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Abstract
Background: The tumor microenvironment (TME) plays a critical role in tumori-
genesis, development, and therapeutic efficacy. Major advances have been achieved 
in the treatment of various cancers through immunotherapy. Nevertheless, only a 
minority of patients have positive responses to immunotherapy, which is partly due 
to conditions of the immunosuppressive microenvironment. Therefore, it is essential 
to identify prognostic biomarkers that reflect heterogeneous landscapes of the TME.
Methods and materials: Based upon the ESTIMATE algorithm, we evaluated the 
infiltrating levels of immune and stromal components derived from patients af-
flicted by various types of cancer from The Cancer Genome Atlas database (TCGA). 
According to respective patient immune and stromal scores, we categorized cases 
into high- and low-scoring subgroups for each cancer type to explore associations 
between TME and patient prognosis. Gene Set Enrichment Analyses (GSEA) were 
conducted and genes enriched in IFNγ response signaling pathway were selected 
to facilitate establishment of a risk model for predicting overall survival (OS). 
Furthermore, we investigated the associations between the prognostic signature and 
tumor immune infiltration landscape by using CIBERSORT algorithm and TIMER 
database.
Results: Among the cancers assessed, the immune scores for skin cutaneous mela-
noma (SKCM) were the most significantly correlated with patients' survival time 
(P < .0001). We identified and validated a five-IFNγ response-related gene signature 
(UBE2L6, PARP14, IFIH1, IRF2, and GBP4), which was closely correlated with the 
prognosis for SKCM afflicted patients. Multivariate Cox regression analysis indi-
cated that this risk model was an independent prognostic factor for SKCM. Tumor-
infiltrating lymphocytes and specific immune checkpoint molecules had notably 
differential levels of expression in high- compared to low-risk samples.
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1 |  INTRODUCTION

Tumor microenvironment (TME) is the main location where 
tumor cells interact with the host immune system. Apart from 
tumor cells, the TME consists of varied heterogeneous compo-
nents including immune cells, stromal cells, and extracellular 
components such as cytokines, chemokines, and hormones. 
The various components of the TME not only play important 
roles in tumor progression, immune escape, and metastasis, 
but also have a profound impact upon therapeutic efficacy of 
afflicted patients.1-3 For example, immunosuppressive cells 
within the TME play critical roles in promoting tumor im-
mune escape and facilitate localized suppression of anti-tumor 
immune responses by way of releasing immunosuppressive 
cytokines.4 Likewise, high levels of tumor infiltrating lympho-
cytes often correlate with a favorable survival in patients with 
skin cutaneous melanoma (SKCM) as well as other solid tu-
mors.5 Emerging immunotherapeutic strategies involving im-
mune checkpoint inhibitors (ICIs) have facilitated astounding 
improvements in the survival of patients afflicted by various 
types of cancers, however, the majority of afflicted patients 
have no stability in long-term response to treatments, or con-
tinue to have relatively poor prognoses.6-8 The limited efficacy 
of these immunotherapies has been at least partly attributed to 
the immunosuppressive effects of TME. Even when consider-
ing just one type of relatively distinct cancer, the contexture 
and organization of immune infiltrates can be highly heteroge-
neous.9 Consequently, it is critical to understand the molecular 
composition and function of TME to facilitate effective diag-
nosis, prognosis, mitigations, and immunotherapeutic respon-
siveness of patients afflicted by cancers.

The Cancer Genome Atlas (TCGA) has helped to fur-
ther cancer diagnostics and treatments by having provided 
comprehensive- and systematic-based information for the 
genomics of varied cancers. Genomic and transcriptomic 
landscapes of tumors have been identified as key elements 
to be understood in order to define the dynamics of TME.10 
Exploration of tumor immune response based upon gene ex-
pression profiles has elucidated significant roles played by 
tumor infiltrating immune cells.11

In our study, the main goal we sought to accomplish 
was to explore TME-related prognostic biomarkers, which 
could also contribute to facilitating the identification of 

heterogeneous tumor immune landscapes and response effects 
of ICIs. Yoshihara et al described a novel algorithm called 
“Estimation of STromal and Immune cells in MAlignant 
Tumor tissues using Expression data” (ESTIMATE), which 
was designed to facilitate inference of proportions of immune 
and stromal components within the TME.12 Several studies 
have effectively applied ESTIMATE to explore microenvi-
ronments of breast cancer, glioma, and urothelial cancer.13-15 
Thus, we used the ESTIMATE algorithm to calculate immune 
and stromal scores for distinct types of tumors which were all 
approved by FDA (Food and Drug Administration) for immu-
notherapy-based treatments.16 The association of the scores 
and overall survival (OS) of these patients revealed that the 
immune scores of SKCM were most significantly correlated 
with patients' survival. As SKCM cells are highly immuno-
genic, we then focused upon the analysis of SKCM data. By 
using GSEA analysis, we found that the genes related to IFNγ 
response signaling pathway were markedly enriched in sam-
ples with high immune scores for respective patients. IFNγ 
affects tumor cell immunogenicity directly and is of critical 
significance in promoting tumor cell recognition and elim-
ination.17 Tumor IFNγ expression has been identified to be 
closely correlated with favorable clinical outcome for mul-
tiple cancer types.18 Several IFNγ-related gene profiles have 
been indicated to be critical markers of expected positive 
reactions to immune checkpoint blockade therapy.19 Based 
upon the findings from those assessments, we expected to 
shift our focus to exploring IFNγ response-related prognos-
tic signatures for patients with SKCM. Lastly, we sought to 
develop and assess a final five-mRNA (UBE2L6, PARP14, 
IFIH1, IRF2, and GBP4) risk-based model, which we hoped, 
could effectively predict clinical outcomes for patients as well 
as depict the tumor immune infiltration landscape of SKCM.

