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ABSTRACT

Nucleotide variants can cause functional changes
by altering protein–RNA binding in various ways
that are not easy to predict. This can affect pro-
cesses such as splicing, nuclear shuttling, and sta-
bility of the transcript. Therefore, correct model-
ing of protein–RNA binding is critical when predict-
ing the effects of sequence variations. Many RNA-
binding proteins recognize a diverse set of motifs
and binding is typically also dependent on the ge-
nomic context, making this task particularly chal-
lenging. Here, we present DeepCLIP, the first method
for context-aware modeling and predicting protein
binding to RNA nucleic acids using exclusively se-
quence data as input. We show that DeepCLIP out-
performs existing methods for modeling RNA-protein
binding. Importantly, we demonstrate that DeepCLIP
predictions correlate with the functional outcomes
of nucleotide variants in independent wet lab exper-
iments. Furthermore, we show how DeepCLIP bind-
ing profiles can be used in the design of therapeu-
tically relevant antisense oligonucleotides, and to
uncover possible position-dependent regulation in
a tissue-specific manner. DeepCLIP is freely avail-
able as a stand-alone application and as a webtool at
http://deepclip.compbio.sdu.dk.

INTRODUCTION

The massive technological progress in next generation se-
quencing (NGS) technologies has made sequencing afford-

able in the context of precision medicine and personalized
health care. NGS analysis enables identification of millions
of sequence variants in each patient sample, increasing the
need for in silico prediction of the functional consequences
of a diverse range of variations. In particular, the effect of
deep intronic sequence variants at the mRNA level through
altered binding to RNA-binding proteins (RBPs) is diffi-
cult to predict in silico as existing tools’ predictions of func-
tional outcomes of splicing are primarily based on the anal-
ysis of point mutations within or near exons (1–3). While
some existing binding site prediction tools can work on se-
quences of any type, there is an unmet need for improved
modeling of contextual dependencies other than structure
that are important for correctly estimating the in vivo func-
tionality of the binding sites. Extracted contextual infor-
mation may form the basis for design of antisense oligonu-
cleotide based therapies, which modulate RBP activity, such
as splice-switching oligonucleotides (SSOs) (4–6). Thus, im-
proving information on whether contexts act positively or
negatively with regard to binding is an important area of re-
search that will ultimately enable the development of novel
therapeutic options in personalized medicine.

Sequencing technologies have also vastly expanded the
wealth of information concerning protein binding to RNA
when combined with cross-linking and immunoprecipita-
tion (CLIP) techniques (7–9), which allow accurate map-
ping of protein binding sites in functional in vivo contexts.
Classically, binding preferences or binding motifs have been
represented by position frequency matrices (PFMs). Well-
known de novo motif discovery tools such as MEME (10)
and HOMER (11) output PFMs and base their motif detec-
tion and identification on the PFM concept. This approach
to motif discovery implicitly assumes that such fixed-length
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motifs exist and that they function in a context-independent
manner regarding the surrounding sequences. They further
assume pairwise independence of the nucleotide frequencies
within the motifs.

However, proteins that bind RNA typically do so in a
context dependent manner. In particular, secondary struc-
ture may influence the binding of some RBPs (12). In-
formation about double-stranded or single-stranded struc-
ture has been incorporated into MEMERIS (13), which
is an extension of the MEME algorithm. Further struc-
tural dependencies have been incorporated into RNAcon-
text (12), which expands the information about secondary
structure from simple double or single-stranded structures
into paired, hairpin loops, bulges and internal or multi-
loops, and unstructured contexts in order to further opti-
mize the modeling of binding preference of RBPs. More re-
cently, a graph-based modeling of structural and sequence
binding preferences was introduced in the GraphProt (14)
software, which out-performed RNAcontext on a set of di-
verse CLIP datasets using different CLIP methods. Graph-
Prot uses RNAshapes (15) to predict the structures of
RNA-sequences, which are then encoded into a hypergraph
from which important structural features can be extracted.
To improve the structure estimations, GraphProt extends
the CLIP-derived sequences by 150 bp in each direction.
Together with sequence features extracted only from the
CLIP-derived binding sites, an overall model of binding
preference is generated using support vector machines.

While inclusion of structural preferences may increase ac-
curacy in prediction, these models still fail to capture other
contextual dependencies affecting the in vivo functionality,
such as a high density of protein binding sites nearby or
localization within a specific functional region of the tran-
script, such as proximity to splice sites. For instance, exonic
splicing enhancers (ESEs) that enhance splicing of exons
by binding to SR proteins are enriched in exons, while ex-
onic splicing silencers (ESSs) are underrepresented in ex-
ons. These observations have been used to generate ESE
and ESS motifs from sequences enriched (16,17) or depleted
(16) in exons. Such contextual dependencies were recently
introduced in the iONMF software (18), which uses inte-
grative orthogonality-regularized nonnegative matrix fac-
torization to incorporate multimodal information about
CLIP-derived binding sites such as their position within the
gene (5′UTR, CDS, exon, intron, 3′UTR), gene ontology,
and presence of other protein binding sites determined by
other CLIP studies, in addition to structural information,
which improved performance for some datasets.

In recent years, deep learning techniques have been used
to model protein binding. Deep learning has proven suc-
cessful in various difficult classification tasks such as natu-
ral language processing (19), object recognition (20) and re-
constructing brain circuits (21). Deep learning allows com-
putational models composed of multiple processing layers
to learn representations of data with multiple levels of ab-
straction (22). Deep learning models can identify depen-
dencies and complex structures in very high-dimensional
data––such as CLIP data - and have been used, for exam-
ple, for predicting the effects of mutations in non-coding
DNA on gene expression and disease (1,23), predicting
DNA function (24), mRNA coding potential (25) and pre-

diction of subcellular locations of proteins (26). Starting
with DeepBind (27), which is trained on in vitro RNAcom-
pete data, convolutional neural networks (CNN) have been
used to estimate binding affinity, and later methods such as
DLPRB (28) have expanded on this to also use secondary
structure as well as recurrent neural networks trained on in
vitro RNAcompete data.

Using in vivo CLIP training data, Deepnet, a multimodal
deep belief network incorporating 2D structure information
(mDBN-) or both secondary and tertiary structure infor-
mation (mDBN+) along with a CNN architecture was in-
troduced in the deepnet-rbp software (29), while more re-
cently the iDeep framework combines the annotation data
used by iONMF with a CNN into a multimodal neural net-
work with increased accuracy in classification compared to
iONMF(30). Even more recently, iDeepS was introduced as
a replacement for iDeep to include analysis of 2D structural
motifs much like GraphProt, using a combination of CNN
and bidirectional LSTM (Long Short-Term Memory) lay-
ers akin to DeepCLIP’s architecture (31).

Previous models for RBP binding properties that con-
sider contextual clues are focused either specifically on
structural dependencies, which may fail to capture other im-
portant contextual dependencies, or on the presence of an-
notation data to aid in the task of classification. However,
static annotations will not contribute to determining the ef-
fect of a mutation on the binding activity of proteins. For
instance, a model, which relies heavily on clues from annota-
tion data about the genomic region, such as location within
an exon, will be unable to use this level of information to as-
certain the effect of an exonic point mutation in which the
context is maintained. Only iDeepS has a general-purpose
LSTM layer able to model general context dependency, but
it is supplemented with structural predictions from an ex-
ternal program and thus does not work on sequence data
alone.

Understanding binding preferences is important for eval-
uation of the phenotypic impact of sequence variations.
Mutations may alter the phenotype at several different lev-
els, as in the case of missense mutations, which in addition to
altering the amino-acid sequence, may also change the splic-
ing pattern (32). Other mutations with less visible deleteri-
ous effects may abolish healthy splicing by altering the bind-
ing of RBPs, sometimes at somewhat distant sites. Splicing
and the overall binding activity of RBPs is the result of a
balance between positively and negatively acting elements
that cooperate or compete for binding (33,34), so even mi-
nor changes in RBP binding sites can change the outcome
of splicing events.

Importantly, before they can be applied in predicting clin-
ically important changes or functional elements to be tar-
geted, binding models needs to be validated in the labora-
tory, using in vitro techniques such as RNA-protein affin-
ity measurements and in vivo techniques such as minigene
transfections and predictions need to be consistent with ef-
fects reported in clinically affected patients.

In this paper, we present DeepCLIP, a novel deep learn-
ing based tool for discovering protein–RNA binding sites
and for characterizing binding preferences of RBPs. We
demonstrate how it outperforms current state-of-the-art
RBP binding analysis tools, and we show that DeepCLIP’s
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predictions provide information about high-affinity RBP
binding sites and that it successfully predicts alterations of
the RBP affinity for RNA-sequences when single nucleotide
polymorphisms (SNP) or disease-causing mutations are in-
troduced. This is reflected both in the binding profiles that
show the region(s) important for RBP binding, and in the
predictions of the sequences which indicate whether they
are more similar to the ‘consensus’ CLIP-sequence or to
the genomic background. Last but not least, we have made
DeepCLIP available as an online tool for training and ap-
plication of protein–RNA binding deep learning models
and prediction of the potential effects of clinically detected
sequence variations (http://deepclip.compbio.sdu.dk/). We
also provide DeepCLIP as a configurable stand-alone pro-
gram (http://www.github.com/deepclip).

