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Introduction
Umbilical cord blood (UCB) has been used for 
over 30 years as an alternative source of hemat-
opoietic stem cells for patients in need of an allo-
geneic hematopoietic stem cell transplantation 
(HSCT).1–3 As the total nucleated cell (TNC) 
dose of at least 2.5 × 107 nucleated cells per kilo-
gram of body weight in adult recipients is known 
to be a critical factor in UCB transplantation 
(UCBT) success, the use of double cord blood 
units has greatly expanded the access to adult 
recipients.4 The advantages of UCB include its 

rapid availability, reduced stringency in terms of 
human leukocyte antigen (HLA) match require-
ments, and subsequent increase in access to 
transplants for racial minorities.5–7 Both related 
and unrelated UCBTs with single or double units 
have been performed with high rates of success in 
pediatric and adult settings to treat a variety of 
medical conditions.8–22

Before undergoing UCBT, recipients often 
undergo a high-dose chemotherapy called ‘condi-
tioning’ to create space in the bone marrow, 
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suppress the host immune system to facilitate 
engraftment, and reduce the tumor burden in 
cases of neoplastic disease.23 Total body irradia-
tion (TBI) is commonly incorporated into condi-
tioning regimens to aid in these efforts. Although 
conditioning regimens with higher intensity, such 
as myeloablative conditioning (MAC), are associ-
ated with a lower risk of relapse and graft rejec-
tion, there is an increased incidence of 
transplant-related mortality (TRM). The inclu-
sion of TBI in conditioning regimens can result in 
heightened organ toxicity and risk of subsequent 
malignant neoplasm.24–27 Complications associ-
ated with MAC are also increased in the elderly 
and those with comorbidities. To this end, low-
dose TBI or non-TBI and reduced-intensity con-
ditioning (RIC) or nonmyeloablative regimens 
have been implemented as a means of increasing 
access to HSCT in those at-risk patient popula-
tions and benign hematological diseases patient 
populations.28–33

Despite advances in the use of conditioning regi-
mens in HSCT, optimal conditioning in UCBT 
remains unknown. Furthermore, there are lim-
ited studies comparing conditioning regimens in 
UCBT, and the role of TBI has not been firmly 
established. We hypothesized that TBI in combi-
nation with RIC regimens may improve UCBT 
outcomes. In this multicenter retrospective study, 
we report the impact of TBI as a part of MAC or 
RIC regimens in patients undergoing UCBT for 
hematologic malignant diseases.

Methods

Patient population and data collection
This retrospective study included 136 consecu-
tive patients with acute lymphoid leukemia 
(ALL)/lymphoma and acute myeloid leukemia 
(AML) who underwent UCBT at one of four 
institutions from June 2001 to July 2017. Penn 
State Hershey Medical Center, Medical College 
of Wisconsin, University of Indiana, and 
University of Alabama participated in this 
study. The decision of whether or not to incor-
porate TBI was determined by individual insti-
tutional UCBT protocols. Data were collected 
through each institution’s medical record sys-
tem. Standardized data abstraction included 
demographic information, diagnosis, condition-
ing regimen, infection disease complications, 

development of graft-versus-host disease 
(GVHD), neutrophil engraftment, disease pro-
gression status, and cause of death if applicable. 
GVHD was diagnosed clinically, with histologic 
confirmation when appropriate. Cytogenetic 
information was also explored following National 
Comprehensive Cancer Network (NCCN)'s 
guidelines. Patients received a TBI dose of 1200–
1320 cGy (myeloablative TBI) given as fraction-
ated dosing in MAC or a dose of 200 cGy in RIC. 
MAC regimens include busulfan (Bu: 8–11 mg/kg 
intravenous) or cyclophosphamide (Cy: 120 mg/
kg) plus thiotepa (Thio: 10 mg/kg) and fludara-
bine (Flu: 75–150 mg/m2) ± melphalan (Mel: 
100 mg/m2) ± antithymocyte globulin (ATG, 
8 mg/kg). RIC condition regimens include Flu 
(180–200 mg/m2) and/or Cy (50 mg/kg) ± Mel 
(100 mg/m2) ± ATG (6 mg/kg) (Table 1). All 
patients received granulocyte colony-stimulating 
factor (G-CSF) until the absolute neutrophil 
count reached 500 cells/μL or above. All trans-
plant protocols strictly followed American Society 
for Transplantation and Cellular Therapy 
(ASTCT) guidelines. All patients provided con-
sent before starting the treatment. All patient data 
were de-identified for the study.

