( Fig. 1 ). Nucleoli form around nucleolar 

organizing regions (NORs), which in humans are located on the 

fi ve acrocentric chromosomes. Before differentiation (day 0), 

MCF10A.B2 cells predominantly contained multiple nucleoli 

(median 3 and maximum 15) and only 3.4  ±  0.2% had a single 

nucleolus ( Fig. 1 ). In contrast, the majority (79.8  ±  2.9%; P  <  

0.001 using Yates correlated  �  2  analysis) of fully differentiated 

MCF-10A.B2 cells in acini contained a single nucleolus and no 

cells were found with more than six nucleoli. Because differ-

entiation of MCF10A.B2 cells is accompanied by a transition 

from a highly proliferative state of precursors (98.5  ±  1.3% pKi-67 

positive) to quiescence in acini, it was important to rule out 

that the observed reduction in nucleoli was not merely a conse-

quence of quiescence. In undifferentiated MCF10A.B2 cells 

grown in low serum for 5 d (5.9  ±  0.03% pKi-67 positive), only 

15.7  ±  2.3% of cells contained a single nucleolus (median 2 and 

maximum 8;  Fig. 1 ). This was signifi cantly different from dif-

ferentiated day-20 acini (P  <  0.001), which indicates that the re-

duction in nucleoli was caused by differentiation. The reduced 

number of nucleoli in acini implies large-scale spatial genome 

rearrangements during differentiation. Analysis of day-20 tu-

mor acini cultures induced by activation of ErbB2 at day 10 in 

3D culture indicated a similar nucleolar staining pattern to that 

of normal day-20 cultures (74.5  ±  4.26% with a single nucleo-

lus, maximum 6;  Fig. 1 ). Furthermore, no signifi cant difference in 

the distribution of centromeres was detected between normal and 

tumor acini (unpublished data). We conclude that global and simi-

lar genome reorganization occurs both during normal and tumori-

genic MEC differentiation. 

 Gene-specifi c repositioning during normal 
mammary epithelial differentiation 
 We next sought to determine how specifi c genes behaved dur-

ing normal and cancerous mammary differentiation. To this end, 

we fi rst mapped the radial position of 11 cancer-associated genes 

during normal acinar differentiation using interphase FISH ( Figs. 

2 and 3 ;  Tables I and II ; and Fig. S1, available at http://www

.jcb.org/cgi/content/full/jcb.200708204/DC1). These genes map 

to a range of chromosomes and are involved in various aspects 

of ErbB2-dependent and -independent tumor biology ( Table I ). 

To ask whether any of these genes had undergone repositioning 

 Figure 2.    Gene positioning during normal differentiation and early mam-
mary tumorigenesis.  Indicated gene loci (red) were detected in PFA-fi xed, 
undifferentiated, proliferating 2D culture cells (Day 0) and cells grown for 
20 d under 3D growth conditions with 10 d of constitutive activation of 
ErbB2 (Day 20, ErbB2) or without activation (Day 20 control). Projected 
stacks of nuclei are shown. Note the difference in scale for Day 0 com-
pared with 3D cultured cells. Bars, 5  � m.   
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Taken together, these observations suggest the existence of gene-

specifi c, proliferation-independent gene repositioning events 

during early mammary differentiation. 

 Gene-specifi c repositioning during 
tumorigenic differentiation 
 We next asked whether repositioning occurs in a similar manner 

during tumorigenic differentiation. To this end, we compared 

the positioning patterns of our panel of genes between undif-

ferentiated cells and day-20 ErbB2-activated tumor acini ( Fig. 4  

and Fig. S1, and  Table II ). Analysis of radial distributions showed 

that 9 out of 11 genes were in statistically different positions 

in day-20 ErbB2-activated 3D cultured acini compared with 

undifferentiated cells ( Fig. 4 ). All genes that underwent reposi-

tioning during normal differentiation also changed their location 

differentiation and growth arrest,  TP53  position was not ( Fig. 3, 

D, H, and L ). To further probe if the gene repositioning events 

were related to underlying chromosome movements, the posi-

tions of selected whole chromosomes were evaluated in prolif-

erating and quiescent 2D cultures (Fig. S2, available at http://www

.jcb.org/cgi/content/full/jcb.200708204/DC1). The positions of 

neither HSA 11 nor the genes that map to this chromosome 

( CCND1  and  MMP1 ) were affected by exit from the cell cycle 

( Figs. 3  and S2). The more internal position of HSA 17 in qui-

escent cells matched the movement of  ERBB2 , however, and 

 TP53  did not signifi cantly alter position. HSA 8 and 14 were 

not repositioned after exit from the cell cycle, yet the genes that 

map to them ( FGFR1  [HSA 8],  AKT1 , and  TGFB3 ) did reposi-

tion. We conclude that the repositioning of single gene loci did 

not simply refl ect changes in the position of their chromosomes. 