MATERIALS AND METHODS

DeepCLIP: more than just a motif discoverer

DeepCLIP is essentially a deep neural network that uses
shallow 1D convolutional layers to find and enhance fea-
tures of a set of presented sequences (26,35,36). This is
followed by a Bidirectional Long Short Term Memory
(BLSTM) layer (37,38) which uses the extracted features
and contextual information of the sequences to find areas
of the RNA-sequences associated with RBP binding (Fig-
ure 1). Initially, the convolutional layers of DeepCLIP can
be regarded as a collection of randomly generated PFMs
of user-defined sizes that, as training progresses, learn to
recognize important nucleotide patterns in the input data.
When predicting, the convolutional layers score sequence
segments according to their importance for the classifica-
tion task. Pseudo-PFMs can be generated by collecting
scored sequence patterns and counting the frequencies of
different nucleotides at each possible position. We use the
term pseudo-PFMs because each sequence used for the
PFM generation is weighted by the squared output score
given by the convolutional layers. In this way, the pseudo-
PFMs will depict important class-specific nucleotide pat-
terns. The BLSTM layer of DeepCLIP is used to generate
a binding profile at the nucleotide level. The BLSTM layer
consist of two LSTM layers that analyze ‘hidden’ sequence
representations (modified outputs of the convolutional lay-
ers) in a bidirectional manner (Supplementary Figure S1).

The DeepCLIP tool takes a single or more RNA oligonu-
cleotides (short RNA sequences) as input and predicts bind-
ing probability and calculates a binding profile. The main
purpose of DeepCLIP is to identify binding sites of proteins
in novel untested sequences using trained models that have
extracted binding site information provided by CLIP data,
to predict the effect of sequence variants on the binding,
and to identify the importance of individual nucleotides for
protein binding affinity. DeepCLIP can be run on a stan-
dard PC with Linux installed as operating system. Training
of smaller datasets require at least 4GB RAM, but larger
datasets will require more memory. The largest dataset used
for training in this study consisted of a total of 1 256 372 in-
put sequences, with a memory footprint of ∼43GB RAM.
DeepCLIP is fast enough to run online on a web server
(http://deepclip.compbio.sdu.dk/) and its Python code is
also publicly available (http://www.github.com/deepclip).

Training workflow of DeepCLIP

The core of DeepCLIP is a convolutional BLSTM net-
work implemented in Theano (39) using the Lasagne library
(40) and a few customized network layers and functions.
DeepCLIP is a binary classifier that uses supervised learn-
ing to distinguish between unbound sequences and bound
sequences derived from CLIP-experiments. The input to
DeepCLIP consists of positive (bound) sequences, which
are assigned to class 1, and negative (unbound) sequences
assigned to class 0. These input sequences are converted into
linearized one-hot encoded vectors, which serve as the ac-
tual input to the neural network layers. The DeepCLIP ar-
chitecture is shown in Figure 1.

By default, 80% of the input data is used for training
while 10% is used for validation and the last 10% for test-
ing (Supplementary Figure S1d). DeepCLIP is trained by
iterating over the training and validation sets several times
(also called epochs). While training, performance is mea-
sured on the validation set after every epoch and the best
performing model is saved. Early stopping can be applied
to prevent training after a likely maximum performance has
been obtained. The final performance of the saved model is
measured on the test set, which contain data that have not
previously been introduced to the model. When running in
10-fold cross-validation the input sequences are divided into
10 equal sized bins, and each bin is used once as a test set,
once as a validation set and 8 times as part of the training
set (Supplementary Figure S1e).

Encoding of sequence data

DeepCLIP processes sequence data as linearized one-hot
encoded vectors. In the one-hot representation, the items of
the vocabulary, v = (A, C, G, U), are represented by vectors
with lengths equal to the length of the vocabulary that each
have a 1 in unique dimensions. The one-hot encoded bases
are therefore independent of one another and are equally
similar or dis-similar. It signals that no prior correlations
between the bases are known. In this way, the network will
determine correlations between the bases on its own (41).
All input sequences are zero-padded until they have iden-
tical lengths and until the largest filter can conduct ‘full
convolutions’ as it is defined in the Lasagne documentation
(40). Following vectorization of the bases of the sequences,
the combined vectors are linearized, and the resulting one-
dimensional data used as input to the neural network.

Convolutional neural network layer

Convolutional layers consist of nodes that are only sensi-
tive to a defined receptive field referred to as kernels or
filters. Nodes of convolutional layers apply weight-sharing
and sparse-connectivity, which means that the same filter
can ‘view’ all possible filter-sized segments of the input in-
dividually (42).

As in previous work (26,27,29,30), the filters of the con-
volutional layers in DeepCLIP can be interpreted as motif
detectors. The sizes of the filters of the convolutional layers
are optional but we used ranges from four to eight one-hot
encoded bases. DeepCLIP only applies a single filter of each
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Figure 1. Classification performance of DeepCLIP surpasses competing methods. (A) One-hot embedded RNA-sequences function as input to the neural
network and the 1D convolutional layers, which are further enhanced by a winner-takes-all (WTA) layer. (B) The outputs are concatenated with the
input sequence and each segment of the concatenated arrays that corresponds to aligned bases is introduced to the following BLSTM layer as individual
time-steps. The WTA-enhanced RNA-sequences are the three uppermost and the input sequence is in the bottom. DeepCLIP produces a prediction score,
which is used during training, as well as binding motifs and a binding profile. (C) Boxplot of comparative analyses of DeepCLIP classification performance
against other state-of-the-art tools. Area under receiver operator characteristic curve (AUROC) were measured in 10-fold cross-validation and statistical
significance was computed through an Wilcoxon signed-rank test. P-values above individual tools are from pair-wise comparisons with DeepCLIP. Mean
AUROC score is indicated in the bottom.
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size. The strides of the filters are |v|, so the filters only con-
volve patterns consisting of whole one-hot encoded bases.
The convolutional layers apply the rectifier activation func-
tion (43). In this context, it means that only patterns that
receive a score above zero can be assumed important for se-
quence identification.

The bias parameters of the convolutional layers are re-
moved to ensure that only areas in the sequence input con-
taining one-hot encoded bases produce outputs above 0,
preventing recognition of zero-padded areas alone. As the
nodes in the convolutional layers are rectifying linear units,
only sequence-segments that are deemed important by the
neural network will produce convolutional-outputs above
0. The initial weights of the convolutional nodes are set
to 0.01. The filter sizes allow for diverse sequence patterns
of various length to be incorporated into the model. The
output vectors of convolutional layers in DeepCLIP are
vectors containing values between 0 and ∞. Before the
output vectors are passed to the BLSTM layer they un-
dergo a so-called WTA-enhancement (Winner Take All-
enhancement), which is described below.

The single highest values of the different output vectors
(44) are multiplied by 2 which is followed by a squaring of
the vectors to enhance differences between high and low val-
ues. These squared vectors have now been WTA-enhanced,
where the ‘winners’ are the highest values in the output vec-
tors. The WTA-enhanced vectors are used for a recreation
of the original one-hot embedded sequences where the one-
hot values are defined by the WTA-enhanced vector ele-
ments. For each convolutional layer, a WTA-enhanced se-
quence is created and concatenated in a manner that makes
it possible to process each numerical base representation of
the sequences as individual steps in the following BLSTM
layer (see Figure 1).

In this way, the convolutional layers help guide the atten-
tion of the BLSTM layer. The pseudo-PFMs created by the
DeepCLIP tool that depict the important patterns in the
RBP-bound sequences, are based on the specific sequential
areas that only relate to class 1. Meaning, if an area of a
sequence is, by the BLSTM layer, predicted as being asso-
ciated with class 0, any convolutional output values in the
sequential area will be zeroed out and therefore will not be a
part of the pseudo-PFM calculation. The filters of the con-
volutional layers of the model with the best performance in
the 10-fold cross validation were extracted and used for cre-
ation of pseudo-PFMs. The top 1000 sequences with respect
to the predictions were used for the pseudo-PFM calcula-
tion.