2 |  MATERIALS AND METHODS

2.1 | Data collection and processing

Fragments per Kilobase Million (FPKM) expression pro-
files for patients afflicted with 11 types of tumors were ob-
tained from the TCGA data portal (https://tcga-data.nci.nih.
gov/tcga/). Exclusion criteria included: (a) patients without 

Conclusion: In this study, we established a novel five-IFNγ response-related gene 
signature that provided a better and increasingly comprehensive understanding of 
tumor immune landscape, and which demonstrated good performance in predicting 
outcomes for patients afflicted by SKCM.
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complete clinical survival information, and (b) any duplicate 
samples. The “ESTIMATE” package (https://sourc eforge.
net/proje cts/estim atepr oject/) was applied to calculate im-
mune and stromal scores for each patient. To validate the 
prognostic value of our risk model established from the 
training set, we downloaded the expression profiling of 210 
SKCM afflicted patients and their respective complete prog-
nostic information (GSE65904) based upon the GPL10558 
platform from the Gene Expression Omnibus (GEO) (https://
www.ncbi.nlm.nih.gov/geo/) database. Moreover, a cohort of 
27 advanced melanoma patients receiving anti-PD-1 immu-
notherapy (GSE78220, GPL11154 platform) retrieved from 
GEO database was included in the current study to evaluate 
the immunotherapeutic value of the gene signature.

2.2 | Survival analyses

Patients were included within groups for each cancer type, 
and then were divided into high- and low-scoring groups in 
accordance with their median immune/stromal scores as the 
cutoff point. These groupings facilitated evaluation of asso-
ciations between immune/stromal scores with patients' OS by 
using Kaplan-Meier survival analyses and log-rank tests.

2.3 | Gene set enrichment analysis

GSEA (http://www.broad insti tute.org/gsea/index.jsp) analy-
sis was conducted to elucidate enriched molecular mecha-
nisms associated with long-term survival of patients in the 
high immune score group based upon the MSigDB h.all.
v6.2.symbols.gmt (Hallmarks) gene set collection.20 Gene 
sets with False Discovery Rate (FDR) < 0.25, and with nor-
malized P-values <.05 after the execution of 1000 permuta-
tions were considered as statistically significant.

2.4 | Establishment of the prognostic 
gene signature

The significantly enriched in IFNγ response signaling pathway 
gene set was analyzed by using univariate and multivariate 
Cox hazard regression analyses to facilitate establishment of a 
prognostic risk model for SKCM afflicted patients based upon 
a risk predictive formula defined by the linear combination of 
model predictors weighted with the regression coefficient. In 
this formula, n indicates the number of selected genes, βi rep-
resents the coefficient of each gene from multivariate Cox re-
gression analysis, and Xi displays the expression of each gene.

Patients were separated into high- and low-risk subgroups 
based upon resultant median risk scores. We used the “sur-
vivalROC” package for time-dependent ROC curve analyses 
to examine predictive accuracy of the risk model. In addition, 
we conducted Cox regression analyses and data stratification 
analyses to examine the predictive power of risk scores in pa-
tients afflicted by SKCM. Metascape (http://metas cape.org/) 
was applied to facilitate functional annotations of pathways 
and biological functions of survival-related genes.21

2.5 | Assessing immune cells infiltration 
using CIBERSORT and TIMER database

CIBERSORT is a method that facilitates evaluation of abun-
dances of cell types in complex tissues via a gene expres-
sion-based approach.22 We used the CIBERSORT analytical 
approach and methods to extract information about the rich-
ness and proportions of 22 immune cell subtypes (including 
seven T cell types, naive and memory B cells, plasma cells, 
and NK cells) for both high-, and low-risk cohorts. To en-
hance deconvolution algorithm accuracy, only samples with 
P-values <.05 were selected for further analysis.

The Tumor Immune Estimation Resource (TIMER 
https://cistr ome.shiny apps.io/timer/) has been used to assess 
the abundance of immune cells for up to 32 types of can-
cers and respective data derived from TCGA.23 In our study, 
the correlations between the five-gene signature expression 
and immune cells (including B cells, CD8+T cells, CD4+T 
cells, macrophages, neutrophils, and dendritic cells) in pa-
tients afflicted by SKCM were assessed by use of the TIMER 
database.

2.6 | Statistical analysis

Immune scores and stromal scores were compared between 
different subgroups using One-way analysis of variance 
(ANOVA) or unpaired t-tests in GraphPad Prism 8 software. 
The levels of expression of mRNAs were log2 transformed 
prior to conducting Cox regression analyses and by using 
the R package “survival.” Kaplan-Meier analyses and the 
log-rank tests were applied to facilitate estimations of dif-
ferences in OS between high- and low-risk patients. We used 
χ2 (chi-square) test to measure associations between our risk 
scores and clinical factors provided from information in the 
datasets. Genetic changes of the five-gene signature were 
visualized by use of the cBioPortal for Cancer Genomics 
database (http://www.cbiop ortal.org/).24 The five mRNAs 
expression data of SKCM and normal tissues from TCGA 
and GTEx projects were analyzed in Gene expression profil-
ing interactive analysis (GEPIA http://gepia.cance r-pku.cn/) 
(P < .05 and |log 2 FC|>1).25 Distinctive infiltrations of the 

Risk score=

n
∑

i= 1

�i×Xi
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22 immune cell types in the SKCM afflicted patient cohort 
were assessed using Wilcox tests. All statistical analyses in 
our study were performed using R version 3.5.3 (R software 
https://www.r-proje ct.org/), IBM SPSS 22.0 (IBM, Inc) and 
GraphPad Prism 8 (GraphPad Software Inc). P  <  .05 was 
indicated as the level of statistically significance.