 Figure 3.    Radial distribution of genes during differentiation of MECs.  Gene loci were detected in PFA-fi xed cells using specifi c BAC FISH probes ( Table I ). 
(A – K) Cumulative frequency graphs to quantify the radial distribution (RRD) for each gene in MCF-10.B2 cells, in proliferating 2D culture nuclei (Day 0), 
after growth for 20 d under 3D culture conditions (Day 20 control), and in quiescent 2D cultures (Quiescent). (L) Pairwise comparisons of cumulative radial 
distributions using a 1D KS test.  n  = 195 – 220 per BAC per growth condition.   
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however, did not alter location after ErbB2 activation. This early 

tumor-specifi c reorganization was not a consequence of changes 

in cell cycle status because  BCL2  and  ERBB2  did not change 

positions in proliferating compared with quiescent 2D cultures 

( Fig. 3 ). Moreover, oncogenic activation induced a peripheral 

movement of  VEGF  ( Fig. 5 K ), whereas the locus was more in-

ternally positioned in proliferating undifferentiated cells com-

pared with quiescent undifferentiated nuclei ( Fig. 3, K and L ; 

and  Table II ). Furthermore, although  AKT1  was more internally 

positioned in quiescent cells compared with proliferating cells, 

in both 2D and 3D cultures, cell cycle differences alone do not 

appear to determine the position of  AKT1  because the gene 

occupies distinct nuclear positions in quiescent undifferentiated 

cells compared with quiescent normal acini ( Fig. 3, A and L ; 

and Fig. S1 A). Additionally,  AKT1  was found in a similar posi-

tion in proliferating tumor acini cultures as in quiescent 2D cells 

(P  >  0.05;  Table II , Fig. S1 A, and not depicted). We conclude 

that we have identifi ed four genes that exhibit tumor-specifi c 

nuclear repositioning. 

 Spatial gene repositioning is independent of 
gene activity 
 To ask whether repositioning of gene loci during differentiation 

and tumorigenic events is related to changes in their activity, the 

expression levels of all genes during normal and tumor differenti-

ation as well as during their transition into quiescence was mea-

sured by quantitative RT-PCR and compared with their positioning 

behavior ( Fig. 6  and  Table II ). We fi nd that repositioning behavior 

is independent of changes in gene activity. Overall, among 66 

comparisons of gene activity under various conditions, only 22 

correlated with changes in position. For more than half of the 

comparisons (35/66), a change in either expression or position, 

but not both, was detected ( Figs. 3 – 6  and  Table II ). Furthermore, 

even in cases when a change in activity was accompanied by re-

positioning, the direction of the gene movement often differed 

among conditions and did not correlate with the direction of the 

during tumorigenic differentiation with the exception of  VEGF . 

In addi tion to this,  BCL2 ,  FGFR1 , and  TP53 , which did not 

undergo relocalization during normal differentiation, reposi-

tioned in tumorigenic differentiation. Six of the genes became 

more internally localized between day-0 and -20 ErbB2-activated 

nuclei. In contrast,  BCL2  and  FGFR1  became more peripher-

ally localized. The radial positions of  ERBB2IP  and  VEGF  were 

not signifi cantly affected by tumorigenic differentiation ( Figs. 

2 and 4 ). These results were not confounded by the formation 

of global genome rearrangements in response to ErbB2 activa-

tion because no large-scale cytogenetic rearrangements were 

detected in metaphase spreads from ErbB2-activated cells com-

pared with normal cells (Fig. S3, available at http://www.jcb

.org/cgi/content/full/jcb.200708204/DC1). The absence of large-

scale chromosome rearrangements upon ErbB2 expression is 

further indicated by the fact that no amplifi cations or losses 

of any of the 11 genes were found upon expression of ErbB2 

( Fig. 2  and not depicted). 

 Identifi cation of tumor-specifi c 
repositioning events 
 Having determined the repositioning patterns during normal 

and tumorigenic acini formation, we sought to identify tumori-

genesis-specifi c gene repositioning events. To this end, we di-

rectly compared the positions of the entire set of genes in normal 

and tumor acini ( Fig. 5  and  Table II ). 4 of the 11 tested cancer-

associated genes showed signifi cantly distinct positions.  AKT1 , 

 BCL2 , and  VEGF  loci shifted to a more peripheral position dur-

ing oncogenic activation compared with normal acini, whereas 

endogenous  ERBB2  became more internally localized than in 

normal acini ( Figs. 2 and 5 ). These events were specifi c because 

several genes on the same chromosome did not behave in the 

same manner. Among a pair of loci on HSA 14 ( AKT1  and  TGFB3 ) 

and HSA 17 ( ERBB2  and  TP53 ), the spatial position of one was 

affected by the overactivation of ErbB2, whereas the other was 

not. Both gene loci on the q arm of HSA 11 ( CCND1  and  MMP1 ), 

 Table I.  Test set of cancer-associated genes  

 Gene symbol  Full gene name  Chromosomal location  Cancer related  BAC 

 AKT1 V-akt murine thymoma viral 
 oncogene homologue 1

14q32.3 Oncogene; proliferation, 
 survival, and mobility

RP11-477I4

 BCL2 B-cell CLL/lymphoma 2 18q21.3 Oncogene; survival RP11-299P2D

 CCND1 Cyclin D1 11q13 Oncogene; cell cycle RP11-300I6

 ERBB2 V-erb-b2 avian erythroblastic 
 leukemia viral oncogene homologue 2

17q21.1 Oncogene; proliferation, 
 survival, and mobility

RP11-62N23

 ERBB2IP ErbB2 interacting protein 5q12 Regulates ErbB2 function and 
 localization

RP11-720M2

 FGFR1 Fibroblast growth factor receptor 1 8p11.2-p12 Oncogene; proliferation, 
 survival, and invasion

RP11-100B16

 MMP1/3/12 Matrix metallopeptidase 1, 3, or 12 11q22-q23 Oncogene; metastasis RP11-686G6

 TP53 Tumor protein p53 17p13 Tumor suppressor gene  a  RP11-89D11

 PTEN Phosphatase and tensin homologue 10q23.3 Tumor suppressor gene  a  RP11-383D9

 TGFB3 Transforming growth factor  � 3 14q24 In early cancer, tumor 
 suppressor gene