Bidirectional LSTM layer

Long short-term memory (LSTM) networks have already
proven successful in biological sequence analysis (26,45).
DeepCLIP uses a single BLSTM layer that processes the
WTA-enhanced sequences (Figure 1). In BLSTM layers, the
input sequences are presented forwards and backwards in
two separate LSTM layers that are connected to the same
output layer (38). The implementation of a single LSTM
layer in DeepCLIP is given by Equations (1-9):

i t = σ (Wxi xt + Whi h t−1 + bi ) (1)

f t = σ
(
Wxf xt + Wh f h t−1 + b f

)
(2)

gt = tanh
(
Wxg xt + Whg h t−1 + bg

)
(3)

ct = f t � ct−1 + i t � gt (4)

ot = σ (Wxoxt + Whoh t−1 + bo) (5)

h t = ot tanh (ct) (6)

σ (z) = 1
1 + e−z

(7)

tanh (z) = e2z − 1
e2z + 1

(8)

Hadamard product = � (9)

where i , f , g, o and c are the input gate, forget gate, mod-
ulatory gate, output gate and cell, respectively. xt is the in-
put vector at timestep t, Wxi is the input-input gate weight
matrix, Whi is the hidden-input gate weight matrix, bi is the
bias of the input gate and h t−1 is the hidden output vector
from timestep t − 1. The same logic applies for the remain-
ing gates. σ is the sigmoid activation function, tanh is the
hyperbolic tangent activation function and the Hadamard
product indicates elementwise multiplication. The hidden
output vector of a LSTM memory block is h t at timestep
t.

The forward LSTM reads an input sequence with length
T from x1 to xT and the backward LSTM reads the same
input sequence from xT to x1. The forward LSTM layer
produces forward hidden vectors,

−→
h1,

−→
h2 . . .

−→
hT and the

backward LSTM layer produces backward hidden vectors←−
h1,

←−
h2 . . .

←−
hT. Here, the output of the backwards LSTM

layer has been reversed, so the outputs of forward and back-
ward LSTM layers go from x1 to xT. The hidden vector of
the BLSTM layer at time step t, h t, is given by the concate-
nation of the forward hidden vector and the backward hid-
den vector h t = [

−→
h t ;

←−
h t ] (46).

The output sequence of a BLSTM layer given an in-
put sequences of length T can be seen as a matrix, H =
(h1, h2, . . . hT), where each h t is a row. Each h t contains in-
formation about the whole input sequence with a strong fo-
cus on the parts surrounding the tth input vector (46). In
DeepCLIP, each h t represents a base of a sequence that
has knowledge of the surrounding sequence. These context-
aware representations of sequences function as input to
the output layer where the final prediction is calculated.
Dropout is applied on H, which means that recurrent con-
nections are not affected.

Output layer, binding profile and prediction

The output layer consists of a single fixed node without a
bias parameter that uses the sigmoid activation function.
By ‘fixed’ we mean that the parameters of the node do not
update when training. The initial weight of the node is set to
1.0, which means that the node is forced to associate posi-
tive values with class 1 and negative values with class 0. The
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input to the output layer, given a single input sequence, is
the vector that results from a row summation of the matrix
H where segments based on zero-paddings are zeroed out.
By zeroing out these segments it is ensured that only areas
that contain one-hot embedded bases are used for the pre-
diction of the given sequence. Basically, the prediction of a
given RNA-sequence is the sum of the output values of the
BLSTM layer inserted into a sigmoid activation function.

In terms of the BLSTM output, if a h t is mainly positive
the base at its specific position is associated with the ‘con-
sensus patterns’ of the sequences derived from the CLIP ex-
periments. If a h t is primarily negative, the base at its spe-
cific position is more associated with random background
sequences derived from the genome. And if the values of a
h t sums to ∼0, the base at its position could belong to both
classes. This approach makes DeepCLIP able to highlight
sequential areas that differ from genomic background and
thereby able to identify in vivo binding sites. The binding
profiles are constructed using the input vectors of the out-
put layer, where all the zero-padding has been removed.

DeepCLIP default settings

DeepCLIP uses ADAM (47) (α = 0.0002, β1 = 0.9, β2 =
0.999, ε = 10−8) for gradient descent optimization. For the
BLSTM layer, the parameters are sampled from a Gaus-
sian distribution with μ = 0.0 and std = 0.01. Deep-
CLIP uses binary cross entropy as loss function and em-
ploys dropout in order to avoid overfitting. The most opti-
mal network weights based on Area Under Receiver Opera-
tor Curve (AUROC) performance on the validation set are
saved during training. Dropout is applied to the BLSTM
layer (10%).

Generation of background sequences

Background sequences can be either supplied by the user as
sequences or generated automatically by DeepCLIP from
positive binding sites in one of two ways. The default way is
to supply positive binding site in BED format and then gen-
erate a random set of identically sized genomic regions as
the positive binding site and randomly placing each within
the same gene as the corresponding positive binding site
such that no background regions overlap either a positive
binding site or another background region. Alternatively,
background sequences can be generated from positive bind-
ing sites by scrambling the input sequences. When positive
binding sites are supplied in BED format, they can option-
ally be expanded on each size, or fixed to a certain width,
or a combination of these. In this study, we have used the
random genomic background method to most accurately
obtain in vivo non-bound sites.

Analysis of area under receiver operator curve classification
performance

Comparison of area under receiver operator curve (AU-
ROC) classification performance was performed on a
dataset compiled in a previous study paper (14). In order
to minimize computational complexity, we took the perfor-
mance numbers of alternative models on this dataset as they

were reported in previous studies (14,18,29). We could not
compare to iDeep (30), as they did not provide numbers for
the same datasets, and did not provide any way of producing
the multimodal data required as input. We ran iDeepS on
101 nt sequences from the GraphProt dataset by expanding
the peak-areas on either side until the sequence was 101 nt.
We ran iDeepS on these sequences with the same number
of epochs that we used to train DeepCLIP models. We gen-
erated 10-fold cross-validation sets where one set was held
out for testing one time, and used in training the other 9
times, in order to obtain comparable performance measures
across the full datasets. We ran DeepCLIP on the peak-area
sequences of the datasets in a 10-fold cross-validation, such
that each site was held out exactly once for validation during
training, and once for final testing, while being used for ac-
tual training the remaining eight times. Model performance
was measured for each dataset using the performance mea-
sure tool ‘perf’ as used by GraphProt on the combined pre-
dictions from all CV cycles. Additionally, AUROC confi-
dence intervals were estimated using the DeLong algorithm
as implemented in the ‘pROC’ R package (48).

Benchmark analysis on eCLIP data

Binding sites for hg38 from ENCODE (49) were down-
loaded and replicate experiments were combined into the
overlapping regions of both replicates to obtain high-
confidence binding sites from which we extracted sites with
lengths 12–75 nt plus 150 nt padding to enable GraphProt
compatibility. A balanced negative background set was con-
structed using DeepCLIP’s implementation, namely shift-
ing each positive binding site to a random site within the
same gene that does not overlap positive binding sites or
other previously allocated negative binding sites. Similarly,
we downloaded eCLIP binding sites from the POSTAR2
database (50), merged all sites to remove any duplicates
and extracted sites in the range 12–75 nt with additional
150 nt padding, which we used to construct a balanced
background set. Sequences were trimmed to obtain an equal
length of 101 nt for use with iDeepS, and padding removed
to obtain sequences of 12–75 nt to use with DeepCLIP mod-
els. After creating these balanced datasets we used either the
published models (GraphProt) or models we had trained
ourselves (iDeepS and DeepCLIP) to measure classification
performance using the AUROC metric.

Additional models from public CLIP data

Binding sites from an eCLIP study of SRSF1 (49) in
K562 cells were downloaded and the overlap between two
replicates were extracted to create a set of non-redundant
binding sites. These were used for constructing the bound
dataset, with a matched genomic background as control.
We then trained an SRSF1 DeepCLIP model on this dataset
using same running parameters as previous models, with 50
training epochs and early stopping after five epochs. TDP-
43 binding sites were downloaded from POSTAR2 (50) and
non-redundant input sites were used to train a DeepCLIP
model, again using identical running parameters as previ-
ous models, but adjusting the number of training epochs to
50 and early stopping after five epochs to account for the
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much larger training set. Similarly, hnRNP A1 binding sites
(51), were used to train a DeepCLIP model on binding sites
with P-values below 0.01 using default parameters with 200
training epochs and early stopping after 20 epochs. In all
cases, 10-fold cross-validation was used to identify the best
performing model.

Additional RNAcompete based models

We trained binary classification models from RNAcompete
data (52) by sorting the sequences by the normalized in-
tensities and setting the 1000 highest scoring as the posi-
tive class, and the 1000 lowest scoring as the negative class.
Sequences were zero-padded to allow models trained on
the shorter RNAcompete sequences to predict class of the
12–75 nt GraphProt benchmark datasets. We then used the
models to obtain AUROC estimates for the corresponding
GraphProt dataset.

Analysis of NM 032776.1 transcript with PUM2 and QKI
models

DeepCLIP was run in long-prediction mode with the
PUM2 and QKI models trained on the GP dataset to pro-
duce binding profiles across the length of the transcript
(8762 nt total). A sliding window of 9 nt was then used to
identify regions with a minimum mean profile score >0.3.
Overlapping 9 nt windows were combined to produce a non-
redundant set of predicted binding sites. Mapping locations
relative to the transcript of predicted as well as observed
binding sites from eCLIP (49) and PAR-CLIP (8) were vi-
sualized with Gviz (53).