3 |  RESULTS

3.1 | Association of immune and stromal 
scores with 11 types of cancer prognosis

A workflow chart for our design and analysis phases is dis-
played in Figure S1. We downloaded protein-coding gene 
expression profiles with corresponding survival information 
for patients afflicted by 11 types of cancers. Cancer afflicted 
cohorts enrolled in this study included patients afflicted by: 
bladder urothelial carcinoma (BLCA, 403), cervical squa-
mous cell carcinoma, and endocervical adenocarcinoma 
(CESC, 291), head and neck squamous cell carcinoma 
(HNSC, 499), kidney renal clear cell carcinoma (KIRC, 525), 
kidney renal papillary cell carcinoma (KIRP, 283), liver 
hepatocellular carcinoma (LIHC, 365), lung adenocarcinoma 
(LUAD, 490), lung squamous cell carcinoma (LUSC, 488), 
prostate adenocarcinoma (PRAD, 495), stomach adenocarci-
noma (STAD, 347), and skin cutaneous melanoma (SKCM, 
454). According to the ESTIMATE algorithm, immune and 
stromal scores for each patient were calculated (Files S1-
S11). To detect potential correlation of OS with immune and 

with stromal scores, we divided patients into corresponding 
high- and low-scoring subgroups within each cohort for each 
cancer type. Compared with other cancer types, Kaplan-
Meier survival analyses revealed that immune scores of pa-
tients afflicted by CESC (P =  .0351), LUAD (P =  .0245), 
and SKCM (P <  .0001) were significantly associated with 
patients' survival time. Additionally, STAD afflicted pa-
tients with lower stromal scores had relatively better clini-
cal outcomes than that of patients with higher stromal scores 
(P  =  .0376) (Figure  1A-D). Specifically, we noticed that 
the immune scores of SKCM afflicted patients were most 
prominently associated with patients' prognosis. To validate 
the correlation of immune and stromal scores and SKCM af-
flicted patients' survival, we applied the ESTIAMTE algo-
rithm to the GSE65904 cohort and got the same finding. We 
also found that patients with high immune scores had longer 
survival time than did patients in the low immune score group 
(Figure S2, P = .0125).

To assess measures of correlation between TME with 
SKCM, we plotted different score distributions following 
clinicopathological parameters of patients. SKCM is be-
lieved to be mostly driven by functionally based mutations of 
BRAF.26 In our assessments, we found that both immune and 
stromal scores were relatively higher in such types of BRAF 
mutants (Figure 2A). Moreover, average immune scores of re-
gional lymph node cases ranked the highest of all four tumor 
locations, followed by scores representing regional cutaneous 
or subcutaneous tissue and primary tumor. The distant me-
tastasis cases had the lowest representative immune scores. 
Similarly, the distributions of stromal scores were diverse and 

F I G U R E  1  Kaplan-Meier survival analyses of high vs low immune score and stromal score groups. A, cervical squamous cell carcinoma 
and endocervical adenocarcinoma (CESC). B, lung adenocarcinoma (LUAD). C, Stomach adenocarcinoma (STAD). D, Skin cutaneous melanoma 
(SKCM)

https://www.r-project.org/
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE65904
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differed significantly with respect to different tumor loca-
tions (Figure 2B). As shown in Figure 2C-E, immune scores 
were significantly correlated with important clinical features 
whereas stromal score distributions did not differ statistically 
for Clark levels and mitotic rates. Additionally, patients that 
survived and who remained alive had higher immune and 
stromal scores (Figure  2F). Other clinical parameters that 
significantly correlated with scores are listed in Table 1.

3.2 | Detecting genes enriched in IFNγ 
Response via GSEA

We conducted GSEA to further investigate potential func-
tional mechanisms leading to different prognosis for SKCM 
patients based upon stratification of their respective immune 
scores. In total, we identified 21 functions that were signifi-
cantly enriched in the high immune score group (Table S1; 
File S12), which may have illustrated the underlying reasons 

for positive prognosis in the high immune score patient group 
(Figure 3A). Additionally, a total of 152 genes that displayed 
enrichment in the signaling pathway of IFNγ response were 
obtained for further analysis (Figure 3B; File S13).

3.3 | Identification and construction of 
an IFNγ Response-related gene signature 
associated with SKCM patients' survival

To determine measures of association between the 152 genes 
and patient outcomes, we subjected these genes to univariate 
Cox hazard analysis. About 116 of the 152 genes were de-
termined to have had significant prognostic value (P < .001, 
File S14). Metascape analyses indicated which were the top 
20 clusters and enriched sets of the OS-significant associ-
ated genes (Figure 4A,B). Among them, cytokine-mediated 
signaling pathway, interferon signaling, and interferon 
gamma signaling were the most significantly enriched in the 