Cord blood cell dose, unit, and HLA match 
selection
Each UCB unit contained ⩾2 × 105 CD34+ cells/
kg. Transplants using a single unit required a 
minimum TNC count of 2.5 × 107 cells/kg, while 
those using double units required a minimum of 
1.5 × 107 TNCs/kg for each individual cord unit. 
Cord blood unit selection principles followed 
ASTCT guidelines.34 Pediatric patients used 
either single or double units (depending on body 
weight), while adult patients used double units. 
The UCB units were required to have ⩾4/8 
(HLA-A, HLA-B, HLA-C, HLA-DRB1) donor-
recipient matching.

GVHD prophylaxis
GVHD prophylaxis was administered per indi-
vidual institution protocol. In brief, all patients 
received GVHD prophylaxis with tacrolimus oral 
twice daily with a target trough level of 6-12 ng/ml 
and mycophenolate mofetil (MMF) of 15 mg/kg 
IV q8 h from day 3. In patients with no active 
GVHD, MMF was discontinued after day 28, 
and tacrolimus taper was initiated at day 120 and 
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continued to 180 in patients without GVHD. 
Those with active viral infections were permitted 
to undergo faster taper of MMF. GVHD prophy-
laxis, diagnosis, and management followed 
NCCN guidelines.35

Endpoints
Endpoints included overall survival (OS), pro-
gression-free survival (PFS), and TRM. OS was 
defined as the difference in time from transplant 
to the time of death from any cause. PFS was 
defined as the difference in time from trans-
plant to the time of disease relapse. TRM was 
defined as difference in time from transplant to 
time of death due to a transplant-related cause. 
Assessment of post-transplant complications 
included the occurrence of acute GVHD, chronic 
GVHD, and systemic infections.

Statistical analysis
Demographics, treatment, and clinical character-
istics of all patients were summarized using 
descriptive analysis. Their associations with TBI 
treatment were tested using Chi-square test and 
Mann–Whitney U test for categorical and con-
tinuous variables, respectively. Kaplan–Meier 
methods were used to summarize OS and PFS 
after UCBT. Cox proportional-hazard models 
were used to estimate the effect of TBI on OS and 
PFS. Logistic regression was used to compare 
acute GVHD, chronic GVHD, and systemic 
infection rate. The rate of TRM was compared 

using competing risk methods where death due to 
other causes was a competing risk. Both time to 
neutrophil engraftment and time to platelet 
engraftment were analyzed using competing risk 
methods with death due to any cause as a com-
peting risk. Univariate and multivariable analyses 
were conducted. The multivariable analysis was 
adjusted for gender, age at transplant (⩾21 versus 
<21 years old), diagnosis (AML, ALL, or lym-
phoma), donor type (unrelated versus related 
donor), TNC dose, and institution in the model. 
Missing observations of a variable were excluded 
from its analysis. All statistical tests were two-
sided, and p values <0.05 were considered sig-
nificant. All statistical analyses were performed 
using R version 3.5.3.

Results

Patient characteristics
There were 136 patients from four institutions 
that underwent UCBT from June 2001 to July 
2017 (Table 2, Supplemental Table S1). 
Pretransplant performance scores (Karnofsky/
Lansky) were ⩾80%. The median length of fol-
low-up for survivors was 6.1 years. The median 
age of patients at the time of transplant was 
18.5 years (range: 0.6-65.4 years), and 96 patients 
were under the age of 21 years at the time of 
transplant. The cohort had 75 (55%) male and 
61 (45%) female patients. The study includes 52 
(38.2%) ALL/lymphoma patients and 84 
(61.8%) AML patients. All patients received 

Table 1.  The MAC and RIC condition regimens in this study.