Analysis of TDP-43 repressed pseudoexons

Pseudoexons activated by conditional knock-out of TDP-
43 in mice (54) were analyzed with DeepCLIP by first ex-
tracting the sequence of the pseudoexon along with 100
nt of the neighboring intronic sequences. These sequences
were then used to produce binding profiles by using a slid-
ing window approach to produce raw DeepCLIP profiles of
smaller segments, taking the value of the central nucleotide
to build a binding profile covering the entire length of the se-
quence. Subsequently, regions corresponding to the 25 first
and last nucleotides of the exons along with the 50 first and
last nucleotides of the neighboring introns were extract in
order to analyze TDP-43 binding to the acceptor and donor
splice site regions.

Minigene generation

ACADM exon 5 minigenes were identical to the previ-
ously used wt ACADM minigene (34), with the exception
of nucleotide variants at positions corresponding to c.361,
c.362 and c.363 with exon 5. These variants were introduced
as previously described (34).

The ACADM exon 6 wt minigene was generated from
genomic DNA by amplifying the complete exon 6 (81
bp) along with 864 bp of intron 5 and 603 bp of in-
tron 6 and subsequent cloning into the pSPL3 vector
(Gibco BRL) using the BamHI and XhoI restriction

sites. For amplification we used the forward primer 5′-
TCGAGAATTCAGGAGCA-3′ and the reverse primer 5′-
CTCCACTAAATAGAGC-3′. The IVS6+7A>G mutation
was introduced by GenScript (GenScript, Piscataway, NJ,
USA).

ACADM exon 5 minigene transfections and RT-PCR

HEK-293 cells were seeded in 3.5 cm2 12-well plates
(Nunc) at a density of 4 × 105 cells/well 24 h prior to
transfection. In each well, cells were transiently trans-
fected using X-tremeGENE 9 DNA Transfection Reagent
(Merck): 0.3 �g of one of the ACADM exon 5 mini-
genes c.362C (wildtype), c.361C, c.361G, c.361T, c.362A,
c.362G, c.362T, c.363A, c.363C or c.363G. After 48 h
of incubation following minigene transfection, cells were
harvested using QIAzol Lysis Reagent (Qiagen), followed
by phenol/chloroform extraction of total RNA. Reverse
transcription was performed using the High Capacity
cDNA Reverse Transcription Kit (Thermo Scientific).
Splicing patterns were analyzed by PCR amplification,
using TEMPase Hot Start DNA Polymerase (Ampliqon),
and agarose gel electrophoresis. We used the ACADM
exon 5 minigene specific primers: MCTEST2AS (5′-
AGACTCGAGTTACTATTAATTACACATC-3′) and
MC242S (5′-CCTGGAACTTGGTTTAATG-3′). PCR
products were quantified according to molar ratios by
capillary gel electrophoresis on a Fragment Analyzer™
instrument (Agilent), and visualized on 1.5% agarose gels.
Experiments were performed in triplicates.

ACADM exon 6 minigene transfections with siRNA mediated
knock-down of TDP-43 and RT-PCR

Knockdown of TDP-43 was obtained by performing re-
verse transfection during initial seeding of cells and another
transfection 48 h later. Both transfections were performed
using Lipofectamine RNAiMAX Transfection Reagent
(Thermo Fisher Scientific) and 40 nM of siRNA target-
ing TARDBP (L-012394-00-0020, Dharmacon) or non-
targeting siRNA (D-001810–10-20, Dharmacon). HeLa
cells were seeded in 3.5 cm2 12-well plates (Nunc) at a den-
sity of 1.5 × 105 cells/well 24 h prior to minigene transfec-
tion. In each well, cells were transiently transfected using X-
tremeGENE 9 DNA Transfection Reagent (Merck): 0.4 �g
of one the two ACADM exon 6 minigenes: WT or +7A>G.
After 48 h of incubation following minigene transfection,
cells were harvested using QIAzol Lysis Reagent (Qiagen),
followed by phenol/chloroform extraction of total RNA.
Reverse transcription was performed using the High Capac-
ity cDNA Reverse Transcription Kit (Thermo Scientific).
Splicing patterns were analyzed by PCR amplification, us-
ing TEMPase Hot Start DNA Polymerase (Ampliqon),
and agarose gel electrophoresis. We used the minigene spe-
cific primers: SD6 (5′-TCTGAGTCACCTGGACAACC-
3′) and SA2 (5′-ATCTCAGTGGTATTTGTGAGC-3′).
PCR products were quantified according to molar ratios
by capillary gel electrophoresis on a Fragment Analyzer™
instrument (Agilent), and visualized on 1.5% agarose gels.
Knockdown of TDP-43 was validated by SDS-PAGE and
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Western Blotting and membranes were probed with anti-
bodies anti-TDP-43 (10782-2-AP, ProteinTech) and as a
loading control anti-HPRT (HPA006360, Merck). Exper-
iments were performed in triplicates.

SSO co-transfection with ACADM exon 6 minigenes

HeLa cells were reverse transfected in duplicates with 40
nM SSO using Lipofectamine RNAiMAX Transfection
Reagent (Thermo Fisher Scientific) according to the
manufacturer’s protocol, and seeded in 3.5 cm2 12-well
plates (Nunc) at a density of 2 × 105 cells/well 24 h
prior to minigene transfection. SSOs were phosphoroth-
ioate oligonucleotides with 2′-O-methyl modifications on
each sugar moiety (LGC Biosearch Technologies): SSO1
(5′-UAAGUGUGAAAUAAAGCGGCAGUUA-3′),
SSO2 (5′-AGUGUGAAAUAAAGCGGCAGUUACA-
3′), or a control SSO without any human target sites:
5′-GCUCAAUAUGCUACUGCCAUGCUUG-3′. Cells
were transiently transfected using X-tremeGENE 9 DNA
Transfection Reagent (Merck): 0.4 �g of one of the two
ACADM exon 6 minigenes: WT, or +7A>G. After 24 h
of incubation following minigene transfection, cells were
harvested using QIAzol Lysis Reagent (Qiagen), followed
by phenol/chloroform extraction of total RNA. Reverse
transcription was performed using the High Capacity
cDNA Reverse Transcription Kit (Thermo Scientific).
Splicing patterns were analyzed by PCR amplification, us-
ing TEMPase Hot Start DNA Polymerase (Ampliqon), and
agarose gel electrophoresis. We used the minigene specific
primers: SD6 (5′-TCTGAGTCACCTGGACAACC-3′)
and SA2 (5′-ATCTCAGTGGTATTTGTGAGC-3′). PCR
products were quantified according to molar ratios by
capillary gel electrophoresis on a Fragment Analyzer™
instrument (Agilent), and visualized on 1.5% agarose gels.
Experiments were performed in triplicates.

Surface plasmon resonance imaging method

Biotinylated oligonucleotides were immobilized on a Sens-
eye G strep (SSENS) sensorchip in a 2 × 4 × 12 array by
continuous flow in a CFM 2.0 printer (Wasatch microflu-
idics). The oligonucleotides were diluted in 1XTBS to a con-
centration of 1 �M and spotted for 20 min followed by 5
min washing with TBS + 0.05% Tween-20. The sensor chip
was transferred to the MX-96 (IBIS technologies), and the
system was primed with SPR buffer (10 mM HEPES/KOH
pH 7.9, 150 mM KCl, 10 mM MgCl2 and 0.075% Tween-
80). Surface plasmon resonance imaging (SPRi) by IBIS
MX-96 was used to measure the kinetics of recombinant
hnRNP A1 (ab224866, Abcam), SRSF1 (GenScript, Piscat-
away, NJ, USA) and TDP-43 (R&Dsystems, AP-190) bind-
ing to the immobilized RNA oligonucleotides. Binding was
measured in real time by following changes of the SPR an-
gles at all printed positions of the array during 10 min. injec-
tions of recombinant protein over the entire surface. Seven
injections of a 2-fold titration series from 6.25 to 400 nM
protein was injected in sequence from the lowest concentra-
tion to the highest. Before adding protein to the chip, resid-
ual background binding was blocked by injecting 20mg/ml
BSA in SPR buffer onto the chip for 10 min. A continuous

flow of SPR buffer flowed over the surface before, between
and after the protein injections, to measure baseline and dis-
sociation kinetics. Dissociation was measured for 8 min, by
injecting SPR buffer over the chip at a rate of 4 �l/s. Re-
sponses for a calibration curve were created after the con-
centration series by measuring SPR responses from defined
dilutions of glycerol in running buffer (ranging from 5 to
0% glycerol) and of pure water as defined by the automated
calibration routine of IBIS MX-96.