F I G U R E  2  Immune scores and stromal scores are correlated with skin cutaneous melanoma (SKCM) clinicopathological features. A, 
Distribution of immune and stromal scores for BRAF wild-type and BRAF mutant SKCM cases. Box-plots indicate significant associations 
between BRAF mutation status and immune/stromal scores (P = .0193, P = .0022). B, Distribution of immune and stromal scores in different 
tumor locations. Box-plots indicate significant associations between tumor locations and the level of immune and stromal scores (P < .0001, 
P < .0001). C, Distribution of immune and stromal scores of different Breslow thickness. Box-plots indicate immune scores and stromal scores 
are both oppositely correlated with Breslow thickness (P = .0014, P = .0075). D, Distribution of immune and stromal scores of Clark levels. 
Immune scores display a negative correlation with Clark levels (P = .0234, P = .5489). E, Distribution of immune and stromal scores of patients 
with different mitotic rates. Box-plots indicate immune scores of patients with mitotic rates <1 were higher than for mitotic rates ≥1 (P = .0011, 
P = .0724). F, Distribution of immune and stromal scores of patients with known vital status as alive or dead. Box-plots indicate living patients had 
higher immune scores (P < .0001, P = .3924)
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function of the OS-associated genes. By ranking these genes 
in ascending order based upon respective P-values, the top 
15 predicted genes with the highest significance are listed 
in Table 2. To establish an optimal prognostic gene model, 
multivariate Cox regression was performed for and among 
the top 15 genes. A hazard ratio model consisting of five 
genes (UBE2L6, PARP14, IFIH1, IRF2, GBP4) was con-
firmed as the appropriate prognostic model for predicting 

OS of afflicted patients. Risk score  =  0.30439  ×  expres-
sion of PARP14 −0.15824  ×  expression of UBE2L6 
−0.22738  ×  expression of IFIH1 −0.35516  ×  expression 
of IRF2 −0.14989  ×  expression of GBP4 (Figure  5A). 
Subsequently, we ranked risk scores from low to high and 
divided sample data into low- and high-risk groups accord-
ing to median value and we found that all five genes were 
significantly upregulated in low-risk patients (Figure  5B). 

T A B L E  1  The distribution of immune and stromal scores of skin cutaneous melanoma patients with different clinicopathological 
characteristics from The Cancer Genome Atlas database

Clinicopathological 
parameters n

Immune Score Stromal Score

Mean ± SEM t P-value* Mean ± SEM T P-value*

Gender

Male 282 879.8 ± 64.33 t = 2.042 .0418 −294.9 ± 41.82 t = 0.4950 .6208

Female 172 1099 ± 88.27 −262.1 ± 49.73

Tumor location

Cutaneous 73 902.4 ± 131.0 F = 13.57 <.0001 −72.09 ± 90.37 F = 11.27 <.0001

Lymph node 217 1277 ± 77.05 −176.5 ± 46.07

Distant metastasis 64 528.2 ± 136.5 −551.8 ± 85.90

Primary 97 597.4 ± 86.23 −497.0 ± 49.90

Age

<60 239 1037 ± 72.82 t = 1.506 .1328 −205.5 ± 46.14 t = 2.545 .0113

≥60 215 880.0 ± 74.85 −368.0 ± 43.58

Pathologic stage (at original diagnosis)

I 76 1256 ± 127.2 F = 6.751 .0002 −199.8 ± 81.67 F = 4.730 .0030

II 136 633.4 ± 78.56 −452.6 ± 52.96

III 169 1076 ± 90.43 −231.9 ± 51.84

IV 22 918.3 ± 228.8 −19.41 ± 173.8

Breslow thickness (mm)

≤1.5 104 1227 ± 111.5 F = 6.716 .0014 −167.6 ± 70.02 4.969 .0075

1.5-3 77 850.7 ± 126.7 −233.5 ± 78.94

>3 168 737.2 ± 79.59 −419.9 ± 50.06

Ulceration

Yes 163 736.5 ± 79.55 t = 2.619 .0093 −391.2 ± 48.60 t = 1.954 .0516

No 144 1064 ± 97.98 −239.3 ± 61.75

Vital status

Dead 207 717.9 ± 72.90 t = 4.374 <.0001 −312.4 ± 48.04 t = 0.8560 .3924

Alive 247 1168 ± 71.75 −257.3 ± 43.07

Clark level

I, II 23 1161 ± 211.8 F = 3.209 .0234 −339.8 ± 135.9 F = 0.7063 .5489

III 75 1185 ± 125.8 −207.0 ± 74.66

IV 164 814.8 ± 88.10 −303.8 ± 55.63

V 50 661.7 ± 149.8 −382.2 ± 101.5

Mitotic rate

<1 19 1794 ± 251.6 t = 3.325 .0011 21.39 ± 196.0 t = 1.808 .0724

≥1 149 884.0 ± 92.30 −300.9 ± 58.59

* One-way ANOVA analysis and unpaired t test were performed. 
The P-value showing statistical significance was marked with bold type.



8192 |   HU et al.

Moreover, gene alteration in UBE2L6, PARP14, IFIH1, 
IRF2, and GBP4 were found to have occurred in only 1.4%, 
4%, 4%, 4%, and 2.1% of sequenced cases respectively for 
data acquired from the OncoPrint schematic of cBioPortal 
(Figure 5C). By using GEPIA database, we found that the ex-
pression of all five genes was upregulated in patients afflicted 
by SKCM, however, differences for the levels of expression 
of IRF2 were not statistically significant (Figure S3).