MAC RIC

Conditioning 
regimens with 
TBI

TBI (1200–1320 cGy) + Cy (120 mg/kg intravenous) or 
Bu (8–11 mg/kg) + Thio (10 mg/kg) + Flu (75–150  
mg/m2) ± ATG (8 mg/kg)

TBI (200 cGy) + Flu (180–200 mg/m2) 
 or Cy (50 mg/kg) + ATG (6 mg/
kg) ± Mel (100 mg/m2)

TBI (200 cGy) + Cy (50 mg/
kg) + Flu (180–200 mg/m2) ± ATG 
(6 mg/mg)

Conditioning 
regimens 
without TBI

Bu (8-11 mg/kg intravenous) + Flu (75-150 mg/m2) 
or Cy (120 mg/kg intravenous) + ATG (8 mg/kg) ± Mel 
(100 mg/m2)

Flu (180-200 mg/m2) + Cy (50 mg/
kg) + Mel (100 mg/m2) + ATG 
(8 mg/kg)

Bu (8-11 mg/kg intravenous) + Flu (75-150 mg/m2) 
 + Thio (10 mg/kg) + ATG (8 mg/kg)

ATG, antithymocyte globulin; Bu, busulfan; Cy, cyclophosphamide; Flu, fludarabine; MAC, myeloablative condition; Mel, 
melphalan; RIC, reduced-intensity condition; TBI, total body irradiation; Thio, thiotepa.
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Table 2.  Characteristics of UCBT recipients who did and did not undergo TBI, stratified by conditioning regimen.

RIC MAC

  TBI (N = 43) No TBI (N = 24) TBI (N = 33) No TBI (N = 36)

Gender (N = 43) (N = 24) (N = 33) (N = 36)

  F 21 (48.8%) 14 (58.3%) 13 (39.4%) 13 (36.1%)

  M 22 (51.2%) 10 (41.7%) 20 (60.6%) 23 (63.9%)

p Value 0.6106 0.8082  

Age at transplant (N = 43) (N = 24) (N = 33) (N = 36)

Median (range) 17 (1-62) 23 (2-64) 9 (1-65) 12 (1-52)

  <21 years old 25 (58.1%) 9 (37.5%) 32 (97%) 30 (83.3%)

  ⩾21 years old 18 (41.9%) 15 (62.5%) 1 (3%) 6 (16.7%)

p Value 0.1306 0.1082  

Diagnosis group (N = 43) (N = 24) (N = 33) (N = 36)

  All/lymphoma 23 (53.5%) 6 (25%) 17 (51.5%) 6 (16.7%)

  AML 20 (46.5%) 18 (75%) 16 (48.5%) 30 (83.3%)

p Value 0.0388 0.0044  

Donor (N = 43) (N = 17) (N = 33) (N = 36)

  Related 0 (0%) 2 (11.8%) 2 (6.1%) 1 (2.8%)

  Unrelated 43 (100%) 15 (88.2%) 31 (93.9%) 35 (97.2%)

p Value 0.0768 0.6032  

Risk based on 
cytogenetics

(N = 18) (N = 12) (N = 22) (N = 14)

 � Favorable or 
intermediate

4 (22.2%) 5 (41.7%) 10 (45.5%) 5 (35.7%)

  Unfavorable 14 (77.8%) 7 (58.3%) 12 (54.5%) 9 (64.3%)

p Value 0.4181 0.7317  

Conditioning regimen, 
n (%)

TBI (low dose)/Flu/Cy ± ATG, 19 (44);
TBI (low dose)/Flu or Cy/ATG ± Mel, 
24 (56)

Flu/Cy/Mel/
ATG, 24 (100)

TBI (high dose)/
Bu or Cy/Thio or 
Flu ± ATG, 33 (100)

Bu/Flu or Cy/ATG ± Mel, 
27 (75); Bu/Flu/Thio/ATG, 
9 (25)

HLA 8 matches, n (%) (N = 43) (N = 24) (N = 33) (N = 36)

  8 8 (19) 4 (17) 6 (18) 6 (17)

  7 8 (19) 6 (25) 7 (21) 9 (25)

  6 13 (30) 8 (33) 10 (30) 10 (28)

  5 12 (28) 5 (21) 8 (24) 8 (22)

(Continued)
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RIC MAC

  TBI (N = 43) No TBI (N = 24) TBI (N = 33) No TBI (N = 36)

  4 2 (4) 1 (4) 2 (6) 3 (8)

p Value 0.6798 0.9953  

TNC dose (N = 43) (N = 24) (N = 33) (N = 36)

Median/mean 4.5/6.2 3.3/3.1 3.3/4.5 4.2/4.4

Min-Max 0.2-27.8 0.5-5.3 1-15.8 0.2-18.4

Q1-Q3 3.3-5.9 2.1-4.3 2.3-6.9 2-6.1

p Value 0.0017 0.9193  

AML, acute myeloid leukemia; ATG, antithymocyte globulin; Bu, busulfan; Cy, cyclophosphamide; Flu, fludarabine; HLA, human leukocyte antigen; 
MAC, myeloablative condition; Mel, melphalan; RIC, reduced-intensity condition; TBI, total body irradiation; Thio, thiotepa; TNC, total nucleated 
cells; UCBT, umbilical cord blood transplantation.

