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Abstract: The notion of a contribution of a specific group in an organic molecule’s property and/or
activity is both common in our thinking and is still not strictly correct due to the inherent non-
additivity of free energy with respect to molecular fragments composing a molecule. The fragment-
based drug discovery (FBDD) approach has proven to be fruitful in addressing the above notions.
The main difficulty of the FBDD, however, is in its reliance on the low throughput and expensive
experimental means of determining the fragment-sized molecules binding. In this article we propose
a way to enhance the throughput and availability of the FBDD methods by judiciously using an
in silico means of assessing the contribution to ligand-receptor binding energy of fragments of a
molecule under question using a previously developed in silico Reverse Fragment Based Drug
Discovery (R-FBDD) approach. It has been shown that the proposed structure-based drug discovery
(SBDD) type of approach fills in the vacant niche among the existing in silico approaches, which
mainly stem from the ligand-based drug discovery (LBDD) counterparts. In order to illustrate the
applicability of the approach, our work retrospectively repeats the findings of the use case of an FBDD
hit-to-lead project devoted to the experimentally based determination of additive group efficiency
(GE)—an analog of ligand efficiency (LE) for a group in the molecule—using the Free-Wilson (FW)
decomposition. It is shown that in using our in silico approach to evaluate fragment contributions of a
ligand and to estimate GE one can arrive at similar decisions as those made using the experimentally
determined activity-based FW decomposition. It is also shown that the approach is rather robust
to the choice of the scoring function, provided the latter demonstrates a decent scoring power. We
argue that the proposed approach of in silico assessment of GE has a wider applicability domain and
expect that it will be widely applicable to enhance the net throughput of drug discovery based on the
FBDD paradigm.

Keywords: fragment-to-lead optimization; molecular modelling; de novo design; fragments; scoring
function; structure-based drug design; drug design; group efficiency

1. Introduction

The language of the chemical groups determining the main reactivity and physico-
chemical properties of compounds is at the heart of organic chemistry. The widespread
practical use of this language implies that a significant correlation between the compo-
sition of a molecule in terms of chemical groups and the physico-chemical properties of
the molecule is rather firm. This is reflected in good to excellent quantitative structure-
property relationships (QSPR) obtained for many properties of organic molecules [1],
e.g., for LogP [2,3], molar refractivity [4], boiling points [4,5], and others. Many of the
physico-chemical properties define the ADMET [6–8] properties of organic molecules, thus
influencing the probability of a molecule to be developed into a marketed drug.

However, the ability of a molecule to produce a desired pharmacological effect is
a far more complex issue, since the inherent complexity of living systems have to be
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additionally accounted for. Even at a simpler level of direct in vitro ligand-receptor activity
determination, the dependence of activity on fragment composition is not generally simple
or even smooth. A good example is the “activity cliffs”, where a pair of molecules differing
in a small group (e.g., -CH3) differ by an order or more in magnitude in their activity
against the same target [9]. Despite this general complexity, there exist a large number of
successful quantitative structure-activity relationships (QSARs) explaining the observed
experimental activity in terms of chemical composition. In particular, QSAR models based
on fragmental descriptors, reflecting the chemical composition of the molecule, have proven
to be reliable and accurate for numerous applications [10]. Additionally, a Free-Wilson kind
of QSAR modeling, in which a presence or absence of a particular group in a particular
place of a general molecular structure is correlated to activity, is based on the assumption
of strict additivity of each group contribution. Despite its simplicity, the Free-Wilson type
of analysis is often used in practical medicinal chemistry projects to rationally guide drug
development by getting insights from the data interpretation.

Particularly interesting in the studied context is the series of efforts in which physico-
chemical properties and activities are modeled (QSPR/QSAR) using a list of the manually
curated well-defined chemical groups as descriptors, which not only afforded reason-
able statistical performance but also enhanced their interpretation in terms of chemical
functional groups typical for organic chemistry [11].

The general approach of statistical mechanics does not support the simple view of the
additivity of contributions of the groups composing a molecule into its activity. Additional
support comes from the analysis of the experimental data [12]. Despite the aforementioned,
in practical settings a decent additivity is observed, at least of the first order approximation
to any type of non-additive dependency. Linear models are also the simplest and hence
provide the most throughput, which is often required at early stages of drug discovery
when hit compounds are being sought among vast virtual libraries, and more recently
even virtual chemical spaces [13]. For instance, the vast majority of scoring functions are
largely additive in terms of the fragments comprising a ligand. Besides, even sophisticated
computational tools in the multifactor field of drug discovery necessarily produce errors.
That is why the real world drug discovery projects try to judiciously combine prediction
steps with the experimental check, thus forming an Agile [14] style sequence of iterations
which happen to converge sometimes to a drug, despite the fact that each iteration is guided
by a rather simple incentive (an analog of anti-gradient in gradient optimization methods).
Combined with the fact that the fragment contribution language for organic chemistry is
natural and useful, it is no wonder that linear models are being fruitfully exploited despite
the known deficiencies.

The fragment-based drug discovery (FBDD) is close to the above analysis. The core
concept of FBDD, stated as a purely combinatorial problem, is that a combination of
several searches done in fragment-size chemical spaces (ca. 107–10) is far more efficient
than a direct search for a ligand in the entire chemical space (at least 1060 or more) [15].
Moreover the chemical space of fragments is intentionally narrowed by requiring good
ADMET properties, synthetic accessibility, and other properties. Even though FBDD is not
strictly based on the additivity of the contributions of the molecular fragments, in practice
a ligand is often composed of two or more fragments, each occupying a specific pocket
in the binding site (“link” strategy of de novo design [16,17]). Another possibility is to
grow an initially bound fragment to fill other still unoccupied pockets (“grow” strategy
of de novo design [16,17]). In either case, we cannot a priori expect a significant synergy
between the interactions of different fragments of a ligand and different pockets of a site.
Therefore, regular FBDD optimization tends to approximately satisfy the additivity of
fragment contributions.