RP11-270M14

 VEGF Vascular endothelial growth factor 6p12 Oncogene; angiogenesis, 
 migration, and survival

RP11-1152J4

 Offi cial gene names and symbols were taken from the OMIM/Entrez gene. 
 a Negatively regulated ErbB2/AKT1 signaling pathway.
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constitutive activation of ErbB2 ( AKT1 ,  BCL2 ,  ERBB2 , and 

 VEGF ) compared with normal acini, no change in expression 

was detected ( Fig. 6 ). Moreover, ErbB2 activation signifi cantly 

modulated the expression of four genes ( FGFR1 ,  MMP1 ,  TP53 , 

and  PTEN ) but did not alter their location upon ErbB2 activa-

tion ( Fig. 6 ). Taken together, these results demonstrate that there 

is no general correlation between gene activity and radial nu-

clear position. 

 Discussion 
 We present here a systematic analysis of genome reorganization 

events during early tumorigenesis. We have characterized sev-

eral genes that change position during normal and tumor mam-

mary differentiation and identifi ed genes that are differentially 

positioned in normal and tumor acini. 

 The transition from undifferentiated MECs to mature acini 

involves differential expression of  � 500 genes, based on micro-

array analysis ( Fournier et al., 2006 ). Consistent with these exten-

sive changes in the genome expression program associated with 

differentiation, our results demonstrate that global reorganization 

of the genome occurs during both normal and tumorigenic mam-

mary differentiation. Large-scale reorganization is indicated by 

the formation of a single nucleolus from multiple nucleoli upon 

differentiation. This observation is in agreement with a previ-

ous study on the parental MCF-10A cell line and normal adult 

breast tissue ( Underwood et al., 2006 ). Furthermore, large-scale 

genome reorganization is supported by our observation that 7 of 

11 tested genes occupied distinct radial positions in acini com-

pared with undifferentiated MECs. Importantly, fi ve of the genes 

that repositioned were not on NOR-containing chromosomes, 

which indicates that genome reorganization is not limited to 

NOR-containing chromosomes. Our observations extend earlier 

indirect evidence for global genome reorganization during nor-

mal mammary differentiation based on redistribution of nuclear 

proteins, including heterochromatin protein HP1, splicing fac-

tor SRm160, nuclear matrix protein NuMA, telomere associ-

ated protein TIN2, and histone modifi cations on histones 3 and 4 

change in activity. For example, peripheral repositioning of  BCL2  

occurred with an increase in expression between quiescent 2D 

and control acini but also with a decrease during tumorigenesis. 

Similarly, internal repositioning of some genes, e.g.,  CCND1 , oc-

curred in situations with up-regulation, such as when quiescent 2D 

cultures were compared with either normal or ErbB2-activated 

acini, but the same internal repositioning was also observed upon 

down-regulation of the same gene such as during normal or 

tumorigenic differentiation ( Table II ). 

 The absence of a correlation between gene expression and 

positioning applied to all conditions. During normal differentia-

tion, the expression of seven genes was altered ( Fig. 6 ). Of these, 

three genes ( BCL2 ,  ERBB2IP , and  TP53 ) were not repositioned 

at all. Of the other four,  MMP1 ,  PTEN , and  VEGF  were more 

internally positioned and up-regulated, but  CCND1 , which was 

also more internally positioned, was down-regulated. However, 

of the four genes that did not alter expression during differentia-

tion, three ( AKT1 ,  ERBB2 , and  TGFB3 ) underwent repositioning. 

Similarly, no correlation was detected between repositioning 

during exit from the cell cycle in 2D culture and gene activity 

( Figs. 3 and 6  and  Table II ). Withdrawal from proliferation de-

creased the expression of three genes ( AKT1 ,  BCL2 , and  CCND1 ), 

none of which were repositioned. The expression of three genes 

was unchanged in quiescent cells, two of which were more inter-

nally positioned ( ERBB2  and  PTEN ), whereas  ERBB2IP  was 

not repositioned. Of the fi ve genes that did not alter expression, 

three were repositioned ( FGFR1 ,  TGFB3 , and  VEGF ;  Figs. 3 and 6  

and  Table II ). 

 During tumorigenic differentiation, four genes ( AKT1 , 

 FGFR1 ,  TP53 , and  TGFB3)  that were signifi cantly repositioned 

did not undergo a detectable change in expression ( Fig. 6 ). 

In contrast, two genes ( ERBB2IP  and  VEGF ) that were signi-

fi cantly up-regulated in tumorigenic differentiation were not 

repositioned. For some genes ( ERBB2 ,  MMP1 , and  PTEN ), 

internal positioning correlated with an increase in expression, 

whereas for  CCND1 , it correlated with a decrease in expression. 