Table 2. (Continued)

chemotherapy and were in bone marrow and/or 
molecular remission before undergoing UCBT. 
Sixty-nine (50.7%) patients received MAC regi-
mens, and 67 (49.3%) patients received RIC regi-
mens. There were 62 (90%) pediatric patients in 
the MAC subgroup with a median age of 11 years 
(range: 1.5-21.0 years), while there were 34 
(51%) pediatric patients in the RIC subgroup 
with a median age of 13.8 years (range: 1.0-
21.0 years). In the subgroup of patients that 
underwent MAC, 33 received high-dose TBI, 
and 36 did not. In the RIC subgroup, 43 patients 
received low-dose TBI, and 24 did not. In the 
RIC subgroup, a higher TNC dose was found to 
be used in patients who received TBI. In both 
subgroups, the patients receiving TBI were more 
likely to have ALL/lymphoma than those with no 
TBI (Table 2).

Transplant outcomes after conditioning 
regimens
Among patients treated with RIC, those who 
received TBI had a median OS of 7.9 years versus 
0.5 years in patients who did not receive TBI 
[hazard ratio (HR) 0.51, 95% confidence interval 
(CI): 0.27-0.97, p = 0.04; Figure 1(a)]. In a mul-
tivariable analysis adjusting for gender, age at 
transplant, diagnosis, donor type, TNC dose, 
and clinical centers, the difference remained sig-
nificant [adjusted HR (aHR) 0.25, 95% CI: 
0.09-0.66, p = 0.005; Supplemental Table S2]. 
The risk of TRM was significantly lower in TBI 

group than that in the non-TBI group (HR 0.43, 
95% CI: 0.21-0.88, p = 0.02; Figure 2(a)). The 
magnitude of effect maintained after the adjust-
ment in the multivariable analysis (aHR 0.44, 
95% CI: 0.11-1.69, p = 0.23) although the com-
parison became nonsignificant (Supplemental 
Table S2).

In the RIC subgroup, PFS was longer in the TBI 
group than that in the non-TBI group (median 
2.4 years versus 0.4 years, HR 0.56, 95% CI: 0.31-
1.08; p = 0.09; Figure 3(a)). Multivariable analy-
sis revealed that the risk of disease progression 
was significantly lower in the TBI group than that 
in the non-TBI group (aHR 0.26, 95% CI: 0.10-
0.66, p = 0.005; Supplemental Table S2). None 
of the patient characteristics such as gender, age, 
diagnosis, donor type, and TNC dose had signifi-
cant association with OS, TRM, or PFS in the 
multivariable analysis (Supplemental Table S2).

Among the patients in the MAC subgroup, OS 
did not show significant difference with and with-
out TBI in the treatment regimen. The median 
OS was 13.5 years in the patients with TBI and 
7.3 years in those with no TBI (HR 1.17, 95% CI: 
0.58-2.37, p = 0.67; Figure 1(b)). In a multivari-
able analysis adjusting for patient baseline charac-
teristics and institution, the effect of TBI remained 
nonsignificant on OS (aHR 1.68, 95% CI: 0.73-
3.88, p = 0.22; Supplemental Table S3). TRM 
also did not differ significantly in patients with 
and without TBI in the univariate (HR 1.07, 95% 

https://journals.sagepub.com/home/tah


Volume 14

6	 journals.sagepub.com/home/tah

Therapeutic Advances in 
Hematology

Figure 2.  Cumulative incidence of transplant-related mortality of patients who did and did not undergo TBI as 
a part of pre-umbilical cord blood stem cell transplantation (UCBSCT) conditioning regimen. (a) RIC subgroup 
(p = 0.02). (b) MAC subgroup (p = 0.88). MAC, myeloablative conditioning; RIC, reduced-intensity conditioning; 
TBI, total body irradiation.