The main source of success of FBDD is that the development is being based on the
experimentally determined affinities and geometries. This minimizes the risks of poor
understanding of the complex nature of binding of fragment-sized molecules to a target.
Whatever a the reasons which cause a fragment to tightly bind to a certain pocket of
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the binding site of the target, it is safer to stem further incremental development on this
information rather than on molecular modeling, for which accurate modeling of interac-
tions of fragment-sized—in contrast to drug-like—molecules with targets is particularly
challenging [18]. Another useful benefit of FBDD is that once decent strength interactions
are established for a pair of fragments in different pockets of the binding site, a properly
chosen linker will generally lead to a molecule combining the affinity of the two constituent
fragments. One of the practical results of FBDD adoption has become the widespread
use of efficiency metrics, such as e.g., ligand efficiency (LE) [19,20] and lipophilic ligand
efficiency (LLE or LipLE) [21,22], which first were introduced in order to properly compare
molecules of different sizes on the basis of how efficient all atoms are exploited to contribute
to favorable interactions to a target. Later on, the context was broadened and the focus
on the ligand efficiency has become one of the practical philosophies widely adopted in
drug discovery, although with certain caveats [20,23,24]. Finally, FBDD encourages the
building of ligands from the fragments with good ADMET properties in order to ensure
such properties as much as possible for the drug-sized ligand.

Given the extremely time- and resource-demanding and highly multiparameter nature
of drug discovery, every means to focus efforts is warranted. To this end, the knowledge
regarding which part of a molecule is good enough and which part deserves further op-
timization is crucial to enhance productivity in drug discovery. This can be considered
as a logical continuation of efficiency philosophy to the fragments composing a molecule,
leading to the management of fragment contribution to the binding and fragment effi-
ciency as analogs of ligand affinity and ligand efficiency. The main problem is how to
factor the binding affinity into fragment contribution, especially taking into account its
intrinsic non-additivity.

In order to address the need to estimate contributions of fragments of a molecule into
its activity/affinity, several approaches have been proposed. In the realm of QSAR, the
G-QSAR method suggests first to split a molecule into fragments according to fragmenta-
tion rules, defined manually for each molecule set, then to calculate descriptors for each
fragment, and finally to build a QSAR model [25]. A subsequent analysis of descriptor
contributions makes it possible to identify how each fragment affects the modeled activity
based on the association of each descriptor to a certain fragment. Apart from descriptors
solely associated with a specific fragment, the so called “interaction term” descriptors were
also used in order to estimate the non-additive effect of mutual influence of several frag-
ments on the modeled activity. The interaction term descriptors for a pair of fragments are
calculated as the elements of the outer product of the vectors of descriptors used for each
constituent fragment. However, despite the QSAR models with interaction term descriptors
showed generally better performance than the models without them, the increase in the
metrics of statistical performance is not large for the several structure-activity datasets
studied. This suggests that an additive model is a good starting approximation.

The general emerging trend, referred to as a “model-structure interpretation paradigm”,
in extracting structural interpretation from intrinsically hardly interpretable but highly
predictive machine learning models was pointed out by Polishchuk, who reviewed sev-
eral proposed methods [26]. For example, a universal approach was reported earlier by
Polishchuk et al. [27] which proposes a way to single out a contribution of a molecular frag-
ment to the predicted activity based on the predictive machine learning model regardless
of its type. In this model the contribution of fragment B in molecule AB is estimated as the
difference between the predictions made by the studied machine learning model made for
AB and A fragments, PAB(B) = P(AB) − P(A). Additionally, the additivity of fragment con-
tributions could be estimated for a specific dataset and activity at hand. It is worth noting
that the fragment contributions estimated for both physicochemical (solubility) and physio-
logical activity definitely showed a spread of values caused by different environments of
the fragments in specific molecules of the dataset studied. However, the magnitude of the
spread is moderate compared to the mean values of the estimated fragment contributions.
This again underscores that the additive model approach can serve as a decent and useful
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approximation. The main disadvantage of this type of approach is that for a new structure
to be meaningfully partitioned into fragment contributions, an extended set of structures
with known activity should be available so as to derive the underlying QSAR model on
these data.

Another approach which was proposed is based on the combination of experimental
data for activity of a series of nested structure molecules and the Free-Wilson analysis
made to extract the contributions of each fragment and convert them in group efficiency
(GE)—an analog of LE for a certain group [28]. Thus, this approach opens the way for LE
thinking based on experimental activity data for the chemically closest analogs. One of the
main disadvantages of this approach is its retrospective nature. In order to obtain group
contributions for a certain ligand, first a series of nested structures should be synthesized
and tested for activity.

Fragment contributions to the free energy of binding can also be estimated using free
energy perturbation (FEP) approaches, based on alchemical free energy (AFE) transforma-
tion and molecular dynamics- (MD) based sampling. Here the difference in free energy
of binding obtained by the FEP approach between a pair of ligands is interpreted as the
contribution of a group that is different between the two ligands. Substantial progress has
been achieved recently in this direction using both a more elaborate but less computational
resource demanding relative binding free energy (RBFE) [29,30] and a somewhat more
straightforward but more resource demanding absolute binding free energy (ABFE) [31]
approach. If the structure of a target is known, this approach provides the highest currently
achievable accuracy in predictions of the free energy differences of binding between a pair
of structures. However it comes at the cost of high computational burden and dependency
on the availability of highly experienced personnel to run and interpret simulations.

The reviewed approaches to extract the contributions of specific fragments in molecules
possess their benefits and deficiencies, and each method is best applicable in a certain con-
text and on a specific drug discovery stage (Table 1). What is common between the reviewed
approaches is that they mostly stem from the ligand-based drug discovery (LBDD) ap-
proach [32], whereas the relative advantages provided by the alternative structure-based
drug discovery (SBDD) approach are exploited only in the FEP type of methods. However,
the latter require highly skilled personnel and dedicated high end CPU/GPU resources.
Recently Shulga et al. [33] proposed an approach which adheres to the structure-based
drug discovery type and uses a simple setup and relies on fast scoring function-based
calculations. In this approach, a contribution of each fragment of a ligand for a specific
ligand-receptor complex geometry is estimated using the stakeholder based scheme, where
a share of each fragment is based on the value of a scoring function for each fragment,
treated as a separate molecule (capped with hydrogens or other appropriate groups, such
as methyls) at exactly the same location the fragment is situated in the whole ligand of the ligand-
receptor complex at hand. The details are given in the corresponding Methods section.