 BCL2 , which was also down-regulated, was more peripherally 

positioned. Finally, of the four genes that altered location after 

 Table II.  Summary of gene expression and gene positioning data  

    Day 0 → day 20       Day 0 → Q  Q → day 20  Day 0 → day 20E  Day 20 → day 20E  Q → day 20E 

Posn  Exp Posn  Exp Posn  Exp Posn  Exp Posn  Exp Posn  Exp 

 AKT1 In NSD In  ↓ In  ↑ In NSD P NSD NSD NSD

 BCL2 NSD  ↓ NSD  ↓ P  ↑ P  ↓ P NSD P NSD

 CCND1 In  ↓ NSD  ↓ In  ↑ In  ↓ NSD NSD In  ↑ 

 ERBB2 In NSD In  ↑ In NSD In  ↑ In NSD In  ↑ 

 ERBB2IP NSD  ↑ NSD  ↑ In NSD NSD  ↑ NSD NSD In NSD

 FGFR1 NSD NSD P NSD In  ↓ P NSD NSD  ↑ In NSD

 MMP1 In  ↑ NSD NSD In  ↑ In  ↑ NSD  ↑ In  ↑ 

 TP53 NSD  ↑ NSD NSD NSD  ↑ In NSD NSD  ↓ In NSD

 PTEN In  ↑ In  ↑ In NSD In  ↑ NSD  ↓ In  ↓ 

 TGFB3 Altered  a  NSD Altered  a  NSD NSD NSD Altered  a  NSD NSD NSD NSD NSD

 VEGF In  ↑ P NSD In NSD NSD  ↑ P NSD In  ↑ 

 Heading row shows growth conditions being compared. Changes in gene positions (Posn) and in gene expression (Exp) between growth conditions are shown. 
Day 0, proliferating 2D cultures; Day 20, control cultures grown in 3D culture for 20 d; Day 20E, ErbB2-activated 3D cultures; In, internal movement; NSD, no signifi -
cant difference between the growth conditions; P, peripheral movement; Q, quiescent 2D cultures;  ↑ , up-regulation;  ↓ , down-regulation.
 a  TGFB3  shifts from two subpopulations at day 0 to a single population distribution pattern in all other growth conditions.
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quiescent monolayer cells with a single nucleolus was dramati-

cally lower than in acini and 9 out of the 11 genes were positioned 

differently in 2D quiescent cultures compared with quiescent 

acini. Taken together, these data suggest that the global genome 

reorganization observed during acinar formation is not caused 

by withdrawal from the cell cycle but is rather a consequence of 

the differentiation process itself. 

 A key goal of our study was to determine whether malig-

nant mammary differentiation is distinct from normal mammary 

differentiation. Several global aspects of nuclear architecture 

have previously been demonstrated to be affected during MEC 

tumorigenesis, including patterns of epigenetic modifi cations, 

promyelocytic leukemia bodies, nuclear speckles, and the nu-

clear lamins ( Chandramouly et al., 2007 ). Conversely, we did 

not fi nd any major differences in the global reorganization of 

the genome between normal and early mammary tumor forma-

tion. We found, however, cancer-specifi c repositioning of sev-

eral gene loci.  AKT1 ,  BCL2 , endogenous  ERBB2 , and  VEGF  

loci were specifi cally repositioned in tumor acini compared 

with normal acini. Once again, changes in cell cycle status alone 

could not account for the repositioning of these genes. Thus, 

these specifi c repositioning events appear to be a consequence 

of tumorigenic progression itself. Our results differ from earlier 

observations in a HER2-negative breast cancer sample, where 

( Lelievre et al., 1998 ;  Plachot and Lelievre, 2004 ;  Kaminker 

et al., 2005 ;  Le Beyec et al., 2007 ). We cannot entirely rule out 

the possibility that some of the observed genome reorganization 

is a consequence of global changes in nuclear shape and size 

because MEC nuclei in acini are rounder with a smaller diameter 

than the fl at ellipsoid nuclei of their 2D cultured counterparts 

( Le Beyec et al., 2007 ). We think this is unlikely, however, be-

cause not all genes were repositioned in the same way during 

the differentiation process. In addition, no systematic correla-

tion between nuclear shape and chromosome positioning has 

been observed in several cell types from different tissues in both 

human and mouse ( Croft et al., 1999 ;  Bridger et al., 2000 ;  Boyle 

et al., 2001 ;  Cremer et al., 2003 ;  Mayer et al., 2005 ;  Meaburn 

et al., 2007a ). Finally, the positional changes of several genes 

were distinct during normal differentiation and when comparing 

quiescent 2D cells to mature acini, both of which are situations 

where cells undergo similar shape changes. 

 During the 3D culture differentiation process, MECs be-

come quiescent ( Petersen et al., 1992 ;  Muthuswamy et al., 2001 ; 

 Fournier et al., 2006 ). Although the spatial organization of the 

genome can change with cell cycle status ( Figs. 3  and S2;  Bridger 

et al., 2000 ;  Solovei et al., 2004 ;  Meaburn et al., 2007a ), with-

drawal from the cell cycle did not account for the observed re-

positioning during mammary differentiation. The percentage of 

 Figure 4.    Quantitation of the radial distribution of specifi c loci during tumorigenic differentiation.  (A – K) FISH was performed on PFA-fi xed cells grown in 
3D culture for 20 d with constitutive activation of ErbB2 for the fi nal 10 d (Day 20, ErbB2). The radial distributions (RRD) for each gene in proliferating 2D 
cultures are shown for comparison (Day 0). Pairwise comparisons of cumulative radial distributions were performed using a 1D KS test.  n  = 195 – 220 per 
BAC per growth condition.   
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the activity of a gene and its radial position ( Kim et al., 2004 ; 