Kaplan-Meier curve analyses indicated that the OS com-
parisons between the high- and low-risk groups were nota-
bly different (median OS 1524 days vs 4507 days, P < .0001 
Figure 6A). In addition, Pearson correlation analyses indicated 
that immune scores were negatively correlated with patient 
risk scores (r = −.6692, P < .0001, Figure 6C). Based upon 
established formulas, the test cohort (GSE65904 n = 210) was 
also stratified significantly by way of the five-gene prognostic 

F I G U R E  3  Enrichment plots of gene sets which were major differentiated between high and low immune score groups using gene set 
enrichment analyses. A, The top 10 enrichment gene sets in high immune score group. B, IFNγ response

F I G U R E  4  Metascape analysis. A, 
Enriched signaling pathways of the 116 
prognostic-value genes. B, The functional 
enrichment network

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE65904
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signature (median OS 550  days vs 1404  days, P  <  .0001, 
Figure 6D). The AUC (area under the curve) values of ROC 
(receiver operating characteristic) analysis at 5 years for the 
prognostic signature in TCGA cohort  =  0.724 and for the 
GSE65904 cohort = 0.603, which suggested that the signature 
had satisfactory sensitivity and specificity with respect to pre-
dicting patients' survival (Figure 6B,E).

3.4 | Evaluation of risk scores generated 
from the five-mRNA signature as a 
prognostic indicator

After construction of a five-gene prognostic model, we 
conducted Cox regression analyses to further evaluate ef-
fects of predicting prognosis independently. Univariate 
Cox regression analyses indicated that the IFNγ response-
related prognostic signature (HR = 2.247, 95% CI 1.698-
2.974, P  <  .001), pathological stage (HR  =  1.640, 95% 
CI 1.210-2.223, P = .001), AJCC-T (HR = 1.992, 95% CI 
1.421-2.792, P  <  .001), AJCC-N (HR  =  1.773, 95% CI 
1.307-2.404, P < .001), Clark level (HR = 2.109, 95% CI 
1.468-3.029, P <  .001), Breslow thickness (HR = 2.554, 
95% CI 1.828-3.569, P  <  .001), and ulceration status 
(HR = 1.983, 95% CI 1.402-2.805, P <  .001) were obvi-
ously associated with the survival of SKCM afflicted pa-
tients. After adjusting for other clinical parameters, the 
risk score (HR = 1.632, 95% CI 1.076-2.475, P =  .021), 
Breslow thickness (HR  =  6.725, 95% CI 1.093-41.362, 
P  =  .040), and ulceration status (HR  =  1.493, 95% CI 
1.005-2.219, P = .047) were determined to be independent 

prognostic factors in multivariate analysis, which indicated 
that risk scores were remarkably correlated with OS of 
SKCM afflicted patients in the TCGA dataset (Table  3). 
We thus further investigated the association between the 
five-gene signature and clinical characteristics. As shown 
in Table  4, the chi-square test results suggested that the 
five-gene based signature correlated with Breslow thick-
ness (P <  .001), ulceration status (P =  .006), Clark level 
(P < .001), and AJCC-T (P < .001).

3.5 | Independence of the five-gene 
signature in the OS prediction from clinical 
characteristics

Based upon the five-gene signature, we used stratified analy-
sis to further evaluate applicability and independence of risk 
scores. Kaplan-Meier analyses indicated that independent 
of: gender, age, pathological stage (early stage or advanced 
stage), Breslow thickness (Breslow thickness <2.0  mm or 
≥2.0  mm) and anatomic site (extremities, head and neck 
or trunk), the five-gene signature had prognostic value for 
SKCM afflicted patients. However, for other clinical param-
eters such as ulceration status and tumor location, risk scores 
could not distinguish among the subgroups for ulceration or 
primary tumor effectively (Figure 7A-G).

3.6 | Estimating immunotherapeutic 
benefits and the immune infiltration 
landscapes in SKCM

To validate the ability of the prognostic signature to predict 
immunotherapeutic benefits, we assigned 27 patients treated 
with PD-1 inhibitors in the GSE78220 cohort to high- and 
low-risk subgroups. Although the difference was not sta-
tistically significant, patients with low-risk scores were 
more likely to be immunotherapy responders than those in 
the high-risk subgroup (one-way ANOVA test, P =  .1343; 
chi-square test, P =  .1083) (Figure S4A-C). Moreover, we 
extracted patients with immunotherapy response informa-
tion in TCGA-SKCM cohort and found a survival benefit 
of low-risk subgroup (P  =  .0277). The distribution of risk 
score in distinct response status to immunotherapy indicated 
that patients with stable disease had relatively higher risk 
scores than that of patients with complete response (one-way 
ANOVA test, P = .1236; chi-square test, P = .0986) (Figure 
S4D-F).

We then investigated the expression of immune check-
point molecules involving programmed cell death 1 ligand 
1 (PD-L1), cytotoxic T-lymphocyte-associated protein 4 
(CTLA4), lymphocyte activation gene-3 (LAG-3), and T cell 
immunoglobulin-3 (TIM-3) for patients that we stratified 

T A B L E  2  Univariate Cox analysis for survival-predicted value 
of genes (top15)

Gene HR z P-value

GBP4 0.778934459 −6.136572874 8.43E-10

IRF2 0.494163113 −5.939529589 2.86E-09

UBE2L6 0.711962484 −5.927295314 3.08E-09

NMI 0.624438806 −5.86769803 4.42E-09

PARP12 0.665767813 −5.837071215 5.31E-09

SAMD9L 0.706309057 −5.831177037 5.50E-09

LAP3 0.650331556 −5.823474008 5.76E-09

B2M 0.739388394 −5.62024323 1.91E-08

SAMHD1 0.723394752 −5.595487658 2.20E-08

IFIH1 0.703191011 −5.591126086 2.26E-08

CXCL11 0.738148185 −5.576925346 2.45E-08

CXCL10 0.837414034 −5.574184081 2.49E-08

HLA-DRB1 0.815715064 −5.543941084 2.96E-08

DDX60 0.679572688 −5.531646212 3.17E-08

PARP14 0.688482163 −5.503008717 3.73E-08

Abbreviation: HR, hazard ratio.