Each of the considered approaches to obtain GE values seems to be better suited at
specific settings or stages of a particular drug discovery project, based on the combination
of their advantages and disadvantages (Table 1). In this respect the use of the in silico R-
FBDD approach fits the vacant niche of fast and lean hit-to-lead optimization, provided the
receptor structure is known (Figure 1). It is well known that the accuracy of contemporary
scoring functions, especially in scoring ligand-receptor poses (both scoring and ranking
power), remains rather modest [34] to the extent that the manual expert curation is widely
considered a good practice and a viable option [35]. Despite this the scoring functions
are widely used tools at early drug discovery stages that contributed to many successful
drug discovery projects. Additionally, the stakeholder scheme employed in the R-FBDD
approach tends to reduce the influence of the errors in scoring functions. This is strictly
true for the multiplicative errors, which cancel when a share of each fragment is calculated.
Additionally, we intentionally address the issue of the influence of the scoring function
choice on the results obtained from the in silico partitioning the binding affinity of a
complex into the fragments’ contributions. To this end, different contemporary scoring
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functions are used to derive the GE values by the R-FBDD fragment contribution approach.
Thus we believe the approach will find its place in the armory of tools for fruitful drug
discovery. We anticipate it will be the most applicable at lean settings, for the projects
lacking high cost experimental FBDD facilities or high end computational resources, both
coupled with the low availability of highly skilled experts in either field.

Table 1. Pros, cons and applicability domain of different fragment contribution methods.

Method (1) G-QSAR, QSAR
Interpretation Methods

(2) Experimental Affinity
Free-Wilson Partitioning

(3) FEP Estimation of
Fragment Addition

(4) Fragment Contribution
Based on Scoring Function

Essence

Extract contribution of
each fragment via

statistical analysis of its
influence on the

predicted activity

Extract fragment
contribution from a

minimal set of structurally
nested ligands with known

experimental activity

The simulated free
energy differences
between a pair of

ligands are used to
estimate the

contribution brought
by the changed group

Extract fragment
contribution from a scoring
function estimation of each

fragment contribution,
provided a relevant

ligand-receptor complex
geometry is available

Pros

The most robust and
statistically significant

Non-additive
dependencies can

be studied
Ligand-based, no need to
rely on receptor structure
Fragment contributions

can be calculated
prospectively for new

structures but within the
applicability domain of

the underlying
QSAR models

The least possible efforts
can be made in terms of
synthesis and activity

measurement of a small
series of structural analogs

The activities of the
structures are valuable by

themselves and can be
rationalized even without
building a model—by a
qualitative SAR analysis

Potentially takes into
account many dynamic

and statistical effects
associated with binding

Only physics-based
models (force fields or

QM/MM) are
used—no reliance on

any additional
mathematical models
Additional statistical
metrics from the MD
trajectory regarding

ligand-receptor
interactions

No reliance on any
chemical class

“Cold start”—no need to
synthetize and measure the

experimental activity of
any structure

Several feasible binding
modes can be considered for
further ligand optimization
Often clear interpretation of

the nature of the
fragment-receptor

interactions
No dependence on
congeneric series of

ligand—any chemical
structure suits

Cons

An extended series of
ligands with established

activity is needed to
ensure statistically
significant results

New structures, for
which partitioning into
fragment contribution is
made, should be within
the applicability domain

of the underlying
QSAR models

Partitioning of affinity in
fragment contribution is
done retrospectively, i.e.,

only after the structures are
synthetized and their
activity is measured

A steep learning curve
for beginners in the

field due to the
inherent complexity

Dedicated
computational
resources, often

requiring high end
CPU/GPU

The relevant geometry of the
target needs to be known

Reliance on the geometry of
ligand-receptor complex

Moderate accuracy of
scoring functions

Dependence of activity
estimation on structural

choices: account of
crystallization waters,
protonation states of

receptor’s residues and a
ligand, etc.

Applicability

The most applicable to
lead optimization, when

an extended series of
different structures with

known experimental
activity is known

The most applicable to the
hit-to-lead stage, where a

fragment-sized hit is
expanded to a drug-sized
molecule. The FW scheme
should be used to plan the

synthesis of a minimal
series of analogs

The most applicable to
the lead optimization

stage, where the
chemical modifications
are generally small and

the binding mode is
well established. Can

be applied at
hit-to-lead stage also by
the experienced teams

The most applicable at early
stages of hit finding and/or

hit-to-lead, when a
reliable/relevant

structure/conformation of
the target is known.

Principle Ligand-based drug
design (LBDD)

Ligand-based drug
design (LBDD)

Structure-based drug
design (SBDD)

Structure-based drug
design (SBDD)
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Figure 1. The main areas of applicability of the GE methods reviewed in Table 1 (with the corre-
sponding methods’ numbering in parentheses) regarding a drug discovery project, using either a
ligand-based (LBDD) or a structure-based (SBDD) approach. The R-FBDD fragment contribution
based method fills in the vacant niche of lean in silico structure-based tools at early stages (hit finding,
hit-to-lead) of drug discovery.

In what follows we discuss and retrospectively check the applicability of our proposed
in silico R-FBDD approach applied to the use case of a recent FBDD hit-to-lead project [36].

2. Experimental Based Group Efficiency Use Case

In order to outline the applicability of our proposed approach, a use case of the
particular FBDD project, aimed at developing inhibitors for Mycobacterium tuberculosis
pantothenate synthetase [36], is taken for analysis. Within this project, starting from
the two fragment-sized ligands characterized by experimental KD values and, what is
even more important, resolved ligand-enzyme geometries, a further optimization step is
undertaken. After a few parallel optimizations have been performed—one based on a
“grow” strategy from one of the ligands and the other based on a “link” strategy—two
perspective ligands with KD values of 1.5 and 1.8 µM but somewhat suboptimal LE values of
0.28 and 0.26 kcal mol−1 atom−1, respectively, have been obtained. The generally accepted
threshold value of LE for drug-like molecules is 0.30 kcal mol−1 atom−1 [20]. Thus the
authors sought the ways to optimize their structures to simultaneously increase LE values
and decrease KD values closer to the nM range. The key question was to which part of
the molecules one needs to focus for further optimization. The authors employed the
FW-based decomposition approach based on the experimental data to find that one of the
fragments and a linker have the lowest GE values (Figure 2). Perhaps the linker is amenable
for synthetic considerations, so the authors focused their attention to optimization of the
fragment, for which the lowest GE values were detected. The subsequent efforts resulted
in a prospective inhibitor with IC50 = 253 nM and LE = 0.28 kcal mol−1 atom−1.

Our key question is whether the in silico R-FBDD approach, which we propose to
estimate fragment contributions and hence GE’s, is applicable to make a decision on further
optimization if it is used instead of the FW-based approach.

The two molecules 1 and 2 described above and shown in Figure 3 (corresponding
to structures 5 and 8 from the work [36]) were analyzed in our work. The fragments are
highlighted in different colors in the same Figure 3 according to the partitioning used in
the original work [36]. In the remaining part of the work these two molecules will be
partitioned into fragment contributions using the in silico fragment contribution estimation
method; the contributions will be converted into GE values, and finally the thus obtained
GE values will be compared with the GE values derived in Ref. [36] using the FW approach.
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3. Methods
3.1. Fragment Contribution Analysis

In this section the more general Reverse Fragment-Based Drug Discovery (R-FBDD)
approach [32] is briefly described, followed by its application to group efficiency (GE)
estimations, and is used throughout the paper.