 Scheuermann et al., 2004 ) or its position within the chromo-

some territory ( Kurz et al., 1996 ;  Bartova et al., 2002 ;  Mahy 

et al., 2002 ;  Clemson et al., 2006 ). The lack of correlation between 

expression and radial position does not seem to be restricted to 

individual genes and applies to larger subchromosomal regions 

because their radial positioning is infl uenced by local gene den-

sity but not gene expression ( Kupper et al., 2007 ). It is impor-

tant to point out that our results cannot be interpreted to mean 

that nuclear positioning per se (e.g., relative to other genes or 

chromatin domains) is not of functional importance for gene 

expression ( Misteli, 2007 ;  Osborne et al., 2007 ). Most genes for 

which strong correlations between activity and positioning have 

been reported undergo a transition from a silenced to an active 

state or vice versa, whereas most genes in our analysis merely 

undergo changes in expression levels. It thus seems that the ra-

dial position of a gene is not directly determined by the level 

of its expression but whether it is permanently silenced or acti-

vated, e.g., in a tissue-specifi c manner. One likely possibility is 

that the higher-order organization of the chromatin fi ber around 

a gene locus plays a key role in its nuclear location (Misteli, 

2007). Although transition from a repressed to an active state, or 

vice versa, dramatically alters higher-order chromatin structure, 

modulation of the level of transcriptional output, even transient 

inhibition, likely does not. One can envision that the higher-order 

 ERBB2  occupied a similar nuclear position to that of normal 

breast tissue ( Wiech et al., 2005 ). These differences are likely 

caused by the fact that, unlike the model system we used, HER2 

negative cancers, by defi nition, do not have amplifi cations or 

overactivation of ErbB2, and they suggest that reorganization 

events may differ depending on the nature of the oncogene that 

triggers tumorigenesis. 

 The observation in several experimental systems of differ-

ential positioning of active and inactive genes has lead to the 

suggestion that radial positioning is functionally important and 

that positioning is dependent on gene activity. This hypothesis 

was based on observation of a few selected, mostly loci-specifi c 

or developmentally regulated genes, particularly   � -globin ,  IgK , 

and  IgH  during B cell differentiation and  Mash1  in neuronal 

differentiation, but does not apply to others including  CD4  and 

 CD8  during T cell differentiation ( Skok et al., 2001 ;  Kosak et al., 

2002 ;  Kim et al., 2004 ;  Ragoczy et al., 2006 ;  Williams et al., 

2006 ). Our analysis of 11 genes represents the largest unbiased 

test to date of a link between gene activity and positioning. 

In this set of genes, we found no general correlation between 

radial locus positioning and gene activity level in multiple cross 

comparisons between different physiological conditions. Our 

fi nding of a lack of correlation between activity level and nu-

clear radial positioning is consistent with a growing number of 

studies indicating that there is no strong and direct link between 

 Figure 5.    Loci-specifi c gene repositioning during early breast tumorigenesis.  (A – K) Quantitation of the radial distribution (RRD) of 11 cancer-associated 
genes grown in 3D culture for 20 d with 10 d of constitutive activation of ErbB2 (Day 20, ErbB2) or without activation (Day 20 control). Pairwise compar-
isons of cumulative radial distributions were performed using a 1D KS test.  n  = 195 – 220 per BAC per growth condition.   
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hydrocortisone (Sigma-Aldrich), 50 U/ml penicillin, and 50  � g/ml strepto-
mycin (Invitrogen) in standard tissue culture plastic dishes. To enrich the 
culture for quiescent cells, 3 d after passaging, the cells were rinsed in 
 serum-free DME/F12 medium and cultured for an additional 5 d in reduced 
serum medium (0.5% horse serum). Proliferating 2D cultured cells were 
grown on 12-mm coverslips for 2 or 3 d before fi xation, whereas quiescent 
cultures were grown on 12-mm coverslips for 8 d. For 3D culture, 5,000 
cells were seeded per well into a Laboratory-Tek 8-chambered glass slide 
(Thermo Fisher Scientifi c) that had been coated with thin layer of reduced 
growth factor reconstituted basement membrane extract (rBME; Trevigen), 
and were maintained in assay media (DME/F12 supplement with 2% 
reduced-growth rBME, 2% horse serum, 10  � g/ml insulin, 100 ng/ml chol-
era toxin, 0.5  � g/ml hydrocortisone, 50 U/ml penicillin, and 50  � g/ml 
streptomycin) containing 5 ng/ml EGF. For quantitative RT-PCR, 3D cultures 
were grown in 24-well plates. The media was changed 4, 8, 10, 14, and 
18 d after seeding and cells were fi xed or harvested at day 20. To activate 
the ErbB2 variant, EGF-containing assay media was replaced with assay 
media containing 1  � M AP1510 at day 10 and all subsequent changes 
of medium. All cells were maintained in a humidifi ed atmosphere at 37 ° C 
at 5% CO 2 . 

 Indirect immunofl uorescence 
 Indirect immunofl uorescence was performed on 2D culture cells as de-
scribed previously ( Meaburn et al., 2007a ) after a 10-min fi xation in 4% 
(wt/vol) PFA/PBS and 10 min permeabilization in 1% Triton X-100/PBS. 
Cell fi xation and indirect immunofl uorescence were performed on 3D cul-
ture cells as described previously ( Debnath et al., 2003 ) with the following 
modifi cations: sodium azide was not used in the IF buffer and goat serum 
was replaced with fetal bovine serum (Invitrogen), the second block was 
omitted, consequently antibodies were diluted in primary blocking solu-
tion, and cells were counterstained and mounted using DAPI-containing 
mounting medium (Vectashield; Vector Laboratories). Antibodies used were 

organization of the chromatin fi ber directly affects a locus ’ s 

ability to explore its nuclear environment and interact with other 

gene loci or structural elements of the nucleus, thus determining 

its position with the nucleus ( Ragoczy et al., 2006 ;  Fraser and 

Bickmore, 2007 ;  Soutoglou and Misteli, 2007 ). Regardless of 

the precise functional relevance of gene positioning, the identi-

fi cation of a set of genes that are specifi cally repositioned in tu-

mor acini compared with normal acini found here might pave 

the way for the application of spatial genome positioning pat-

terns as a novel strategy for early cancer diagnosis. 