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE65904
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE78220
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according to the five-mRNA signature. Low-risk patients had 
relatively higher expression of PD-L1, CTLA-4, LAG-3, and 
TIM-3 than was observed for patients in high-risk cohorts 
(Figure 8A-D).

CIBERSORT algorithm was applied to explore the pro-
portions of 22 immune cell types in SKCM afflicted patients. 
Results revealed obviously distinct immune landscapes be-
tween patients in two subgroups. Patients in the low-risk co-
hort (n = 166) had remarkably higher proportion of memory 
B cells, plasma cells, CD8 T cells, memory activated CD4 T 
cells, macrophages M1, follicular helper T cells, gamma delta 
T cells, activated NK cells, and resting dendritic cells com-
pared to patients in the high-risk cohort. In contrast, resting 
NK cells, macrophages M0, macrophages M2, activated mast 

cells, and activated dendritic cells were more present in the 
high-risk sample cohort (n = 75) (Figure 8E).

In addition, we performed correlation analyses to assess 
measures between the five genes and immune infiltration 
levels for SKCM afflicted patients by using the TIMER da-
tabase. Scatter plots were generated indicated that the five 
genes expression levels were significantly negatively cor-
related with tumor purity (P < .05). Furthermore, PARP14, 
IFIH1, IRF2, and GBP4 expression showed remarkable pos-
itive association with infiltrating immune cells. UBE2L6 
expression level also had significant association with infil-
tration levels of B cells, CD8+T cells, CD4+T cells, neu-
trophils, and dendritic cells, but did not for macrophages 
(Figure 9A-E).

F I G U R E  5  Distribution of risk score, 
patient survival time and expression of 
the five genes in the The Cancer Genome 
Atlas cohort. A, Five genes significantly 
correlated with overall survival derived from 
Cox regression analysis in skin cutaneous 
melanoma (SKCM) patients. B, Distribution 
of risk scores, patient survival time, status, 
and expression of five-gene signature in 
high- and low-risk groups. C, Alteration of 
the five genes in SKCM patients using the 
cBioportal database
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F I G U R E  6  The five-gene prognostic model predicted overall survival of patients with skin cutaneous melanoma (SKCM). A, Kaplan-Meier 
survival curves for patients divided into high- and low-risk groups in the TCGA-SKCM cohort (n = 454, P < .0001). B, Time-dependent receiver 
operating characteristic (ROC) plots displayed prediction efficacy of the five-gene prognostic model in the SKCM patients from TCGA-SKCM 
cohort at 1, 3, and 5 y. (C) The negative correlation of immune scores with risk scores in SKCM patients (P < .0001, r = −.6692). D, Kaplan-Meier 
curves of the five-gene signature in GSE65904 cohort (n = 210, P < .0001). E, Time-dependent ROC plots displayed prediction efficacy of the 
five-gene prognostic model in the SKCM patients from GSE65904 cohort at 1, 3 and 5 y

Parameters

Univariate COX Multivariate COX

HR (95% CI) P-value HR (95% CI) P-value

Risk score (high 
risk/low risk)

2.247 (1.698-2.974) <.001 1.632 (1.076-2.475) .021

Stage (advanced 
stage/early stage)

1.640 (1.210-2.223) .001 0.826 (0.249-2.742) .755

Gender (male/
female)

1.171 (0.874-1.570) .290

T (T3-4/T1-2) 1.992 (1.421-2.792) <.001 0.205 (0.033-1.258) .087

N (N1-3/N0) 1.773 (1.307-2.404) <.001 2.756 (0.837-9.075) .095

M (M1/M0) 1.635 (0.834-3.203) .152

Clark level 
(Ⅳ-V/Ⅰ-Ⅲ)

2.109 (1.468-3.029) <.001 1.253 (0.753-2.087) .385

Breslow thickness 
(≥2.0/<2.0 mm)

2.554 (1.828-3.569) <.001 6.725 (1.093-41.362) .040

Ulceration 1.983 (1.402-2.805) <.001 1.493 (1.005-2.219) .047

Abbreviation: HR, hazard ratio.
Note: The P-value showing statistical significance was marked with bold type.

T A B L E  3  Univariate and multivariate 
Cox regression analysis for OS of five-gene 
signature and other clinicopathological 
parameters

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE65904
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE65904
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4 |  DISCUSSION

In recent years, increases in immunotherapy-based research 
for cancer treatment have led to many advancements that have 
improved treatment outcomes for afflicted patients. However, 
effective immunotherapies, whether they are adoptive cell 
therapy or checkpoint blockade-based approaches, have been 
limited for patients because of immunosuppressive barriers that 
exist in TME. The TME is known to be essential to the onset, 
development, progression, and relapse of many types of can-
cers.27 Thus, deeper explorations of the complexities within the 
TME may help to reveal novel biomarkers that could facilitate 
increased accuracy of prognosis for patients and their potential 
responsiveness to immunotherapy as well as improve therapeu-
tic modulation. Therefore, we focused upon the TME to assess 
whether or not TME-related genes contribute to OS in patients 
afflicted with malignant types of tumors.