Figure 1.  Kaplan–Meier estimate of overall survival comparing patients who did and did not undergo TBI as 
a part of the pre-UCBT conditioning regimen. (a) Reduced-intensity conditioning (RIC) subgroup (p = 0.04). (b) 
Myeloablative conditioning (MAC) subgroup (p = 0.67). TBI, total body irradiation; UCBT, umbilical cord blood 
transplantation.

CI: 0.47-2.42, p = 0.88; Figure 2(b)) and multi-
variable analyses (Supplemental Table S3). PFS 
did not differ between TBI and non-TBI groups. 
The median PFS was 9.9 years and 9.5 years with 
and without TBI (HR 1.33, 95% CI: 0.67-2.56, 
p = 0.41; Figure 3(b)), respectively.

Engraftment
In the RIC subgroup, time to neutrophil engraft-
ment was shorter among the patients who received 

TBI than that among those without TBI although 
it did not reach statistical significance (HR 1.19, 
95% CI: 0.71-1.99, p = 0.51; Figure 4(a)), and 
the difference remained in the multivariable anal-
ysis adjusting for gender, age at transplant, diag-
nosis, donor type, TNC dose, and institution 
(aHR 1.44, 95% CI: 0.7-2.97, p = 0.33; 
Supplemental Table S2). Time to platelet engraft-
ment of patients receiving TBI was significantly 
longer (HR 0.63, 95% CI: 0.37-1.08, p = 0.09; 
and aHR = 0.45, 95% CI: 0.2-1.0, p = 0.049; 
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Figure 3.  Kaplan-Meier estimate of progression-free survival comparing patients who did and did not undergo 
TBI as a part of the pre-UCBT conditioning regimen. (a) RIC subgroup (p = 0.09). (b) MAC subgroup (p = 0.41). 
MAC, myeloablative conditioning; RIC, reduced-intensity conditioning; TBI, total body irradiation; UCBT, 
umbilical cord blood transplantation.

Figure 4.  Cumulative incidence of neutrophil engraftment comparing patients who did and did not undergo 
TBI as a part of the pre-UCBSCT conditioning regimen. (a) RIC subgroup (p = 0.51). (b) MAC subgroup (p = 0.68). 
MAC, myeloablative conditioning; RIC, reduced-intensity conditioning; TBI, total body irradiation.

Figure 5(a), Supplemental Table S2). Two of 42 
patients with TBI had engraftment failure, while 
full engraftment was noted in all 23 patients with 
no TBI.

In the MAC subgroup, time to neutrophil engraft-
ment did not differ significantly between patients 
who did and did not receive TBI (HR 0.90, 95% 
CI: 0.55-1.49, p = 0.68; Figure 4(b)), according 
to the univariate analysis. The multivariate analy-
sis showed a similar difference (Supplemental 
Table S3). Patients who received TBI had longer 
time to platelet engraftment than those without 

TBI (HR 0.58, 95% CI: 0.34-1, p = 0.049; Figure 
5(b)), and the difference was no longer significant 
after adjusting for patient characteristics (aHR 
0.71, 95% 0.37-1.34; Supplemental Table S3). 
Two of 32 patients with TBI had engraftment 
failure, while one of 36 patients with no TBI 
failed to engraft.

Post-transplant complications
There were no statistically significant differences 
in GVHD or transplant-related infection rates 
between the TBI and non-TBI groups (Table 3). 
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Table 3.  Development of GVHD and transplant-related infection rates between patient subgroups that did and 
did not undergo TBI as a part of their pre-UCBT conditioning regimen.

RIC MAC

  TBI (N = 43) No TBI (N = 24) TBI (N = 33) No TBI (N = 36)

Engraftment failure (N = 42) (N = 23) (N = 32) (N = 36)

  Yes 2 (4.8%) 0 (0%) 2 (6.2%) 1 (2.8%)

  No 40 (95.2%) 23 (100%) 30 (93.8%) 35 (97.2%)

p Value 0.5365 0.5977  

Transplant-related infection (N = 32) (N = 19) (N = 31) (N = 36)

  No 11 (34.4%) 2 (10.5%) 4 (12.9%) 5 (13.9%)

  Yes 21 (65.6%) 17 (89.5%) 27 (87.1%) 31 (86.1%)

p Value 0.096 1  

Acute GVHD (N = 43) (N = 24) (N = 32) (N = 33)

  No 33 (76.7%) 18 (75%) 13 (40.6%) 19 (57.6%)