 Materials and methods 
 Cell culture 
 MCF-10A.B2 cells are a stable MCF-10A cell line containing p75.B2, a 
chimeric ErbB2 receptor that is activated by the synthetic ligand AP1510 
(ARIAD Pharmaceuticals, Inc.;  Muthuswamy et al., 1999 ,  2001 ). MCF10.
B2 cells were provided by S. Muthuswamy (Cold Spring Harbor Labora-
tory, Cold Spring Harbor, NY). MCF-10A is a nontumorigenic, immortal-
ized MEC line derived from the breast tissue of a 36-yr-old woman with 
fi brocystic changes ( Soule et al., 1990 ). MCF-10A have a near diploid 
karyotype with a t(3:9)(p13;p22) and few minor additional aberrations 
in several subclones ( Soule et al., 1990 ;  Cowell et al., 2005 ;  Worsham 
et al., 2006 ). We used the same subclone at similar passage numbers 
throughout this study, reducing the possible variation in karyotype. Mono-
layer (2D) cultures were maintained in DME/F12 (Invitrogen) supplemented 
with 5% horse serum (Invitrogen), 20 ng/ml EGF (PeproTech), 10  � g/ml 
insulin (Sigma-Aldrich), 100 ng/ml cholera toxin (Sigma-Aldrich), 0.5  � g/ml 

 Figure 6.    Quantitative RT-PCR analysis during differentiation 
of MECs.  (A) Total RNA was harvested from cells grown as 
standard 2D cultures (Day 0), quiescent 2D cultures (Quies-
cent), and cultures grown for 20 d under 3D growth condi-
tions with 10 d of constitutive activation of ErbB2 (Day 20, 
ErbB2) or without activation (Day 20 control). Values rep-
resent means  ±  SEM from three independent experiments. 
Expression levels are normalized to cyclophilin. (B) Pairwise 
comparisons for expression using a  t  test.   
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with SoftWoRx 3.5.1 (Applied Precision) and fi tted with a charge-coupled 
device camera (CoolSnap; Photometrics) using a 60 �  1.4 oil objective 
lens (Olympus) and an auxiliary magnifi cation of 1.5 using an optical step 
size of 0.2  � m. Identical results were obtained on the two microscope systems. 
For chromosome territory FISH, all images were acquired using the IX70 
Deltavision microscope fi tted with a charge-coupled device camera using 
a 60 �  1.4 oil objective lens with an optical step size of 0.2  � m. In all 
cases, for 2D cultured cells, the focal planes covered the entire nucleus 
( � 3 – 6  � m for proliferating and  � 3 – 5  � m for quiescent cultures). Typically, 
15 – 20 sections for 2D cultures were acquired when imaged on the LSM 
510 and  � 25 sections were aquired when imaging on the IX70. For the 
acini, whole acini were not imaged to reduce bleaching and increase the 
number of acini analyzed. Instead, the optical sections imaged totaled 
 � 15 – 20  � m in thickness. 2D maximal projections were generated and 
analyzed for radial distribution of FISH signals as described in the follow-
ing section. For acini, projections for analysis were generated from subsec-
tions of the focal stack approximately one nucleus thick ( � 4 – 6  � m for 
day 20 and  � 5 – 7  � m for day 20 ErbB2 activated) to generate multiple 
projections containing nonoverlapping whole nuclei. 195 – 220 nuclei were 
analyzed per BAC per growth condition or 100 nuclei for each chromo-
some territory analysis. Only nuclei with two signals per probe were chosen 
for analysis. Because cells in each acinus are derived from a single cell 
( Muthuswamy et al., 2001 ), nuclei were analyzed from a minimum of 10 
different acini to reduce any possible clonal affect. 

 Quantitative analysis of FISH signal distributions 
 For the quantitative analyses of FISH signal distributions, software gener-
ated by S. Lockett and P. Gudla (National Cancer Institute, Bethesda, MD) 
was used. For automated nucleus segmentation and detection of FISH 
 signals, a three-stage process was used that involved (1) noise reduction, 
(2) segmentation, and (3) postprocessing. For FISH analysis, background 
noise was removed in each channel by applying an adaptive nonlinear 
noise-reduction technique ( Smith and Brady, 1997 ). A fuzzy C-means clus-
tering algorithm was applied ( Castleman, 1996 ;  Duda et al., 2000 ) on the 
noise-reduced gray channels to delineate objects within them. Fuzzy im-
ages from the segmentation process were converted into binary images 
(hard segmentation) in order to obtain a collection of potential segmented 
objects (both FISH signals and nucleus). Gray-weighted thresholds were 
used to select only high-intensity FISH signals and we used a sequence of 
2D morphological operations (opening and closing) for fi lling holes and 
boundary smoothing of the segmented nucleus. Manual comparison dem-
onstrated successful identifi cation of  > 99% of FISH signals and a false posi-
tive rate of  < 1%. 

 For quantitation of signal distributions, we computed intensity grav-
ity center, area of nucleus, theoretical ellipse fi tted to the nucleus boundary 
( Fitzgibbon et al., 1999 ), orientation of principal axis, and the ratio of the 
exclusive or area of segmented nucleus boundary and theoretical ellipse to 
the segmented nucleus. For each FISH signal, its intensity gravity center 
and the nearest pixels on the actual segmented nucleus boundary and the 
theoretical ellipse were determined. These values were used to determine 
the radial position of each signal. MCF-10.B2 cells have fairly regularly 
shaped nuclei in all growth conditions and the vast majority of nuclei fi tted 
the theoretical template ellipse well. To ensure that nuclei that did not fi t the 
template ellipse did not bias the results, a verifi cation step was performed 
and nuclei that did not fi t the template ellipse well were manually rejected 
from the analysis. 