Data analysis: The SPRi data was imported into
SPRINTX software (v. 2.1.1.0, IBIS technologies), cali-
brated, reference subtracted, and the baseline of the re-
sponses before all injections were zeroed. The time start-
ing point was aligned at the beginning of each new injec-
tion. Then the data were exported to Scrubber 2 (v 2.0c,
Biologics Inc.). Binding curves for all chip positions where
binding was observed were fitted globally to the integrated
rate equation that describes simple first order 1:1 binding
kinetics to obtain kinetic association rate (ka), dissociation
rate (kd) as well as the Rmax for the binding model. For hn-
RNPA1 and TDP-43 a 1:2 biphasic model was calculated
and fitted. ClampXP (version 3.50, Biosensor Data Analy-
sis) was used with a bimodal model to fit the binding data.
The secondary Ka and Kd parameters were fixed to 1e−5 M,
due to very low secondary association and dissociation. Pri-
mary binding parameters and ligand concentration (Rmax)
were set to float. SPRi measurements were performed twice,
with technical duplicates being used for model fitting each
time.

Statistical analyses

All statistical analyses were performed in R (version 3.5.3).
We used the default wilcox.test() for two-tailed Wilcoxon
rank sum and Wilcoxon signed rank tests. Linear regres-
sion was carried out using ggplot2 (version 3.2.1) and
geom smooth(method = lm, colour = ‘red’, se = TRUE),
with correlation significance analysis using the default
cor.test() with method = ‘spearman’.

RESULTS

DeepCLIP outperforms structural and multimodal models
from sequence data alone

DeepCLIP is a neural network that combines shallow con-
volutional layers with a small bidirectional long short-term
memory network to produce both a binding profile and a
classification score ranging from 0 to 1 (Figure 1, Supple-
mentary Figure S1a–c). Models are created by training a
network on a set of known binding sites and a set of back-
ground genomic sequences (Supplementary Figure S1d, e),
which can optionally be generated by DeepCLIP by provid-
ing binding locations instead of raw binding sequences.

To ascertain DeepCLIP’s classification performance on
a standardized dataset, we generated models from the cu-
rated CLIP datasets (8,9,55–63) used in the GraphProt pub-
lication (14), which has previously been used in other stud-
ies (18,29). First, we trained DeepCLIP models in a 10-
fold cross-validation scheme using 50–500 epochs depend-
ing on the size of the individual dataset with early stop-
ping after 10% of the maximum number of epochs (Supple-
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mentary Table S1). Next, we measured area under receiver
operator characteristic curve (AUROC) using the standard
method of 10-fold cross-validation and the combined per-
formance across the 10 different sets (Supplementary Fig-
ure S1e, Table S2). Importantly, DeepCLIP does not di-
rectly model structure. Consequently, we used the peak
area alone, which is akin to the viewpoint mechanism as
adopted in GraphProt. We compared the performance of
our models with the performance numbers reported in the
earlier studies describing GraphProt, iONMF, and deepnet-
rbp (mDBN– and mDBN+). To obtain AUROC values for
iDeepS, we performed a 10-fold cross-validation using the
curated CLIP-datasets, as this was omitted in the iDeepS
paper, by extending the peak area to 101 nt per the in-
put requirement for iDeepS. We found that DeepCLIP was
the overall best classifier in every pair-wise comparison and
when looking at the mean AUROC score, underscoring that
DeepCLIP performs well on a broad set of data. Further-
more, DeepCLIP had more narrow distributions of scores
with fewer low-scoring datasets and a majority of datasets
scoring above 0.9 (Figure 1C). DeepCLIP consistently
ranked among the best classifiers on individual datasets
(Supplementary Figure S2a, Table S3), even without addi-
tional contextual data, i.e. working on the sequence input
data alone. In total, DeepCLIP had the best performance
for 14 of the 24 datasets, and second best for 6 datasets.
For TAF15, mDBN+ and DeepCLIP had identical scores
when rounding to the third decimal. DeepCLIP was also a
better classifier than DeepBind ((pseudo)median 15.16%-
points (CI-95%: 7.76–24.17), Wilcoxon signed-rank P =
0.0004883), on the 12 datasets for which DeepBind models
are available (Supplementary Figure S2b,c).

We chose the best model based on AUROC measure on
the validation set, but a more conventional choice is to use
the validation loss metric to select the best model. In a post-
hoc analysis, we also implemented loss-based model selec-
tion and found that AUROC performance on the held out
test set improved, but only to a small degree (Supplemen-
tary Figure S3).

We did not observe any significant differences in Deep-
CLIP AUROC scores between the CLIP methods (Supple-
mentary Figure S4a), a significant correlation to the number
of bound sites (Supplementary Figure S4b, P = 0.647), or
the mean input length of the training data (Supplementary
Figure S4c, P = 0.118), but a tendency towards improved
performance on the nucleotide-resolution CLIP datasets
(iCLIP and PAR-CLIP) versus HITS-CLIP did appear. We
did, however, observe a significant negative correlation be-
tween GC-content and AUROC performance (Supplemen-
tary Figure S4d, P = 7.89 × 10−6), which seems to be pri-
marily driven by a positive correlation with U-content (Sup-
plementary Figure S4e, P = 0.000356) and a negative cor-
relation with G-content (Supplementary Figure S4h, P =
1.04 × 10−5). Since many of the proteins in the dataset bind
U-rich motifs, and U is known to cross-link more efficiently
than other bases, this indicates a general CLIP bias in the
models, where the model recognizes not a specific binding
site, but a CLIP site in general. In particular, PAR-CLIP is
known to display U-bias due to protocol specific treatment
of the samples.

We therefore benchmarked the models against com-
pletely independent eCLIP datasets from ENCODE (49)

and the POSTAR2 database (50). We were not able to run
iONMF or mDBN models for these datasets, but compared
to GraphProt and iDeepS, DeepCLIP performed favorably
on both with both types of model selection (Supplementary
Figure S5a, b, Table S4). In general, there were many mod-
els that performed poorly with AUROC values close to or
<0.5. We therefore also filtered out models scoring <0.6 in
all datasets, to focus on just the models with reasonable per-
formance by at least one method. All methods were more
similar in this analysis, with no method having a clear ad-
vantage over the others. Notably, in other studies using in
vitro binding data to train models, a better performance
was demonstrated on the GraphProt benchmark dataset.
We therefore trained DeepCLIP models on corresponding
RNAcompete datasets by setting the 1000 highest scor-
ing RNAcompete sequences as the positive class, and the
1000 lowest scoring sequences as the negative class. We then
compared the performance of these models on the Graph-
Prot dataset to the performance of RCK (64), RNAcontext
(12), DeepBind (27), DLPRB-CNN and DLPRB-LSTM
(28) (Supplementary Figure S5c, Table S5). We found that
DeepCLIP had the overall highest mean performance with
a more narrow distribution of scores, indicating excellent
performance of DeepCLIP trained on in vitro data com-
pared to existing state-of-the-art methods.

DeepCLIP performed well on all CLIP datasets re-
gardless of size and CLIP method, with the exception of
ALKBH5, which is a problematic dataset for all methods
that do not rely on additional metadata, presumably due
to non-specific binding that may take place in cooperation
with a number of other factors that target the factor to spe-
cific regions within the transcript. DeepCLIP is thus a ro-
bust classifier of in vivo binding sites using only sequence
data. It compares favorably to models employing external
structural information and annotation data in addition to
sequence data.

DeepCLIP models predict binding motifs

Although the classifications of DeepCLIP are based entirely
on the values of the binding profiles, motifs can be assessed
from the CNN filters incorporated in the network archi-
tecture. The motif of each filter was generated using the
patterns from the 1,000 input sequences that produced the
highest DeepCLIP classification score. We found that Deep-
CLIP produces motifs that are visually similar to previously
published motifs (65–70), illustrating that DeepCLIP’s clas-
sification performance is not simply a result of learning how
to recognize the background sequences, but depends on the
binding preferences of the RBP in question (Supplemen-
tary Figure S6). Additional model performance metrics and
CNN filter motifs are available (Supplementary Table S2,
Figure S7–S30). Alternatively, filters can also be produced
from sequences scoring above a certain score, such as 0.5
(Supplementary Figure S31).

DeepCLIP predictions and binding profiles explain splicing
mutations

Splicing of mRNA is regulated by binding of RBPs to
the nascent pre-mRNA. To test DeepCLIP’s ability to pre-
dict effects of nucleotide variants on splicing, we generated
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new models for the splicing factors hnRNP A1 and SRSF1
based on previous CLIP studies (49,51) with DeepCLIP-
generated background sequences in order to demonstrate
DeepCLIP’s performance on novel datasets. We ran 10-fold
cross-validation (Supplementary Figures S32 and S33) us-
ing the same input parameters as previously, and extracted
the two best performing models. Their pseudo-PFMs are
shown in Figure 2A and B and they show high visual agree-
ment with previously published motifs of hnRNP A1 and
SRSF1 (60,69,71,72).