  Yes 10 (23.3%) 6 (25%) 19 (59.4%) 14 (42.4%)

p Value 1 0.2179  

Chronic GVHD (N = 43) (N = 23) (N = 26) (N = 34)

  No 20 (46.5%) 6 (26.1%) 9 (34.6%) 21 (61.8%)

  Yes 23 (53.5%) 17 (73.9%) 17 (65.4%) 13 (38.2%)

p Value 0.1217 0.0673  

GVHD, graft-versus-host disease; MAC, myeloablative condition; RIC, reduced-intensity condition; TBI, total body 
irradiation; UCBT, umbilical cord blood transplantation.

Figure 5.  Cumulative incidence of platelet engraftment comparing patients who did and did not undergo TBI 
as a part of the pre-UCBSCT conditioning regimen. (a) RIC subgroup (p = 0.09). (b) MAC subgroup (p = 0.05). 
MAC, myeloablative conditioning; RIC, reduced-intensity conditioning; TBI, total body irradiation.
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In the RIC subgroup, the rate of severe acute 
GVHD was 23.3% and 25% among the patients 
who did and did not receive TBI, respectively; 
53.5% patients in the TBI group and 73.9% 
patients in the non-TBI group had chronic 
GVHD. The infection rate was lower among 
patients with TBI (65.6%) than that in the non-
TBI group (89.5%); however, this was not signifi-
cantly difference (p = 0.096; Table 3). In the 
MAC subgroup, the rates of acute GVHD and 
chronic GVHD were numerically higher (although 
not statistically significant) in the TBI group than 
those in the non-TBI groups, while the infection 
rate were similar for both groups. The differences 
remained nonsignificant after adjusting for patient 
characteristics and clinical centers in the multi-
variate analysis.

ATG use and cause of death
There was a concern that imbalanced use of ATG 
might impact the incidence of systemic infection-
caused death. To explore this issue, we collected 
data on the causes of death and the ATG use sta-
tus in four cohorts (Supplemental Table S4). 
Although the data were incomplete because of the 
nature of the retrospective study, it showed that 
the most frequent cause of death was disease pro-
gression in RIC cohorts [7 (36.8%) and 7 
(36.8%), respectively]. Organ failure in both 
RIC/TBI and MAC/TBI cohorts are the second 
frequent cause of death [5 (26.3%) and 5 (33.3%), 
respectively]. In the RIC/TBI cohort, 12 patients 
(27.9%) received ATG, and 28 patients (65.1%) 
did not receive ATG, with infection-related death 
of 4 (21.1% of death); in the RIC/without TBI 
cohort, 2 patients (8.3%) did and 15 patients 
(62.5%) did not receive ATG, with infection-
related death of 1 (5.3% of death); in the MAC/
TBI cohort, 1 patient (3.0%) received ATG, and 
25 patients (75.8%) did not receive ATG, with 
infection-related death of 2 (13.3% of death); in 
the MAC without TBI cohort, 17 patients 
(47.2%) received ATG, with infection related 
death of 1 (6.2%).

Discussion
We showed that in combination with RIC regi-
mens, the 200 cGy TBI significantly improved 
OS and PFS compared with RIC without TBI. In 
contrast, the addition of TBI as a part of the 
MAC regimen did not significantly impact UCBT 

outcomes. Although patients who received TBI 
did not show significant difference in neutrophil 
or platelets engraftment time in the MAC setting, 
200 cGy TBI use in combination with RIC was 
associated with delayed platelet engraftment.

The OS data in our study are consistent with a 
retrospective study of a Japanese transplant regis-
try database.36 In that study, Nakasone et al. 
found that there was no difference in rates of 
GVHD and OS in patients who received TBI and 
non-TBI conditioning regimens before UCBT. 
However, in that study, there was no comparison 
between patients receiving TBI versus no TBI in 
an RIC subgroup. Furthermore, the TBI doses in 
that study were much higher than those in our 
RIC subgroup (less than 800 cGy versus 200 cGy). 
We also performed an overall analysis combining 
the two cohorts (MAC and RIC) and, similar to 
Nakasone et al., found no significant difference 
between the TBI and non-TBI groups in respect 
to OS (HR 0.82, 95% CI: 0.51-1.32), TRM (HR 
0.69, 95% CI: 0.39-1.20), and PFS (HR 0.92, 
95% CI: 0.58-1.46).