The main idea is based on the reasoning that within the FBDD approach we score
different ligands at a binding site to rank them. It could be viewed as a process of iterating
over the structure changes (basically additions) aimed at finding structures with better
score and, finally, affinity/activity. This thought experiment can be considered as what
we call the “forward directed” FBDD approach, in which, starting from a fragment, one
iteratively finds new larger structures with better scores. However, if we change the focus
inward the ligand (as we say “reverse the direction”) we arrive at the idea of the in silico
Reverse Fragment-Based Drug Discovery (R-FBDD), in which we score different fragments
of the whole ligand at the same site, representing them as regular molecules (with caps)
in the geometries as they are in the whole ligand. Thus one is able to assess how each
fragment (in the form of a small molecule) would score in the position this fragment adopts
in the binding mode of the whole ligand.

Within the in silico R-FBDD approach, the fragment contributions to the binding are
estimated according to the following algorithm [33].

First, the method takes on input:

(a) a ligand-receptor geometry;
(b) a defined set of fragments for which to estimate the contributions;
(c) the interaction energy to be partitioned into contributions. It can be either experimen-

tally determined KD, Ki, −RT ln(IC50) or in silico evaluated KD;
(d) the choice of the scoring function to use.

Second, the defined fragments are extracted from the ligand-receptor geometry and
are capped with hydrogen to obtain sensible ground state molecules, preserving all the
hybridization of all atoms from the ligand. Other options to cap a broken bond are also
possible, such as the methyl group. It is important to note that the coordinates of fragments
are not changed regarding the position of the fragment in the ligand of a ligand-receptor
complex studied.

After that, for each fragment extracted and capped at previous stages, an estimation of the
single point (no optimization/docking) score is done based on the value of the scoring function
of interaction of each such fragment with the receptor to obtain Score(Fragmentj) values.

Once fragment scores for all fragments are obtained, unitless fragment contributions,
ωj, are calculated according to the stakeholder Scheme (1).

Finally, once the fragment contributions are obtained, they are used to partition the in-
teraction energy, ∆Emol, taken on input, into the energy contributions, Ej

Scaled (Equation (2)),
which are by design additive to give in sum the interaction energy for the whole ligand
(Equation (3)).

ωj =
Score

(
Fragmentj

)
∑N

i=1 Score(Fragmenti)
(1)

EScaled
j = ωj · ∆Emol (2)

N

∑
i=1

EScaled
i = ∆Emol ·

N

∑
i=1

ωi = ∆Emol (3)

The general assumptions behind in silico fragment contribution estimation analysis are:

1. The additivity of fragment contributions in a molecule is a relevant model;
2. An estimation of the feasibility of each fragment in a specific position of that fragment

in the ligand of the ligand-receptor complex is done—not to be confused with the
global search of the best binding mode of each fragment in the same binding site;
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3. A simple stakeholder scheme is adequate to partition a ligand into fragment contributions—
e.g., Hirshfield analysis [37] uses the same principle to derive atomic charges from atomic
centered orbitals (for also very non-additive quantity);

4. Scoring functions are accurate enough to estimate a share; each fragment contributes
to binding (estimated at a specific binding position), since the errors seem to be
partially compensated—for multiplicative errors it rigorously follows from the share
Equation (1).

The useful properties of the in silico fragment contribution method are:

1. Fragment capping allows the use of different means to estimate fragment shares,
ranging from different scoring functions through MM to QC calculations;

2. Various sources of the binding affinity could be split into fragment contributions:
experimental activity (transformed to energy units), scoring function at experimental
geometry, scoring function at docking geometry, or other sources;

3. No specific requirements to the ligand-target geometry exist, other than the latter
is reasonable enough and is within the applicability domain of the scoring method
used. Which ligand-receptor geometry (whether it is credible at all) to partition into
fragment contribution is the responsibility of a researcher using the method;

4. The method does not impose any specific requirements on how to fragment a molecule
into fragments, it is the choice of a researcher, provided the fragments capped with
hydrogen atoms (or other groups) at the broken bonds are sensible and within the
applicability domain of the scoring function used.

When the jth fragment energy contributions, Ej
Scaled (Equation (2)), are obtained in the

units of free energy, it is possible to convert these values into the desired group efficiencies
(GE) of the corresponding fragments using the formula similar to ligand efficiency (LE)
calculation (Equation (4)). In the former the affinity of the whole ligand, ∆Emol, is substituted
with the corresponding estimation of fragment affinity, Ej

Scaled, whereas the number of
heavy (non-hydrogen) atoms is taken separately for each fragment.

GEj =
EScaled

j

NHj
, (4)

where GEj—is the group efficiency (GE) of the jth fragment, and NHj—is the number of
heavy atoms in the jth fragment.

3.2. The Use Case Settings
3.2.1. Ligand and Receptor Preparation

PDB:3IUE, PDB:3IVX were used as a source of ligand-protein geometries for structures 1
and 2 (Figure 3), corresponding to compounds 5 and 8 from Ref. [36], respectively.

In order to prepare receptors, all amino acid alternative positions, water molecules
and small molecules were removed from the complexes. Hydrogen atoms were added and
PDBQT files for receptors were prepared using MGLTools (v. 1.5.6) [38].

Ligands geometries were extracted from the corresponding PDB complexes. Hydro-
gens were added by means of OpenBabel (v. 3.0.0) [39] using the value of pH = 7.4 as a
reference (with option −p 7.4). That resulted in that the carboxylic groups (fragment #4)
in both ligands were deprotonated and, hence, negatively charged. PDBQT files for the
ligands were prepared using MGLTools [38].

3.2.2. Ligand Fragmentation Scheme

The ligands were partitioned into exactly the same fragments that were used in
Ref. [36] to streamline comparison. The fragmentation is provided in Figure 3 using the
similar color scheme as in the original paper.
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3.2.3. Ligand-Receptor Complex Geometries
Experimental Geometries

The first step is to estimate how the proposed approach of GE estimation works in the
settings where the warnings of the ligand receptor geometry inaccuracy could be excluded.
To this end, the fragment contribution analysis is done using the experimental geometries,
which are fortunately available for the use case chosen for our study.