 For statistical analysis to compare the distances of FISH signals from 
the intensity gravity center across multiple nuclei, each FISH signal was 
transformed into a template ellipse by applying a two-stage affi ne transfor-
mation on each segmented nucleus. The principal axis was horizontally 
oriented and each FISH signal was projected into a user-defi ned, common 
template ellipse via homographic projection between the template ellipse 
and the ellipse fi tted to the segmented nucleus. Statistical differences (P  <  
0.05) between the distributions of a gene in different growth conditions 
were determined using 1D KS test. Pilot experiments demonstrated high re-
producibility between repeat experiments, with variation of  < 4% of each 
data value. P-values between repeat experiments were never signifi cant. 
All analysis tools were implemented using custom software written in MAT-
LAB (The Mathworks, Inc.) with the DIPImage toolbox. 

 RNA extraction and quantitative RT-PCR 
 RNA from MCF-10A.B2 cells was isolated using the RNeasy mini kit (QIA-
GEN) according to the manufacturer ’ s instructions. For each sample, 2  � g 
RNA was retrotranscribed using oligo dT or random primers and a High 
Capacity cDNA archive kit (Applied Biosystems) for 2 h at 42 ° C after a 

human autoimmune sera ANA-N (anti-nucleolar; Sigma-Aldrich), pKi-67 
(clone 35; BD Biosciences), anti-centromere proteins (Antibodies Incorpo-
rated), goat anti – human FITC (Vector Laboratories), and Alexa Fluor 488 
or 568 goat anti – mouse (Invitrogen). Cells were observed on a confocal 
microscope (LSM 510 META; Carl Zeiss, Inc.) and images were acquired 
using a 63 �  1.4 NA oil objective lens (Carl Zeiss, Inc.) using an optical 
step size of 0.3 or 1  � m. A minimum of 200 cells for a specifi c staining 
pattern were scored, up to 1,000 cells in total for three independent ex-
periments. With the exception of pKi-67 staining, mitotic cells were not 
counted. Statistical signifi cance between growth conditions was deter-
mined by Yates correlated  �  2  analysis, where a p-value of  < 0.05 was con-
sidered signifi cant. 

 FISH 
 To produce probes for gene FISH, bacterial artifi cial chromosomes (BACs; 
BACPAC Resources Center) were labeled by nick translations with dUTP 
conjugated with biotin (Roche) or digoxigenin (Roche) using the human 
BAC clones detailed in  Table I . The  ERBB2  probe detected only the endog-
enous alleles and not the chimera construct; only two signals were detected 
for this probe per nuclei in MCF-10A.B2. Single or dual probe FISH exper-
iments were performed. For 2D cultured cells, probes consisted of the fol-
lowing: 150 – 300 ng of digoxigenin- and/or biotin-labeled probe DNA 
combined with 3  � g human COT1 DNA (Roche) and 20  � g tRNA (Sigma-
Aldrich) resuspended in 7  � l of hybridization mix (10% dextran sulfate, 
50% formamide/2 �  SSC, and 1% Tween 20). For each well of 3D culture, 
 � 1  � g of digoxigenin- and/or biotin-labeled probe DNA, 15  � g human 
COT1, and 71  � g tRNA were resuspended in 50  � l of hybridization mix. 

 For 3D FISH, 2D cultured cells were fi xed in 4% PFA/PBS for 10 
min, permeabilized for 20 min in 0.5% (wt/vol) saponin (Sigma-
Aldrich)/0.5% (vol/vol) Triton X-100/PBS, and incubated in 0.1 N HCl for 
15 min with PBS washes between each step. After a 2 �  SSC wash, cells 
were equilibrated in 50% formamide/2 �  SSC. Probes were predenatured 
at 95 ° C for 5 min just before use. Nuclei and probes were then denatured 
together at 75 ° C for 5 min and left to hybridize at 37 ° C overnight in a hu-
midifi ed chamber. FISH on whole acini was performed using a modifi ed 
version of the protocol used for 2D cultured cells: incubation in 0.5% 
saponin/0.5% Triton X-100/PBS was increased to 40 min, the 0.1 N HCl 
incubation was increased to 30 min, and the probe and nuclei were co-
denatured at 85 ° C for 10 min. 

 The next day, 2D cultured cells were washed three times with 50% 
formamide/2 �  SSC at 45 ° C for 5 min each and thrice with 1 �  SSC at 
60 ° C for 5 min each. Next, the cells were placed in 0.05% Tween 20/4 �  
SSC at room temperature to cool and blocked for 20 min in 3% BSA/0.05% 
Tween 20/4 �  SSC. Detection antibodies (anti – digoxigenin-rhodamine 
[Roche] and fl uorescein avidin DN [Vector Laboratories]) were diluted 
1:200 in blocking solution and incubated with cells for 30 min at 37 ° C. 
Coverslips were mounted in DAPI-containing Vectashield mounting medium 
after three 5-min washes in 0.05% Tween 20/4 �  SSC at 42 ° C. Acini cul-
tures were washed as described for 2D cultured cells but with the following 
exceptions: for the 1 �  SSC wash, the solution was prewarmed at 60 ° C but 
the washes were performed at 45 ° C and acini were incubated for 2 h with 
detection antibodies at 37 ° C. 