In our study, time to neutrophil engraftment was 
shorter in patients receiving TBI in the RIC sub-
group although the difference was not statistically 
significant. Interestingly, Nakasone et al.36 also 
demonstrated that the use of TBI before UCBT 
was significantly associated with accelerated neu-
trophil engraftment in both the MAC and RIC 
cohorts, concluding that TBI may be more criti-
cal for engraftment than conditioning intensity. 
Similarly, in a 2011 study that only included chil-
dren with myelodysplastic syndrome who under-
went UCBT, neutrophil recovery was noted to be 
faster in patients that underwent TBI-containing 
conditioning regimens.37 Furthermore, a 2014 
UCBT study found that a regimen containing 
low-dose TBI, Bu, clofarabine, and Flu exhibited 
superior OS and NRM compared with non-TBI-
containing regimens (Mel/Flu/Thio, or Bu/Flu).29 
The same study also demonstrated superior neu-
trophil engraftment in the patient cohort that 
received TBI. The authors of that study attrib-
uted these results to the early elimination of the 
host T-cell population accomplished by TBI. The 
lack of statistical significance in our study could 
be due to the small sample size and patient het-
erogeneity. A large study is warranted to further 
confirm the effect of low-dose TBI on neutrophil 
engraftment.
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Despite limited data specific to UCBT, compari-
sons of conditioning regimens ± TBI have been 
performed in other types of HSCT. In adults with 
mature T-cell and natural killer cell lymphoma, 
one retrospective analysis also concluded that 
OS, PFS, and toxicities of patients receiving 
TBI-containing conditioning regimens were 
comparable to those of patients who underwent 
conditioning that did not include TBI.38 In adults 
with ALL, another retrospective analysis compar-
ing Bu to TBI-containing conditioning regimens 
determined similar disease-free survival and OS 
between the two groups following HSCT 
although there were higher rates of TRM in the 
TBI cohort (19% versus 25%, p = 0.04).39 
Conversely, children with AML experienced 
superior 5-year OS and PFS following bone mar-
row transplant after employing a conditioning 
regimen of Bu/Cy compared with TBI/Cy.40 
However, a study of the clinical significance of 
low-dose TBI in patients with hematologic malig-
nancies undergoing HSCT found that low-dose 
TBI improved OS in patients with a high-risk dis-
ease and multi-HLA mismatch in comparing to 
Flu/Bu conditioning.41 It seems that TBI dosage 
could play a crucial role in post-transplant out-
comes. On the other side, it is well accepted that 
low-dose TBI is less toxic. We postulate that low-
dose TBI suppresses recipient T-cell activity and 
opens up the bone marrow matrix space for UCB 
stem cell settling, renewing, differentiating, and 
proliferating; meanwhile, it does not cause signifi-
cant harm and damage to the bone marrow 
microenvironment.

We also evaluated the impact of ATG use in the 
incidence of systemic infection via comparing 
various combinations of condition intensity 
(MAC versus RIC), TBI use, and ATG use. 
Interestingly, ATG use appeared to have no obvi-
ous impact on infection-caused death. It may be 
due to the relative naivety of lymphocytes in UCB 
in response to ATG treatment.

Our study has several limitations, in part related 
to the nature of retrospective data analyses. 
Selective use of TBI was based on several clini-
cal factors that could introduce selection bias. 
The multivariable analysis may not be able to 
account for heterogeneity of the treatment 
entirely. The size of the study limited our ability 
to examine the differential effect of TBI with 
diagnosis. Cause of death and infection were 

not considered. In addition, the clinical sig-
nificance of TBI in UCBT might further 
depend on patient-/donor-specific factors that 
were not accounted for in this study as previ-
ously stated.42 In addition, differences could 
exist in dosing of chemotherapy and delivery 
among participating institutes. The recent 
omidubicel phase III trial data further demon-
strated that the UCB hematopoietic progenitor 
expansion status plays a role in UCBT 
outcomes.43

Conclusion
This study suggests that the combination of 
low-dose TBI and RIC regimens may improve 
OS and PFS for patients undergoing UCBT. 
TBI has no significant impact on the incidence 
or severity of acute/chronic GVHD and sys-
temic infection. These findings support further 
investigation of low-dose TBI (200 cGy) con-
taining RIC regimens in patients undergoing 
UCBT.
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