We used the models to predict binding of hnRNP A1
and SRSF1, respectively. We then used the best perform-
ing model to predict binding of hnRNP A1 to a set of ex-
onic point mutations (2), grouped into mutations known
to cause skipping and mutations known to not cause skip-
ping (Figure 2C, D, Supplementary Table S6). In Figure
2C, we show the distributions of predictions given the 15-
mer sequences used by Raponi et al. in their work describ-
ing splicing (2). This specific sequence length represents the
length of a typical RNA oligonucleotide used in affinity pu-
rification experiments to measure the binding of protein to
RNA. Interestingly, we observe no significant difference in
the overall change of hnRNP A1 scores for skipping and
non-skipping mutations (Figure 2C, left, Wilcoxon signed
rank P = 0.29), suggesting that hnRNP A1 is not a gen-
eral regulator of these splicing events. This is to be expected,
since only a subset of these events is likely to be meditated
by altered binding of hnRNP A1.

When scoring the same 15 nt oligonucleotides with the
best performing SRSF1 model, we observe that the SRSF1
scores are significantly different between the two groups
(Figure 2C, middle, Wilcoxon signed rank P = 0.026). Also,
when combining the hnRNP A1 scores with the SRSF1
scores, we find that the groups were significantly different
(Figure 2C, right, Wilcoxon signed rank P = 0.033). Impor-
tantly, the scores of the mutations known to cause skipping
were decreased, consistent with the known role of SRSF1
as a positive regulator of exon inclusion. When we used
all trained models to analyze the dataset and adjusting P-
values for multiple testing, none of the models showed a
significant difference in score change between skipping and
non-skipping exonic mutations. However, the two SRSF1
models had the lowest adjusted P-values (Supplementary
Figure S34a).

To investigate whether the hnRNP A1 and SRSF1 mod-
els improve with extended sequence context, we expanded
the 15-mer sequences from the middle and out to a length
of 75 nt, the maximum sequence length used during model
training. This resulted in less pronounced changes that were
not statistically significant (Figure 2D, Supplementary Ta-
ble S6), although the combined score indicated that the
combined effects of losing SRSF1 binding and gaining hn-
RNP A1 binding was retained to a higher degree. This
is likely caused by DeepCLIP’s classification being based
on the total binding profile resulting in diminished differ-
ences as the sequence is expanded. This is exemplified by
the ATP7A c.3904G>A exon skipping mutation located
at +103 in exon 20 of ATP7A, which results in an over-
all score change of +0.00166 between the wt (0.00056) and
mutant (0.00222) 75 nt long sequences (Figure 2E), but a
score change of +0.28484 (from 0.34651 to 0.63135) when

the 15 nt long sequence is used (Figure 2F). Importantly,
both binding profiles predict a localized increase in hnRNP
A1 binding to the mutant, showcasing the relevance of us-
ing binding profiles when analyzing sequence data and not
simply an overall prediction score.

DeepCLIP hnRNP A1 and SRSF1 prediction scores corre-
late with exon inclusion levels of a known SRSF1-dependent
exon

We have previously characterized splicing of ACADM exon
5, which shares sequence similarity with SMN1 exon 7 and
we identified a similar regulation with splicing ultimately
relying on the balance of SRSF1 and hnRNP A1 binding
(34). A prevalent disease-causing c.362C>T mutation re-
duces the strength of a SRSF1 binding ESE, allows hn-
RNPA1 binding and causes exon 5 skipping. To test Deep-
CLIP models of hnRNP A1 and SRSF1 in relation to splic-
ing of ACADM exon 5, we generated minigenes with all
possible variants at positions c.361, c.362 and c.363 located
down-stream of the CAG core motif (Figure 3A). Deep-
CLIP scores were obtained from the sequences using a win-
dow of 36 nt on each side of the three positions, totaling
75 nt (Supplementary Table S7). We then transfected the
minigenes in HEK293 cells and measured exon inclusion
levels (PSI) using RT-PCR and gel-electrophoresis (Figure
3B). We observe a strong negative correlation (Spearman’s
� = −0.939, P < 2e−16, Figure 3C) between the hnRNP
A1 prediction score and the observed inclusion of ACADM
exon 5, and a strong correlation between the SRSF1 pre-
diction score and the observed inclusions (Spearman’s �
= 0.770, P = 0.0137, Figure 3D). We did not observe a
significant correlation with the SRSF1 model trained on
the GraphProt benchmark dataset (Supplementary Figure
S35a), which illustrates that the training data impacts the
quality of the models. The observed correlation is also very
strong for the combined scores (Spearman’s � = 0.915, P
= 0.000467, Figure 3E), in agreement with the hypothesis
that the overall inclusion level is a result of the balance be-
tween positive and negative factors. The same is true when
we use the SRSF1 model generated from the GraphProt
dataset (Supplementary Figure S35b), but not when we per-
form the same analysis with EX-SKIP (2) on the full exon
(Spearman’s � = −0.177, P = 0.625, Supplementary Figure
S36a). When we use SPANR (1) we do observe a stronger
positive correlation than with EX-SKIP (Spearman’s � =
0.552, P = 0.104, Supplementary Figure S36b), but all vari-
ants are predicted to have an inclusion level between 81.9%
and 82.8%. This conflicts directly with the observed level
of exon skipping induced by the disease-causing c.362C>T
mutation in patient cells (34) as well as with the observed
splicing pattern of the minigenes tested.

Using GraphProt and iDeepS models trained on the
SRSF1 eCLIP and hnRNP A1 iCLIP datasets, we could ob-
tain similar but less pronounced correlations, with Graph-
Prot (Supplementary Figure S36c) performing better than
iDeepS (Supplementary Figure S36d).

Overall, when the hnRNP A1 DeepCLIP model predicts
an increase in hnRNP A1 binding, there was a decrease in
exon 5 inclusion (Figure 3F). In particular, the high degree
of exon skipping of all c.362 variants relative to wt were re-
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Figure 2. DeepCLIP models of hnRNP A1 and SRSF1 used to analyze splicing mutations. (A) The CNN filters trained in the hnRNP A1 DeepCLIP
model. (B) The CNN filters trained in the SRSF1 model. (C) Box-plots of the distributions of predictions on 15 nt sequences representing wt and mutant
versions exons that are skipped upon mutation (yellow, n = 37 sequence-pairs) and exons that remain included in the mutant version (green, n = 46
sequence-pairs) using of the hnRNP A1 model (left), SRSF1 model (middle) and combined (right). The combined change in DeepCLIP scores is obtained
by subtracting the hnRNP A1 scores from the SRSF1 scores. Two-tailed Wilcoxon rank sum test P-value is indicated above. Box-plot elements are defined
as center line: median, box limits: upper and lower quartiles, whiskers: 1.5× interquartile range. All data points are shown, outliers are not highlighted. (D)
Same as (C) but with 75 nt sequences. (E) DeepCLIP binding profile of wt (black) and mutant (red) of the 75 nt sequence representing the ATP7A exon
20 +103G>A mutation. The overall DeepCLIP prediction scores are indicated in bold within the plot. (F) Same as (E), but with 15 nt input sequence.
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Figure 3. DeepCLIP models successfully model ACADM minigene splicing results. (A) Minigene schematic and location of variants tested, reference in
blue. The disease-causing mutation is indicated in red. (B) Splicing of minigenes determined by RT-PCR. Estimates of mean PSI (n = 3) is indicated below,
along with 95% CI size. (C) Scatter plot of PSI and DeepCLIP hnRNP A1 score with linear regression (red line, n = 10) and 95% confidence interval
(shaded area). (D) Same as (C) but with DeepCLIP SRSF1 score instead. (E) Same as (C) and (D), but showing the DeepCLIP SRSF1 score minus the
DeepCLIP hnRNP A1 score. (F) Barplot showing the difference to wt for the minigene PSI and DeepCLIP prediction scores for hnRNP A1 and SRSF1.
Spearman’s correlation coefficient is indicated in (C), (D) and (E).
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flected by increases in hnRNP A1 scores (Figure 3B and
F). The c.363A variant is predicted to abolish binding of
SRSF1 and increase binding of hnRNP A1 and the mini-
gene analysis demonstrates predominant skipping in agree-
ment with this. Like hnRNP A1, many of the variants pre-
dicted to lose SRSF1 binding show increased skipping con-
sistent with a loss of ESE activity.

The data indicate that while single DeepCLIP mod-
els capture binding preferences of individual proteins, the
scores are additive and can be used to model effects of multi-
ple proteins interacting in antagonistic and synergistic ways.
Because splicing is complex, multiple other factors may also
contribute to the outcome of splicing, which may explain
why there is not a complete correlation between scores and
observed inclusion levels.