Herein, we used the “ESTIMATE” approach to facilitate 
calculation of immune and stromal scores, which reflected 
levels of immune and stromal components infiltrating the 
TME for 11 types of cancer that have been approved for im-
munotherapy by FDA and respective data derived from the 
TCGA database. We found that immune scores were notably 
correlated with survival time of patients afflicted by CESC, 
LUAD, and SKCM, and stromal scores significantly correlated 
with OS in patients with STAD. These findings indicated that 
the TME was closely related to patient clinical outcome. Based 
upon the best knowledge available to us herein, the association 
between immune scores and SKCM was the most notable re-
lationship of those tested, which is a finding consistent with 
the fact that SKCM is typically considered to be highly immu-
nogenic.28 Consequently, we decided to assess tumor immune 
microenvironment-related genetic factors of SKCM that may 
have contributed to OS in the TCGA database.

As an aggressive malignant neoplasia, SKCM has been 
estimated to cause about 55 000 annual deaths and accounts 
for approximately 232  100 (1.7%) cases of all newly diag-
nosed primary malignant tumors worldwide.29,30 Accounting 
for more than 80% of skin cancer-related mortalities, SKCM 
is one of the most fatal and treatment-resistant carcinomas 
afflicting humans.31,32 Patients with nonmetastatic SKCM 
have relatively high survival rates, whereas the 5-year sur-
vival rate of sufferers with metastatic SKCM is only 14%.33 
Encouragingly, immune checkpoint blockade antibodies such 
as pembrolizumab, nivolumab, and Ipilimumab targeting 
either PD-1 or CTLA-4 respectively have conspicuously al-
tered the therapeutic landscape of SKCM in recent years.34,35 
However, the onset of and proclivity to the development of 
treatment-based resistance and of recurrence of SKCM also 
persist. It has been estimated that approximately 60%-80% pa-
tients receiving these treatments get no satisfying prognosis or 
lasting response.36,37 Thus, SKCM is greatly suppressive and 
straightforwardly involved in immune evasion, which relies 
upon the interplay of SKCM cells with immune cells existing 
in the TME. In recent years, efforts to find effective prognostic 
biomarkers of SKCM have made some noteworthy progress. 
For instance, high levels of expression of SOX9, which is reg-
ulated by DNA methylation, was found to be correlated with 
decreased expression of tumor suppressor genes and was iden-
tified to be a negative prognostic factor in malignant SKCM.38 
In addition, high baseline levels of plasma total cell-free DNA 
(cfDNA) released from tumor cells also was a good predictor 
of poor prognosis for SKCM afflicted patients.39 Nevertheless, 
the levels of expression of a single gene could be affected by 
multiple factors or with consequently lower levels of sensitiv-
ity and specificity such as to be reliable prognostic biomark-
ers which could reflect tumor immune landscapes of SKCM, 
however, existent informative assessments are still lacking.

Instead of requiring definite differential gene thresholds, 
GSEA mainly concentrates upon assessing the levels of 

T A B L E  4  The correlations between risk level and the 
characteristics of skin cutaneous melanoma patients

Parameters
N (high 
risk)

N (low 
risk)

Pearson 
χ2 P*

Gender

Male 150 132 3.033 .082

Female 77 95

Breslow thickness (mm)

<2.0 50 76 14.058 <.001

≥2.0 135 88

Ulceration

Yes 99 64 7.475 .006

No 65 79

Clark level

Ⅰ-Ⅲ 37 61 12.567 <.001

Ⅳ-V 127 87

Pathologic stage (at original diagnosis)

Early (I and 
II)

117 95 2.290 .130

Advanced (III 
and IV)

91 100

T

T1-2 45 72 13.647 <.001

T3-4 140 96

N

N0 117 108 0.542 .462

N1-3 85 91

M

M0 203 202 0.384 .535

M1 10 13

* Pearson chi-square test (χ2) analysis was performed. 
The P-value showing statistical significance was marked with bold type.



   | 8197HU et al.

expression of annotated gene sets, which are coordinated dif-
ferentially. Thus, we applied GSEA for 19 658 mRNAs from 
227 SKCM afflicted patients with high immune scores and 
227 SKCM patients with low immune scores. We found 21 
functions that were significantly enriched in the high immune 
score group with nominal P-values <.05. Then, we selected 
significantly related gene sets that were upregulated in re-
sponse to IFNγ for further analyses. IFNγ is a major cytokine 
that facilitates both the adaptivity and innateness of immune 
systems. Additionally, effector T cell-derived IFNγ is the most 
potent cytokine which contributes to high levels expression 

of PD-L1 within the TME, indicating that upregulated re-
sponses to IFNγ signaling may be conducive in predicting 
positive responses to immune checkpoint inhibitor thera-
pies.40 Previous research has reported that decreased levels 
of expression of specific genes from the interferon pathway 
correlated with poor prognosis for SKCM afflicted patients, 
however, an effective prognostic model associated with IFNγ 
response has not yet been established and applied in clini-
cal setting.41 Thus, by applying Cox regression analyses in 
our research, we successfully identified a prognostic model 
with five IFNγ response-related gene signatures for patients 

F I G U R E  7  Kaplan-Meier survival curves of patients in different clinical characteristics cohorts. Different clinical features including (A) 
male or female, (B) age < 60 or age ≥ 60 (C) early stage or advanced stage. (D) Breslow thickness < 2.0 mm or Breslow thickness ≥ 2.0 mm. (E) 
ulceration or no ulceration. (F) metastatic or primary tumor. (G) extremities, head and neck or trunk
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afflicted by SKCM. Considering that an ideal prognostic bio-
marker is one that can also stratify risk across independent 
cohorts effectively, we thus applied the GSE65904 cohort to 
further assess the practicality of our risk-based model and 
found that the signature performed well in differentiating 
high- and low-risk groups (P < .0001). SKCM has been de-
scribed as a highly immunogenic cancer with heterogeneous 
histological and clinical features.42 Thus, we analyzed the in-
dependence and applicability of our five-gene signature in 
samples obtained from different clinical characteristics. The 
results revealed that our signature was independent of gender, 
age, pathological stage, Breslow thickness, and anatomic site. 
As patients suffering from early stages of disease tended to 
have better potential for healing, our signature was identified 
to have had satisfactory predictive performance for patients 
with early-staged diagnoses and Breslow thickness less than 
2 mm. However, risk scores did not significantly predict out-
comes for patients with ulcerations and primary locations. 
The reasons underlying these discrepancies should be further 
explored in appropriately designed follow-up assessments. 