PDB:3IUE, PDB:3IVX were used as a source of ligand-protein geometries for structures 1
and 2 (Figure 3). For both ligand-receptor complexes, segments A were used among the two
available segments in the crystal structures.

Docking Geometries

For this step all ligands, receptors and the fragmentation scheme were left untouched
as in the experimental geometry case. The only difference is the source of the ligand-
receptor complex geometries, which were subsequently used to derive GE values for the
selected groups.

At the start of a hit-to-lead FBDD project, an experimental geometry of binding of a
fragment-sized hit to the defined target is often available. In our case we use docking to
find plausible binding modes for which fragment contribution analysis and subsequent GE
estimation is made. Since a small molecule defined by fragment #3 (Figure 3) was previously
found to be the most relevant starting position [40] for further FBDD development, so
the crystal structure of this molecule, PDB:3IMC, was taken to generate plausible docking
geometries for larger ligands 1 and 2. This structure contains two similar segments, and
segment A was used for further study.

Docking is known to be much better in generating native-like geometries than in
properly scoring different modes [34]. Thus, in order to select the most relevant ligand-
receptor geometry among the several binding modes found by docking, we use the criterion
that the position of the fragment #3 (5-methoxyindole) should be the closest (in terms of
RMSD) to the experimentally determined position of 5-methoxyindole bound to the same
target taken from PDB:3IMC.

AutoDock Vina v1.1.2 [41] was used to generate feasible binding modes of the ligands,
since it combines significant throughput and the quality of the obtained binding modes
ranked as one of the best in the docking power test among the other scoring functions
according to [34].

3.2.4. Robustness to the Scoring Function Choice

The possible dependence of the proposed in silico approach to estimate group effi-
ciency (GE) on the accuracy of the scoring function (SF) may be considered as its inherent
weak point. However, the theoretical arguments provided in the Introduction show that
(a) in the chosen niche there is no sensible alternative, and (b) the errors in the scoring
function tend to partially be compensated due to the use of the stakeholder scheme to
estimate the fragment’s shares. Additionally, we test our affinity partitioning approach
with different SFs to estimate the variance in the predicted values and hence the ability of
the approach to guide a drug discovery project in the real-life settings.

Different scoring functions were included in the experiment (Table 2). First, all types
of known scoring functions—physics-based (force-field), empirical, knowledge-based and
machine learning—were represented. Second, the SFs which showed decent scoring power
in the CASF-2016 Update [34] experiment were preferred. Last, the choice was restricted to
the publicly available SFs for our research.
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Table 2. Scoring functions used in the research.

Scoring Function Source Classification References

AutoDock4 AutoDock v4.2.6 Physics-based function [38]
AutoDock4 AutoDock Vina v1.2.3 Physics-based function [38,42]

AutoDock Vina AutoDock Vina v1.1.2 Empirical scoring function [41]
AutoDock Vina AutoDock Vina v1.2.3 Empirical scoring function [42]

Vinardo AutoDock Vina v1.2.3 Empirical scoring function [42,43]
DSX DrugScoreX v0.9 Knowledge-based potential [44]

∆VinaRF20
https://github.com/chengwang88/deltavina

(accessed on 19 February 2022) Machine-learning model [45]

The same AutoDock Vina v1.1.2 docking geometries of ligands 1 and 2 were used as a
universal source of docking geometry throughout the study.

Settings Details

AutoDock scoring function was chosen as one of the classical publicly available
physics-based (or force field-based) scoring functions. Moreover, it was shown that it
performs reasonably in the context of the CASF-2013 study [46]. For AutoDock calculations,
autodock4 and autogrid4 v4.2.6 were used. The grid was built using 60 × 60 × 60 points
with standard 0.375 Å spacing centered about the center of mass of the ligands. All of the
other options for both autogrid4 and autodock4 were standard. Option ‘epdb’ was used to
run a single point calculation for the fragment-receptor geometry provided without any
optimization. The input PDBQT files for both fragments and receptors were prepared using
MGLTools v1.5.6 [38] as usual. The generated receptor map potentials were also used to
estimate the AutoDock score as implemented within the AutoDock Vina v1.2.3 package
using the ‘–scoring=ad4’ option.

AutoDock Vina was used in two versions, i.e., 1.1.2 and 1.2.3, with the same PDBQT
input files as above and using the ‘–score_only’ option to produce scores.

Vinardo SF was included in the group of empirical SFs since it was reported that it
appreciably improved performance above AutoDock Vina by fine tuning the settings of
the latter [43]. The Vinardo SF values were calculated using its implementation within the
AutoDock Vina v1.2.3 package using the option ‘–scoring=vinardo’ using the same input
as for AutoDock Vina and AutoDock calculations.

DSX scoring function v0.9 was chosen as a representative among the knowledge-based
type of SFs as having a reasonably high performance in scoring power among the similar
type SF [44]. DSX was installed in the Anaconda environment using the ‘conda install -c
insilichem drugscorex’ command.

A difficult choice was for the category of machine learning (ML) scoring functions [47,48].
Those SFs are capable of describing the non-linear dependency and take into account
more details than is done in the traditional SFs. A wide range of methods are generally
used in machine learning, ranging from multiple linear regression to the deep learning
neural nets that were applied in the context of SF, hence spawning a great number of
available options. Due to the high flexibility of the machine learning methods and the
restricted set of available ligand-receptor complexes of decent quality annotated with
the binding affinity, the machine learning SFs are inherently prone to overfitting [49],
even though much effort to reduce this problem during the development of this type of
SFs was undertaken. Interestingly, the ML approach used in one of the first ML-based
type of SFs–RF-Score [50,51], the Random Forest (RF) regression, is currently employed
by one of the overall best performing SF [47]. It combines the improved performance
compared to the classical scoring functions and relative simplicity. In our study we chose
∆VinaRF20, also built on the RF regression over the AutoDock Vina generated features [45]
to represent the ML-type of SFs, because it showed the best scoring power among the
SFs tested in the CASF-2016 Update study [34]. ∆VinaRF20 was taken from the GitHub
repository https://github.com/chengwang88/deltavina (accessed on 19 February 2022).

https://github.com/chengwang88/deltavina
https://github.com/chengwang88/deltavina
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The results obtained using AutoDock Vina v1.1.2 and v1.2.3 appeared numerically
close, with the difference being in the third digit (less than 1%), so only the results for v1.2.3
were used for statistical gathering. The same is applied to the pair of AutoDock v4.2.6 and
AutoDock Vina v.1.2.3 with option ‘–scoring=ad4’.