 For whole chromosome FISH, 2D cultured cells were fi xed in 4% 
PFA/PBS for 10 min and permeabilized for 20 min in 0.5% (wt/vol) 
 saponin/0.5% (vol/vol) Triton X-100/PBS before a 1-h incubation in 20% 
glycerol/PBS. Subsequently, the coverslips were subjected to seven freeze –
 thaw cycles and incubated in PBS for 30 – 45 min. The cells were then incu-
bated for 30 min at 37 ° C in 100  � g/ml RNase A (Sigma-Aldrich)/2 �  
SSC and for 15 min 0.1 N HCl. Preceding each step, the cells were 
washed three times in PBS. After a 2 �  SSC wash, cells were equilibrated 
in 50% formamide/2 �  SSC. Nuclei were co-denatured at 75 ° C for 5 min 
with whole chromosome probes (L. Christensen and T. Ried, National Cancer 
Institute, National Institutes of Health, Bethesda, MD) labeled in either bio-
tin or digoxigenin. The nuclei were left to hybridize with the probes over 
two nights at 37 ° C in a humidifi ed chamber. Posthybridization washes and 
probe detection were performed as for the gene FISH, with the exceptions 
that 0.1 �  SSC was used in place of 1 �  SSC and 0.1% Tween 20/4 �  
SSC replaced 0.05% Tween 20/4 �  SSC. 

 Image acquisition 
 For gene FISH, 3D z stacks were acquired using a 63 �  1.4 NA oil objec-
tive lens on an LSM 510 META confocal microscope at zoom level 3 with 
an optical step size of 0.3  � m with LSM 510 acquisition software V3.2 SP2 
(Carl Zeiss, Inc.). In some cases, 2D cultured cells were imaged with an IX70 
microscope (Olympus) controlled by a Deltavision System (Applied Precision) 
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and R (5 � -GGCGGATTGGAAATGAACTT-3 � ),  ERBB2  F (5 � -TGTGGACATG-
CACAAAAGTG-3 � ) and R (5 � -GCAGGTAGGTGAGTTCCAGG-3 � ),  ERBB2IP  F 
(5 � -CAACCTGAAGGACCAGCATC-3 � ) and R (5 � -GACACTGCTTGTCCAT-
GTTC-3 � ),  FGFR1  F (5 � -GTCACAGCCACACTCTGCAC-3 � ) and R (5 � -GGG-
ACCAGGAAGGACTCCACT-3 � ),  MMP1  F (5 � -CCAAATGGGCTTGAAGC-
TGC-3 � ) and R (5 � -GTCCCTGAACAGCCCAGTAC-3 � ),  TP53  F (5 � -GCTTTC-
CACGACGGTGAC-3 � ) and R (5 � -GCTCGACGCTAGGATCTGAC-3 � ),  PTEN  F 
(5 � -GAGCGTGCAGATAATGACAAGG-3 � ) and R (5 � -GGATTTGACG-
GCTCCTCTACTG-3 � ),  TGFB3  F (5 � -CTCCGCAGTGCAGACACAAC-3 � ) and R 
(5 � -CATAGTACAGGATGGTCAGG-3 � ), and  VEGF  F (5 � -AGCCTTGCCTT-
GCTGCTCTA-3 � ) and R (5 � -GTGCTGGCCTTGGTGAGG-3 � ). Cyclophilin 
was used as the housekeeping control gene (F, 5 � -GTCAACCCCACCGT-
GTTCTT-3 � ; R, 5 � -CTGCTGTCTTTGGGACCTTGT-3 � ). For each primer pair, 
1  � l of each cDNA sample was analyzed by real-time RT-PCR in a 25- � l re-
action using iQ SYBR green supermix (Bio-Rad Laboratories) in an iCycler 
(Bio-Rad Laboratories) under the following reaction conditions: 3 min at 
95 ° C followed by 41 amplifi cation cycles (20 s at 95 ° C and 30 s at 60 ° C). 
Melting curves of the amplifi ed products were obtained to verify that a sin-
gle amplicon was generated. Samples were analyzed using RNA extracted 
from each growth condition in three independent experiments and each 
RT-PCR reaction was run in duplicate. Statistical signifi cance between the 
normalized expression levels of a gene between growth conditions was 
assessed using a  t  test, in Excel (Microsoft). A p-value of  < 0.05 was con-
sidered signifi cant. 

 Metaphase spreads 
 Proliferating monocultures were harvested and swollen in hypotonic buffer 
(75 mM KCl) for 15 min at RT before fi xation in ice-cold 3:1 (vol/vol) methanol/
acetic acid. Cells were dropped onto humid slides and air dried before 
incubation at 70 ° C for 1 h. Slides were mounted in DAPI-containing Vecta-
shield mounting medium. Metaphases were imaged with an IX70 micro-
scope fi tted with a charge-coupled device camera using a 40 �  1.35 oil 
objective lens. 24 metaphase spreads were analyzed each for control and 
ErbB2-activated cultures. The colors of the grayscale images were inverted 
using Photoshop (Adobe). 

 Online supplemental materials 
 Fig. S1 presents the radial distribution of genes during differentiation of 
MECs and early tumorigenesis as histograms. Fig. S2 presents quantifi ca-
tion of the radial distribution of chromosome territories after exit from the 
cell cycle in 2D cultures. Fig. S3 shows the maintenance of karyotype upon 
activation of ErbB2. Online supplemental material is available at http://
www.jcb.org/cgi/content/full/jcb.200708204/DC1. 
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