To validate the ability of the prognostic signature to predict 
immunotherapeutic benefits, we detected the distributions of 
risk scores in patients with distinct response status to immu-
notherapy in GSE78220 cohort and TCGA-SKCM cohort. 
Although the difference was not statistically significance, the 
risk score was negatively associated with the immunotherapy 
response in the two cohorts and more immunotherapeutic re-
sponders appeared in the low-risk groups than in the high-risk 
groups. Additionally, we evaluated tumor infiltrating lym-
phocytes and predictive immune markers for immunotherapy 
of the signature and found that patients in low risk cohorts 
possessed higher measures of CD8 T cells, macrophage M1, 
as well as other immune cells related to infiltration, which 
indicated that this five-gene signature might have potential 
as immunotherapy target thereby warranting further analyses.

Among the four protective genes, UBE2L6 gene, encod-
ing the ISG15 (IFN-stimulated gene 15)-conjugating enzyme 
UbcH8, was found to be correlated with apoptosis of cer-
vical cancer.43 Activation of IFIH1 (also known as MDA5) 
in tumors has been identified to facilitate re-activation of 

F I G U R E  8  Relative proportions of 
immune cell expression in high- and low-
risk groups. A, Expression of PD-L1 in low-
risk group was significantly higher than for 
high-risk group (P < .0001). B, Expression 
of CTLA-4 in low-risk cohort was notably 
higher than for high-risk cohort (P = .0056). 
C, Expression of LAG-3 in low-risk cohort 
was significantly higher than for high-risk 
group (P < .0001). D, Expression of TIM-3 
in low-risk cohort was relatively higher 
than for high-risk group (P < .0001). E, The 
violin plot indicating relative proportions 
of immune cell expression distribution of 
TCGA-SKCM patients stratified by the 
five-gene signature into high- (pink) and 
low- (blue) risk groups

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE65904
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE78220
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tumor-specific T cells which are otherwise functionally 
defective within the TME and to impede tumor-induced 
immunosuppression in an IFN-dependent manner.44,45 The 
expression of GBP (Guanylate-binding protein) has thus 
mostly been thought to be induced by IFNγ in various 
types of cells and is thought to help defend vertebrate cells 
against multiple invading pathogens and has antitumor ac-
tivity.46 Additionally, GBP genes have been identified to 
be positive prognostic biomarkers for SKCM in afflicted 
patients.47 IRF2, as an IFN regulatory transcription factor 
has vital implications in approaches to assess cancer pro-
gression and for immunotherapy by way of both positively 
regulating the MHC pathway and down regulating PD-L1 

expression.48 Previous research has indicated that IRF2 is 
a crucial downstream target of oncogenic KRAS-mediating 
immune suppression. What is more, enforced expression of 
IRF2 can inhibit an over resistance of tumors expressing 
KRAS with respect to PD-1 based therapies.49 Poly (ADP-
ribose) polymerase (PARP)14 is a member of the PARP 
family of proteins and has been demonstrated to promote 
lymphomagenesis driven by persistent overexpression of 
the oncogene c-Myc.50 Furthermore, PARP14 promoted 
pancreatic cancer cell proliferation, anti-apoptosis, and 
GEM (gemcitabine) resistance via its relationship with the 
NF-κB signaling pathway, which agrees our research that 
it has high potential to be an effective drug-based target.51

F I G U R E  9  Correlations of expression of five genes with immune infiltration level in skin cutaneous melanoma. A, UBE2L6. B, PARP14. C, 
IFIH1. D, IRF2. E, GBP4
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The five-gene signature, which we designed to identify 
the comprehensiveness of TME, is a biomarker with use for 
predicting prognosis and for guiding more effective immu-
notherapy-based treatment strategies. Herein, we established 
a five-gene signature to facilitate predictions of OS and to 
gain insight into the TME of SKCM-based afflictions. The 
limitations of our study should also be acknowledged. Firstly, 
the most of our analyses and subjects are derived from data 
for Caucasians, and certain clinical features such as genetic 
factors and measures related to sun exposure are insuffi-
cient. Furthermore, as not all patients with low risk scores 
showed favorable response to immunotherapy, we should in-
tegrate more clinical parameters into the scoring system to 
ameliorate the prediction accuracy. Further studies should 
be directed such that biological functions of the five selected 
genes and validation of our risk score are assessed by way of 
actual clinical and laboratory-based experiments.

5 |  CONCLUSION

In conclusion, our findings established an effective five-
IFNγ response-related mRNA-based risk score, which has 
the potential to be a novel prognostic signature and which 
may provide insight into tumor immune microenvironments 
of SKCM affliction. Further studies can be undertaken based 
upon our findings and should focus upon better understand-
ing the function and molecular mechanisms underlying the 
genes we assessed and should seek to validate the effective-
ness and applicability of our signature in clinically based 
experiments.
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