4. Results and Discussion

For the molecules of the use case, where GE values estimated from the experimental
activity data appeared to be fruitful to make an important decision on further hit-to-lead
optimization, the GE values for the same fragments and molecules are obtained using an
in silico R-FBDD approach. Thus the obtained GE values can be used retrospectively to
choose the way of further ligand optimization. The question is therefore whether the same
or similar principal decisions as were made in the work with the FW-based GE estimation
could be done using our in silico counterpart.

Since the crystal structures are available for the molecules from the original work [36],
we check the proposed in silico method in two settings using either: (1) the experimental
geometry of the ligand-receptor complex and AutoDock Vina scoring function, and (2) the
docking produced ligand-receptor complex geometry (closest to the fragments’ position)
and the AutoDock Vina scoring function.

4.1. GE Based on Experimental Geometry

The first step of our evaluation is based on the experimental ligand-receptor complexes
in order to estimate the ability of the approach to single out the group contributions. This
is done in order to separate the influence of the well-known inaccuracy of the choice of the
modeled (by docking) complex geometry on the prediction results.

The application of in silico fragment contribution analysis resulted in the values of frag-
ment shares and the corresponding values of GE shown in Figure 3 designated as “R-FBDD”.
The reference values of GE obtained using the FW analysis decomposition scheme based
on the experimental activities of a series of nested structure ligands [36] are also provided
for reference in Figure 3. It should be noted that the value of ∆Grigid = 4.2 kcal/mol [52]
arbitrarily added to the “scaffold” fragment #3 in Refs [36,53] was not used in our study
in order to make the analysis clearer and better comparable to the corresponding Ligand
Efficiency (LE) values. The obtained results are quantitatively very close. More importantly,
the results agree well on the qualitative level at which the decisions on further optimization
are being made.

One can see that the fragment contribution analysis led to quite similar results
and, more importantly, it supports the same decision as was made based on the FW ap-
proach on top of the experimental activities. In particular, 5-methoxyindole (fragment #3)
and acetic acid (fragment #4) exhibit very efficient binding in terms of GE, with values
being above the generally accepted threshold value of LE for drug-like molecules of
0.30 kcal mol−1 atom−1 [20]. Taking into account that those fragments #3 and #4 effectively
form a single scaffold, it is evident that their correct placement in the binding site guaran-
tees an efficient “binding anchor” for a series of possible structures (see the absolute values
of AutoDock Vina scoring for each fragment in Table S1, Supplementary Materials). On
the other hand, fragments #1 and #2 are clearly suboptimal for the decomposition of both
structures 1 and 2 according to the GE values obtained by both the experimental FW and
the in silico R-FBDD approaches (Figure 3). Since the acyl sulfonamide group (fragment #2)
was shown to establish crucial hydrogen bonds and to properly orient the fragment #1 into
the binding pocket, the former fragment #2 was retained by the authors without further
modifications. In these circumstances the most promising fragment for further optimization
is fragment #1. This decision finally made by the authors of the use case is well-supported
by both the reference experimental activity FW analysis and the in silico R-FBDD analysis
based on the experimental geometries of the complexes of 1 and 2 with the target. Therefore,
this use case demonstrates that once a decent ligand-complex geometry is available, the in
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silico R-FBDD analysis in terms of GE values provides a valuable basis for decision-making
in lean FBDD settings.

Figure 2. Group efficiencies for the use case compounds 1 and 2 obtained using the Free-Wilson (FW)
method for a series of structure analogs, taken from Ref. [36], where compounds 1 and 2 correspond
to compounds 5 and 8, respectively. Compound numbers from Ref. [36] are in parentheses. NH is
the number of heavy atoms of a fragment. The fragments of molecules 1 and 2 are numbered and
highlighted with different colors. The value of ∆Grigid = 4.2 kcal/mol [52] arbitrarily added to the
“scaffold” fragment #3 in Refs [36,53] was not used in order to make the analysis clearer.

Figure 3. Compounds 1 and 2 corresponding to compounds 5 and 8 from Ref. [36], their decomposi-
tion into fragments and group efficiencies (GE) estimated by different methods: FW—experimental
based Free-Wilson decomposition, R-FBDD—in silico decomposition based on the experimental
geometry, R-FBDD/docked—in silico decomposition based on the docked geometry closest to the
experimental position of fragment #3. The value of ∆Grigid = 4.2 kcal/mol [52] arbitrarily added to
the “scaffold” fragment #3 in Refs [36,53] was not used in order to make the analysis clearer.

4.2. GE Based on Docking Geometry

The second step strives to estimate the applicability of the proposed approach in
more real-life conditions, when the exact complex geometry is not known (is too time and
resource expensive to obtain). In such conditions, the GE estimation relies on the accuracy
of the docking’s predicted geometries. On the other hand, such settings are far more
widespread in drug discovery practice. Hence the demonstrated ability to make valuable
predictions in the absence of an experimental ligand-receptor complex will mean the
desired extension of availability of the FBDD methods in everyday drug discovery practice.
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Among the most energetically favorable ligand-receptor complex geometries for both 1
and 2 generated by AutoDock Vina, the geometries closest in the position of the primordial
5-methoxyindole fragment (fragment #3) in its crystal structure with the enzyme were used
to derive in silico fragment contributions. Notably, the resulting docking geometries do
not perfectly fit the corresponding crystal geometries in the parts distant from fragment
#3 (Figure 4). Despite this, the estimated GE’s for fragments of 1 and 2 based on the
docking geometry (R-FBDD/docked in Figure 3) provide decent guidance for further
ligand optimization.

Figure 4. Ligand-receptor complexes for 1 (left) and 2 (right) with Mycobacterium tuberculosis pan-
tothenate synthetase. The 5-methoxyindole fragment (#3) crystal position (PDB:3IMC) is in magenta.
Crystal geometries of 1 (PDB:3IUE) and 2 (PDB:3IVX) are in orange. The docked geometries chosen
for GE estimation are in CPK colors.

Notably, for structure 1, the in silico R-FBDD analysis on top of the docked ligand-
receptor geometry gives quite the same results as were derived from the reference FW
decomposition at the qualitative level (Figure 3 R-FBDD/docked). The docked mode used
to derive the analysis is the seventh in rank but within a very close energetic range of
0.8 kcal/mol from the best pose obtained by AutoDock Vina regardless of any restraints.
The GE value for fragment #1 is well below the usual LE threshold, so the main optimization
focus should be placed on it according to the purely in silico analysis.