DeepCLIP binding profiles can guide the design of therapeu-
tic antisense oligonucleotides

DeepCLIP models produce binding profiles, which are di-
rectly used for prediction calculations. We wanted to test
how the binding profiles reflect in vivo sequence-protein
binding dynamics and see if the profiles can help locat-
ing sites where splice-switching oligonucleotides (SSOs) can
be applied for correction of splicing. Thus, we analyzed a
known disease-causing mutation (73) in the ACADM gene,
c.468+7A>G. The mutation is located outside the core U1
snRNP binding motif but is located within a larger GT-rich
region, which is extended by the A>G mutation suggesting
that it could be generating or strengthening a TDP-43 bind-
ing site. We selected wt and mutant sequences 75 nt of length
by including the first 37 nt from either side of the position
of the A>G mutation. We then generated a TDP-43 Deep-
CLIP model based on publicly available binding sites from
the POSTAR2 database (50) using the same model param-
eters as previously (Supplementary Figure S37), and scored
the wt and mutant sequences. We found that DeepCLIP pre-
dicts increased binding of TDP-43 to the mutant relative to
the wt (Figure 4A).

Next, we designed a minigene harboring ACADM exon
6 and part of the flanking introns to test whether the
c.468+7A>G mutation affects splicing of exon 6. We found
that the mutation caused dramatic skipping of exon 6 from
the minigene (Figure 4b). We hypothesized that this was
caused by an increase of TDP-43 binding to the mutant
sequence, and that exon skipping therefore could be re-
versed by treating the cells containing the minigenes with
siRNA targeting TDP-43 mRNA. Indeed, TDP-43 siRNA
treatment resulted in increased exon inclusion (Figure 4B),
corroborating that the c.468+7A>G mutation generates a
TDP-43 binding site that causes skipping of ACADM exon
6.

Splice-switching oligonucleotides (SSOs) are a type of an-
tisense oligonucleotide (ASO) that can be used to modulate
splicing by sterically preventing binding of splicing regula-
tory factors to the RNA. Because of the close proximity of
the mutation to the 5′ splice site, directly blocking the mu-
tant position with an SSO most likely would not result in in-
creased exon inclusion. Interestingly, DeepCLIP finds sites
important for binding in a region downstream of the GT-
rich core binding motif, which suggests that blocking these

sites could prevent TDP-43 binding to the core motif and
restore splicing of exon 6. We tested this hypothesis using
two different SSO molecules that targeted this downstream
region and which had small overlaps with the end of the GT-
rich region (Figure 4D). Strikingly, both SSOs proved very
efficacious and almost completely restored splicing from
the mutant minigene, indicating that blocking of the down-
stream motif prevented binding of TDP-43. This indicates
that TDP-43 may exhibit context dependent binding mod-
ularity, and that the DeepCLIP model is able to detect these
context-dependent signatures from the sequence alone.

To validate that TDP-43 binding is directly affected by
the mutation, we first analyzed a set of 23 nt oligonu-
cleotides with DeepCLIP (Figure 4e,f) showing that in this
shorter context the mutation is still predicted to increase.
We then used Surface Plasmon Resonance imaging (SPRi)
to measure binding to the 3′ biotin labeled RNA oligonu-
cleotides and observed a pronounced increase in TDP-43
binding to the mutant (Figure 4G, H) in agreement with
DeepCLIP predictions.

DeepCLIP binding scores correlate with in vitro binding
affinities

One of the most important tasks of a model that predicts
presence of RBP binding sites is to accurately estimate the
effects of mutations on binding affinity. Therefore, we an-
alyzed 6 sets of wt and mutant exonic variants from the
Raponi et al 15-mer set (2) employing SPRi using recombi-
nant hnRNP A1 and SRSF1 as input-proteins (Supplemen-
tary Figures S38–S43, Table S8). These measurements al-
low quantification of the binding to wt and mutant oligonu-
cleotides, allowing confirmation of DeepCLIP predictions,
such as the increase in hnRNP A1 binding to the ATP7A
exon 20 c.3904G>A mutant (Figure 5A, B). The maximum
affinity values obtained by fitting binding models to the
measured response by the different SPRi-models correlated
well with both hnRNP A1 and SRSF1 DeepCLIP models
(Figure 5C, D), across the diverse set of sequences in the
dataset (hnRNP A1: Spearman correlation � = 0.874, P
= 0.000309; SRSF1: Spearman correlation � = 0.77, P =
0.0137). This was also true when we compared DeepCLIP
predictions with the Rmax value (Supplementary Figure
S44). This demonstrates that despite being trained on in vivo
data, the modeling approach of DeepCLIP is also applica-
ble with short in vitro sequences, which can be used to ex-
amine and validate specific changes in binding to target sites
identified by DeepCLIP.

DeepCLIP analysis of TDP-43-repressed pseudoexons indi-
cates that tissue-specificity is position-dependent

In addition to analyzing sequence variations, DeepCLIP
can also be used on a global scale to conduct larger anal-
yses of binding preferences of RBPs. TDP-43 is depleted
in the nucleus of motor neurons in patients suffering from
amyotrophic lateral sclerosis (ALS) (74,75). TDP-43 has
been reported to repress the inclusion of pseudoexons, and
these are then erroneously activated following nuclear de-
pletion, potentially leading to development of ALS symp-
toms (76). A conditional TDP-43 knock-out mouse-model
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Figure 4. DeepCLIP predicts increased TDP-43 binding as mechanism behind ACADM exon 6 skipping. (A) DeepCLIP TDP-43 profile across the 5′ss
of ACADM exon 6 with wt indicated in black and patient mutation indicated in red. Along the first axis the sequence is shown and along the second
axis the DeepCLIP BLSTM values are shown. SPRi oligo location and SSO locations are indicated in blue and red bars above and below the sequence,
respectively. (B) Splicing of wt and mutant minigenes with either TDP-43 targeting siRNA or non-targeting siRNA determined by RT-PCR. (C) Western
blot of TDP-43 and HPRT from siRNA and minigene transfected samples. (D) Splicing of wt and mutant minigenes treated with either a control SSO
(Ctrl-SSO), SSO1, or SSO2 determined by RT-PCR. (E) DeepCLIP profile of short RNA oligos used in SPRi measurement, reference in black and +7A>G
variant in red. (F) The difference in DeepCLIP binding profiles in (E) between reference and variant. Positive score indicates higher score in variant. (G)
SPRi measurements of TDP-43 binding to the wt oligo in (E). (H) SPRi measurements of TDP-43 binding to the variant oligo in (E). In both (G) and (H),
the black line indicates the fitted binding model.
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Figure 5. DeepCLIP predictions correlate with binding affinity studies. (A, B) Scatter plots of raw hnRNP A1 SPRi measurements (dots) and the fitted
models (black lines) to wt (A) and mutant (B) ATP7A exon 20 15 nt oligonucleotide. (C, D) Scatter plots showing DeepCLIP predictions of hnRNP A1
binding (C) and SRSF1 binding (D) to 15 nt oligonucleotides corresponding to wt and mutant pairs from Raponi et al. against the maximum of the binding
model fitted to SPRi measurements. The 95% confidence intervals of fitted linear regression models (red line) are shown in gray. Spearman’s rho is show
in red in lower right corner, and the P-value in the upper left.

displays increased pseudoexon inclusion, some of which
are muscle and neuron-specific (54). Because these pseu-
doexons are not necessarily conserved in humans, they may
not directly relate to ALS, but they may nevertheless im-
prove our understanding of how some pseudoexons are
selectively up-regulated in motor neurons. This can prove
important to the understanding of the underlying molec-
ular pathology of ALS. We therefore used DeepCLIP to
analyze TDP-43-repressed pseudoexons in mice to exam-

ine the tissue specific differences in TDP-43 binding. We
found that DeepCLIP overall predicted decreased binding
to the region down-stream of the 5′ splice site of pseudoex-
ons that are neuron specific compared to pseudoexons that
are muscle-specific (Figure 6, Supplementary Figure S45),
while neuron-specific pseudoexons were predicted to bind
more TDP-43 in the region covering the poly-pyrimidine
tract compared to muscle-specific pseudoexons. This might
reflect interplay between TDP-43 and tissue-specific factors
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Figure 6. DeepCLIP analysis of TDP-43 repressed pseudoexons indicate position-dependent tissue-specificity. (A) The average DeepCLIP TDP-43 profile
scores of 58 neuron-specific and 79 muscle-specific pseudoexons activated in TDP-43-null mice in the areas covering the 25 first and last nucleotides of the
pseudoexon, and the 50 nt spanning intronic regions. 95%-confidence intervals are indicated by shaded areas.

interacting with these regions in a position-dependent man-
ner. These results indicate that sequence analysis of known
pseudoexons can lead to discovery of neuron-specific pseu-
doexons involved in ALS pathology in humans.

DISCUSSION

We present DeepCLIP, a novel deep learning approach
to modeling RNA-binding protein sites using a shallow
neural network composed of CNN and LSTM layers to
capture context-dependent binding. DeepCLIP generalizes
well across a diverse set of sequences in both in vitro and in
vivo settings, and produces a profile of the sequence, which
indicates sequence elements important for the binding of
the RNA binding protein in question.