The results for structure 2, however, deserve more attention. The mode chosen for the
analysis is the second in rank and within only 0.4 kcal/mol from the best mode found. The
estimation of fragment contributions and hence GE values are remarkably conserved for
fragments #3 and #4. The latter is perhaps not surprising because of the RMSD filtering
based on the proximity to the experimental position of fragment #3. What is different for 2 is
that estimations of affinity contributions for fragments #2 and especially #1 are substantially
higher than for the experimental geometry. Here the benzofuran fragment #1, according
to docking, occupies a reasonable position, filling the pocket cavity and establishing a
hydrogen bond with Gln72. Additionally, the energy estimate (AutoDock Vina score) for
fragment #1 is considerable and even approaches that of the core fragment #3. The reference
crystal structure of 2, PDB:3IVX, contains two water molecules in this pocket, forming
hydrogen bonds with Gln72 and Gln164. In addition, in the crystal structure used for
docking, PDB:3IMC, which contains only fragment #3, the discussed position is occupied
with a glycerol molecule whose two oxygen atoms closely overlap with the two oxygens of
the water molecules discussed above. It seems that benzofuran’s moiety (fragment #1) in 2
does not fully exploit the binding possibilities offered by this pocket, which is confirmed
by the remaining water molecules, the enhanced B-factor for benzofuran moiety in the
crystal structure of PDB:3IVX and, remarkably for the prospective studies, by the significant
variation of fragment #1 according to the positions found by docking (Figure 5 right). The
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latter spans a relatively narrow energy range of 1.9 kcal/mol. For purposes of comparison
the similar overlay of all docking modes found for 1 is presented in Figure 5 left. Here
fragment #1 does not facilitate the ligand to spread significantly between the binding modes.
Interestingly, for both 1 and 2 there are a substantial number of conformations of ligands
which occupy both the P1 and P2 pockets. This can additionally suggest, using only in
silico means of system exploration, that fragments #1 and #2 could be optimized further in
order to exploit the capabilities of the pockets more fully.

Figure 5. The overlay of all modes found by AutoDock Vina docking (red) for 1 (left) and 2 (right)
on the corresponding crystal structures of the same molecules.

Of course, none of the approaches and tools could be expected to provide guaranteed
results in such a complex and multi parameter field as drug discovery. However, a useful
tool helps to get insights where the other methods do not help or are not affordable for
some reason. It has been shown that even for such a non-ideal system at hand, the proposed
in silico R-FBDD approach for GE estimation was capable of bringing the guidance and
insights for further development in the real-life settings of the early stage FBDD.

4.3. Robustness to the Scoring Function Choice

Despite the expected spread of values of group efficiencies (GE) obtained with different
scoring functions (SF), the values tend to be generally agreeable. Moreover, at the qualitative
level, where a decision on the focus of further compound optimization is taken, different
SFs lead effectively to the same decision (Figure 6).

The charged carboxylate moiety (fragment #4) receives varying scoring in physics-
based and the other scoring functions. Although it establishes multiple proper salt bridges
and hydrogen bonds with the receptor, their significance to the binding affinity is perhaps
overestimated due to underestimated desolvation effect in AutoDock4 calculations.

The binding mode of 1, obtained by ADV docking, generally leads to the same conclu-
sions and decisions which would have been made using experimental geometry.

It is interesting that for the docking geometry of 2 the fragment contributions (in
free energy terms) of benzofuran (fragment #1) and 5-methoxyindole (fragment #3) are
consistently close numerically for different scoring functions. In the real-life settings of a
lean FBDD project, this should be treated as a warning that the fundamental assumption of
FBDD regarding the importance of the “anchor” (experimentally determined) fragment
is violated. This may indicate that a spurious binding mode or receptor conformation
might be the main cause rather than the well- appreciated affinity gain due to growing the
initial fragment. In this case the R-FBDD analysis clearly shows that the binding mode
chosen for analysis should not be used for further optimization, since in this binding mode
fragment #1 clearly and consistently fits well into the nearby binding pocket, in part at
the expense of the “anchor” fragments #3 and #4, whose GE values tend to be close to the
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threshold LE value of 0.3. Thus, in a real life project, another binding mode should be
sought in order to base further optimization on it.

Figure 6. Comparison of GE values obtained using different scoring functions with the FW ex-
perimental affinity decomposition results: top—using the experimental geometries, PDB:3IUE for
1 and PDB:3IVX for 2, and bottom—using the docking geometry (ADV) closest by RMSD to the
experimental position of fragment #3 (PDB:3IMC).

It should be pointed out also that the ∆VinaRF20 and DSX scoring functions report their score
in pKd and ln(ρi/ρref) units, respectively (see e.g., Tables S6 and S7, Supplementary Materials).
However, the nature of the stakeholder share estimation makes it possible to seamlessly use
these values to partition the energy estimate into the fragment contributions.

Thus, in addition to the theoretical arguments to the expected robustness of the R-
FBDD approach to GE estimation, it has been shown that scoring functions of different
natures of all the known classes, despite showing appreciable numerical variation of the
fragments’ affinity, result in the same decision regarding the focus of further optimization
of a compound.

As practical advice, it is better to use a set of scoring functions of different types in order
to estimate the variance for different fragments and obtain more robust consensus estimates.

5. Conclusions

The estimation of fragment contributions to the affinity of a ligand under study
helps to focus the resources on its rapid and cost-effective optimization. In the context of
fragment-based drug discovery (FBDD), each fragment within a ligand could be assigned
a value of Group Efficiency (GE), which is a direct analog of Ligand Efficiency (LE) at a
molecular level. In this work, we have briefly considered the available methods to estimate
GE and group them according to different parameters, such as the reliance on ligand-based
drug discovery (LBDD) or structure-based drug discovery (SBDD) approaches and the
requirements to the input information that should be available to use the method. We have
shown that there is a niche in this space that belongs to the early stage hit-to-lead FBDD
projects which has not been filled yet.

Conceptually, we propose a new in silico SBDD method to estimate group contribution
to the ligand affinity and group efficiency. We believe that this structure-based drug design
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(SBDD) method will complement the known existing means to estimate GE relying on a
ligand-based drug design (LBDD) approach. One of the main benefits of the proposed
approach is its fast and low cost in silico nature. So it helps to streamline the process of the
generation of hypotheses for new active compounds at the early stages of drug discovery.
Moreover, the interpretation of the fragment contributions/efficiencies in terms of ligand-
receptor interactions is an additional source of insights for further structure optimization.

In order to estimate the applicability of the proposed method to real life FBDD settings,
we reproduced with our approach the use case of the FBDD project in which inhibitors
of the Mycobacterium tuberculosis pantothenate synthetase were sought. In this project
the Free-Wilson (FW) method was used to partition the free energy of binding into the
free energy contributions of the composing fragments, with all energies being determined
experimentally for the structurally nested structures. The experimentally determined group
efficiencies (GE) were used to guide further optimization of a particular fragment. We
showed that by using in silico R-FBDD partitioning, which employs scoring functions, and
different types of ligand-receptor geometries, that it is possible to arrive at similar decisions
within the project considered retrospectively. An important practical observation is that the
predicted results are relatively robust to the choice of scoring function provided the latter
is capable of scoring the ligand and the fragment positions well. It is also advisable to use a
set of different scoring functions to obtain more robust consensus estimates.

More experiments should definitely be conducted to estimate statistics and caveats of
the method proposed applied to real life conditions to view it as a mature tool. However,
even at this stage it is evident that the method will find its application in lean and agile
FBDD projects that are mostly focused on early stage hit-to-lead optimization.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27061985/s1, Table S1. Values of scoring function
AutoDock 4 obtained by scoring of compound 1 fragments with experimental geometry in the
binding sites of target models (PDB:3IUE). Table S2. Values of scoring function AutoDock 4 (Vina 1.2)
obtained by scoring of compound 1 fragments with experimental geometry in the binding sites
of target models (PDB:3IUE). Table S3. Values of scoring function AutoDock Vina 1.1.2 obtained
by scoring of compound 1 fragments with experimental geometry in the binding sites of target
models (PDB:3IUE). Table S4. Values of scoring function AutoDock Vina 1.2.3 obtained by scoring of
compound 1 fragments with experimental geometry in the binding sites of target models (PDB:3IUE).
Table S5. Values of scoring function Vinardo (Vina 1.2.3) obtained by scoring of compound 1 fragments
with experimental geometry in the binding sites of target models (PDB:3IUE). Table S6. Values
of scoring function ∆VinaRF20 obtained by scoring of compound 1 fragments with experimental
geometry in the binding sites of target models (PDB:3IUE). Table S7. Values of scoring function
DrugScore X obtained by scoring of compound 1 fragments with experimental geometry in the
binding sites of target models (PDB:3IUE). Table S8. Values of scoring function AutoDock 4 obtained
by scoring of compound 2 fragments with experimental geometry in the binding sites of target
models (PDB:3IVX). Table S9. Values of scoring function AutoDock 4 (Vina 1.2) obtained by scoring of
compound 2 fragments with experimental geometry in the binding sites of target models (PDB:3IVX).
Table S10. Values of scoring function AutoDock Vina 1.1.2 obtained by scoring of compound 2
fragments with experimental geometry in the binding sites of target models (PDB:3IVX). Table S11.
Values of scoring function AutoDock Vina 1.2.3 obtained by scoring of compound 2 fragments with
experimental geometry in the binding sites of target models (PDB:3IVX). Table S12. Values of scoring
function Vinardo (Vina 1.2.3) obtained by scoring of compound 2 fragments with experimental
geometry in the binding sites of target models (PDB:3IVX). Table S13. Values of scoring function
∆VinaRF20 obtained by scoring of compound 2 fragments with experimental geometry in the binding
sites of target models (PDB:3IVX). Table S14. Values of scoring function DrugScore X obtained by
scoring of compound 2 fragments with experimental geometry in the binding sites of target models
(PDB:3IVX). Table S15. Values of scoring function AutoDock 4 obtained by scoring of compound 1
fragments with docked geometry in the binding site of target models (PDB: 3IMC). Table S16. Values
of scoring function AutoDock 4 (Vina 1.2) obtained by scoring of compound 1 fragments with docked
geometry in the binding sites of target models (PDB:3IMC). Table S17. Values of scoring function
AutoDock Vina 1.1.2 obtained by scoring of compound 1 fragments with docked geometry in the
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binding sites of target models (PDB:3IMC). Table S18. Values of scoring function AutoDock Vina 1.2.3
obtained by scoring of compound 1 fragments with docked geometry in the binding sites of target
models (PDB:3IMC). Table S19. Values of scoring function Vinardo (Vina 1.2.3) obtained by scoring
of compound 1 fragments with docked geometry in the binding sites of target models (PDB:3IMC).
Table S20. Values of scoring function ∆VinaRF20 obtained by scoring of compound 1 fragments with
docked geometry in the binding sites of target models (PDB:3IMC). Table S21. Values of scoring
function DrugScore X obtained by scoring of compound 1 fragments with docked geometry in the
binding sites of target models (PDB:3IMC). Table S22. Values of scoring function AutoDock 4 obtained
by scoring of compound 2 fragments with docked geometry in the binding sites of target models
(PDB:3IMC). Table S23. Values of scoring function AutoDock 4 (Vina 1.2) obtained by scoring of
compound 2 fragments with docked geometry in the binding sites of target models (PDB:3IMC). Table
S24. Values of scoring function AutoDock Vina 1.1.2 obtained by scoring of compound 2 fragments
with docked geometry in the binding sites of target models (PDB:3IMC). Table S25. Values of scoring
function AutoDock Vina 1.2.3 obtained by scoring of compound 2 fragments with docked geometry
in the binding sites of target models (PDB:3IMC). Table S26. Values of scoring function Vinardo
(Vina 1.2.3) obtained by scoring of compound 2 fragments with docked geometry in the binding sites
of target models (PDB:3IMC). Table S27. Values of scoring function ∆VinaRF20 obtained by scoring
of compound 2 fragments with docked geometry in the binding sites of target models (PDB:3IMC).
Table S28. Values of scoring function DrugScore X obtained by scoring of compound 1 fragments
with docked geometry in the binding sites of target models (PDB:3IMC). Table S29. The pivot table of
group efficiency (GE 2) calculated from values of scoring functions obtained by scoring of compound
1 fragments with experimental geometry in the binding sites of target models (PDB:3IUE). Table S30.
The pivot table of group efficiency (GE 2) calculated from values of scoring functions obtained by
scoring of compound 2 fragments with experimental geometry in the binding sites of target models
(PDB:3IVX). Table S31. The pivot table of group efficiency (GE 2) calculated from values of scoring
functions obtained by scoring of compound 1 fragments with docked geometry in the binding sites
of target models (PDB:3IMC). Table S32. The pivot table of group efficiency (GE 2) calculated from
values of scoring functions obtained by scoring of compound 2 fragments with docked geometry in
the binding sites of target models (PDB:3IMC).
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