Previous RNA–protein binding classifiers attempted to
improve their performance by incorporating context de-
pendencies in a number of different ways, e.g. secondary
and tertiary structure, known binding sites of other RNA-
binding proteins, and annotated gene regions such as exons,
introns and UTRs.

With DeepCLIP, we demonstrate that a neural network,
in which context dependency is not pre-defined, but mod-
eled implicitly by a BLSTM layer, is competitive or outper-
forming existing classifiers that, in addition to the RNA-
sequences, depend on one or more predefined data sets con-
taining different categories of contextual information. This
allows DeepCLIP to be agnostic with regard to other inputs
and makes it robust towards any limitations in e.g. the mod-
eling of the structure, or the level and quality of annotation
of gene structure and other protein binding sites.

Another benefit is the omission of a lengthy structure
modeling step. We compared the runtime of DeepCLIP,
iDeepS and GraphProt using the positive sequences from

the GraphProt benchmark sets as input to their respective
models and found that DeepCLIP was ∼250 faster than
GraphProt, and ∼50 times faster than iDeepS based on lin-
ear regression of their running times (Supplementary Fig-
ure S46). This greatly improves the scalability of RBP anal-
ysis, enabling larger transcriptomic regions to be analyzed
by DeepCLIP in long prediction mode.

Secondary RNA structure modeling was previously
shown to improve model accuracy for the datasets Ago1-
4, CAPRIN1, IGF2BP1-3, MOV10 and ZC3H7B (14), and
in general RBPs preferentially bind to structured RNA (77).
While DeepCLIP does not directly include predictions of
secondary structures when classifying, DeepCLIP AUROC
measures for these proteins were the highest of all classifiers
except for IGF2BP1-3, where iONMF, which also does not
model structure, had a higher AUROC score. This indicates
that the BLSTM layer of DeepCLIP captures contextual de-
pendencies that are as important as secondary RNA struc-
ture modeling. The inclusion of tertiary structure model-
ing improved the performance of mDBN+ on the hnRNP
C, PTBP1 and TDP-43 datasets over DeepCLIP, indicat-
ing that more advanced structure modeling provides an im-
provement in the prediction of some proteins.

DeepCLIP produces motifs of varying sizes ranked by
the average information content (Figure 2A, B). The top-
ranking motifs of DeepCLIP for the analyzed proteins were
visually remarkably similar to core binding sites as de-
scribed in literature (67,68,72,78–82) (Supplementary Fig-
ure S6). The motifs depicted in Supplementary Figure S6
are based on the top-1000 scoring sequences from the
positive and negative input dataset and represent the two
pseudo-PFMs with the highest mean information score
among the five pseudo-PFMs produced. In addition, Deep-
CLIP allows pseudo-PFM generation based on sequences
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scoring above a given threshold, e.g. sequences with score
higher than 0.5 (see Supplementary Figure S31), which may
produce slightly different pseudo-PFMs. This is a result of
the more heterogeneous sequence input when using more of
the training input, which results in visualizations with less
conserved motifs, but the underlying CNN filters remain
the same. DeepCLIP does not model or generate motifs de-
scribing structural preferences of RBPs. However, this may
be obtained by using structure modeling software on high-
scoring sites identified by DeepCLIP.

When searching for binding sites in longer sequences,
the information contained in the DeepCLIP binding pro-
files becomes invaluable, since it unravels interesting areas
that are important for protein binding (Figure 2E, F). In
the case where a longer sequence contains mainly strong
background patterns and only a small segment with bind-
ing site potential, DeepCLIP and other tools will be prone
to classify this sequence as a background sequence. How-
ever, DeepCLIP is able to identify the foreground segment
and highlight it on the binding profile of the sequence.

DeepCLIP binding profiles can be used for estimating
high- and low-affinity regions of sequences (Figure 4). The
prediction scores, which are directly based on the bind-
ing profile values, display a strong correlation with affin-
ity studies (Figure 5) suggesting that DeepCLIP success-
fully captures binding preferences of RBPs. To this end,
the binding profiles produced by DeepCLIP can be used
to identify splicing regulatory sites that can be targeted by
SSOs (Figure 4A), which is an important novel and miss-
ing functionality of existing binding site discovery tools.
Thus, DeepCLIP greatly facilitates the design of new drugs
based on blocking protein–RNA binding sites, which is a
very promising new therapeutic approach, as illustrated for
instance by the recent success of the SpinrazaTM SSO in
treating SMA (83,84). DeepCLIP could potentially be used
to predict binding of RBPs to SSOs themselves (Supple-
mentary Table S9). However, as SSOs are chemically modi-
fied, their binding properties are not directly comparable to
RNA and the predictions based on studies of RNA–protein
binding are only very uncertain estimates.

DeepCLIP models are trained on protein–RNA binding
data from studies on specific proteins and cannot be used
to predict binding preferences of proteins where no such
data yet exists. Because the binding properties of both pro-
teins and RNA depend on their sequence, it may be pos-
sible to train networks that predict binding based on pro-
tein and RNA sequences in pairs, such that novel interac-
tions could be predicted from unknown RBPs. Several ap-
proaches for this exist, such as autoencoders or generative
adversarial networks (GAN). However, some RBPs bind
RNA sequence patterns and structures in a more unspecific
manner, making it difficult to accurately predict possible
binding sites. The utility of this approach needs thorough
and rigorous investigation and testing.

DeepCLIP models also depend on the quality of the
training data. Significant methodological biases can result
in models that recognize more generally CLIP sites than
protein specific sites. This is, however, a common trait for
the methods and not just DeepCLIP as evidenced by overall
similar performance on independent datasets (Supplemen-
tary Figure S5a and b). An example of this is the PUM2

model trained on PAR-CLIP data, which performed rel-
atively poorly on the POSTAR2 and ENCODE eCLIP
datasets, although in general DeepCLIP had the best per-
formance for PUM2 out of the three methods compared
(Supplementary Table S4). This model also produces many
high prediction scores when used on the positive sequences
from the PAR-CLIP traning set used to train the QKI
model (AUROC = 0.73197), while the QKI model is much
less biased (AUROC = 0.93383) (Supplementary Figure
S47a and b). This kind of test represents the most chal-
lenging as both input classes contain the biases specific to
PAR-CLIP. In our benchmarks, we kept training param-
eters the same for all models and used the backgrounds
originally used by GraphProt. If we instead adjust param-
eters of the model to use only two CNN filters of length
7 and 8, set batch size to 64 and train the PUM2 model
with an equal mix of the other PAR-CLIP datasets within
the GraphProt benchmark set, but excluding the QKI train-
ing set, we obtain a model which is able to better distin-
guish between PUM2 and QKI (AUROC increase from
0.73197 to 0.90104), while improving performance on the
eCLIP datasets from POSTAR2 (AUROC increasing from
0.64414 to 0.69185) and ENCODE (AUROC increase from
0.63616 to 0.66780). However, because DeepCLIP produces
binding profiles we can still use the more biased models
to identify potential targets. Using DeepCLIP’s long pre-
diction mode we analyzed a transcript, which is known to
bind both QKI and PUM2, and defined binding sites as 9 nt
windows or more with a mean profile score >0.3. We then
mapped these sites onto the transcript along with known
PAR-CLIP and eCLIP sites and found that the original
PUM2 model identified four binding site that were all over-
lapped by known CLIP sites, either PAR-CLIP or eCLIP.
None of them overlapped the QKI sites, and were all located
within the 3′UTR, consistent with PUM2’s known bind-
ing preference for 3′UTR regions. This demonstrates that
despite bias in the model, the profile produced still allows
for specific identification of PUM2 sites, in the presence of
known QKI sites. This type of analysis also demonstrates
again how binding profiles are much more informative than
overall prediction scores and are necessary when comparing
sequences of different lengths, as DeepCLIP’s architecture
is not suitable for comparing prediction scores directly be-
tween sequences of different lengths. Similarly, mutations
at the edge of sequences should not be analyzed with Deep-
CLIP, as the contextual information in these areas is insuf-
ficient and edge-specific effects may lead to misleading re-
sults.

In summary, DeepCLIP models provide valuable insight
into the functional consequences of sequence variants. Both
in vitro binding assays and in vivo splicing assays as well
as observed splicing of disease-causing mutations in pa-
tients cells correlate well with DeepCLIP predictions. This
demonstrates that an in silico analysis with DeepCLIP can
serve as a valuable tool for assessing the functional effects of
potentially pathogenic sequence variants, providing an im-
portant tool for clinical diagnosis. Finally, we demonstrate
that DeepCLIP can serve as tool for designing efficient
SSOs for correcting aberrant splicing caused by disease-
causing mutations. DeepCLIP is freely available, both as
stand-alone and as a webtool. The webtool allows analysis



7116 Nucleic Acids Research, 2020, Vol. 48, No. 13

of sequences and sequence variants with multiple models in
one analysis, as many RBPs compete for binding site po-
sitions on RNA molecules, and identifying the most likely
change or binding partner is important for further experi-
mental analysis.
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