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Abstract
Rats with Metabolic Syndrome (MetaS) have a dysregulated immune response to the

aseptic trauma of surgery. We hypothesized that rats with MetaS would have dysregulated

inflammation, increased lung injury, and less effective antibacterial defenses during Staphy-
lococcus (S.) aureus sepsis as compared to rats without MetaS. Low capacity runner (LCR;

a model of MetaS) and high capacity runner (HCR) rats were challenged intravenously with

S. aureus bacteria. After 48 h, inflammatory mediators and bacteria were quantified in the

blood, bronchoalveolar lavage fluid (BALF), and lung homogenates. Lungs were analyzed

histologically. BALF protein and lung wet-dry ratios were quantified to assess for vascular

leak. Endpoints were compared in infected LCR vs HCR rats. LCR rats had higher blood

and lung S. aureus counts, as well as higher levels of IL-6 in plasma, lungs and BALF, MIP-

2 in plasma and lung, and IL-17A in lungs. Conversely, LCR rats had lower levels of IL-10 in

plasma and lungs. Although lactate levels, and liver and renal function tests were similar

between groups, LCR rats had higher BALF protein and lung wet-dry ratios, and more pro-

nounced acute lung injury histologically. During S. aureus bacteremia, as compared with

HCR rats, LCR (MetaS) rats have heightened pro-inflammatory responses, accompanied

by increased acute lung injury and vascular leak. Notably, despite an augmented pro-

inflammatory phenotype, LCR rats have higher bacterial levels in their blood and lungs. The

MetaS state may exacerbate lung injury and vascular leak by attenuating the inflammation-

resolving response, and by weakening antimicrobial defenses.

Introduction
Sepsis remains the most common cause of death in non-coronary intensive care units [1–5].
Staphylococcus (S.) aureus is the most common pathogen in gram-positive bacterial sepsis
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[6–9] and causes infections, ranging from superficial skin infections to severe invasive infec-
tions of wounds and organs such as the lung (pneumonia), with full blown septic shock and in-
tractable multiple organ failure [7,10]. S. aureus infections pose an important health care
problem worldwide with expensive medical costs [10–12]. Treatment with antibiotics and the
removal of infectious foci are often insufficient to stave off septic shock and multiple organ fail-
ure during S. aureus and other infections. Although multiple organ failure is responsible for
half of the mortality of sepsis [13], the mechanisms of sepsis-induced organ failure remain elu-
sive, and little is known about the impact of host factors, including their metabolic profile, on
sepsis outcomes.

The Metabolic Syndrome (MetaS) is characterized by insulin resistance (hyperglycemia that
can progress to Type 2 Diabetes Mellitus), visceral obesity, hypertension, and dyslipidemia.
MetaS is associated with an increased risk of postoperative complications that contribute to
substantially higher mortality rates [14–16]. Furthermore, the presence of MetaS enhances the
risk of dying in patients with cardiovascular disease [17,18]. Elevated C-reactive protein levels
strongly correlate with the number of the components of MetaS that the patient exhibits and
are thought to reflect a low-grade pro-inflammatory state [19].

To better understand the pathophysiology leading to the increase in complications in the
setting of MetaS, investigators have developed rodent models. Genome-wide association stud-
ies suggest that MetaS is a polygenic disorder [20–22]. Therefore we were attracted to animal
reagents that were developed from a founder population of genetically heterogeneous rats by
applying divergent artificial selection for intrinsic low and high endurance running capacity
[22]. More than thirty generations of selection produced lines of low capacity runners (LCRs)
and high capacity runners (HCRs) that differ markedly in treadmill running capacity [23].
Compared with HCR rats, LCR rats exhibit multiple features of MetaS, including hyperlipid-
emia, hypertension, high fasting glucose, elevated C-reactive protein, and visceral adiposity
[24]. While exploring the mechanisms of an exaggerated and persistent form of postoperative
cognitive decline in the setting of MetaS [25], we discovered that LCR rats are defective in sev-
eral steps of postoperative inflammation resolution [26].

Numerous host factors modulate immune responses, leading to substantially different out-
comes between individuals with similar infections. Diabetes and obesity each increase the risk
of both developing infections and of having worse early outcomes during serious infections
[27–34]. Our prior studies, showing that LCR rats are defective in postoperative resolution of
inflammation [35], suggested to us that similar immune system dysfunction might contribute
to the complications of sepsis. Of note, while altered responsiveness to viral infection and its
treatment in the setting of MetaS is well chronicled, little is known about howMetaS modulates
bacterial sepsis [36–38].

The goal of these studies was to test the hypothesis that during S. aureus sepsis, LCR rats
have hyperinflammatory responses and altered bacterial clearance as compared to HCR rats.

Materials and Methods

Ethics statement
This study was carried out in strict accordance with the recommendations in the Guide for the
Care and Use of Laboratory Animals of the National Institutes of Health. The protocol was ap-
proved by the Institutional Animal Care and Use Committee (IACUC) of the University of
California, San Francisco (Protocol Number: AN090565). All procedures were performed
under ketamine and xylazine anesthesia, and all efforts were made to minimize suffering.
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Animals
The development of rats selected to be either LCR or HCR is described in detail elsewhere
[22,23]. In the present investigation, female HCR and LCR rats (generation 31) were housed
under standard laboratory temperature and humidity conditions in which the light and dark
cycles were 12 h each. Rats were tested for running capacity at the University of Michigan at 11
weeks of age and shipped to the University of California, San Francisco at 6 months of age.
Similar aged female Sprague-Dawley rats (Jackson Laboratories) were used for pilot studies to
optimize dosing and endpoint analyses in the S. aureus primary bacteremia model.

Bacterial strains and growth conditions
S. aureus Newman strain is a methicillin-sensitive strain that was initially isolated from an in-
fected patient [39]. S. aureusNewman can induce severe infections with organ injury and le-
thality in rodents, and is often used for early initial proof of concept studies, such as this one,
because it is methicillin-sensitive and can be used safely in laboratory animals. S. aureus was
cultured at 37°C in Lysogeny Broth (LB) medium. Bacterial stocks were kept at -80°C in LB
medium supplemented with 20% (vol/vol) of glycerol. Overnight cultures of S. aureus were
re-inoculated into fresh LB and grown to log phase. The bacteria were then harvested by centri-
fugation, washed, and resuspended in saline at the appropriate concentration for the final inoc-
ulum size. The inoculum size, in colony forming units (CFU), was confirmed by quantifying
colony counts on blood agar plates.

Induction of S. aureus primary bacteremia
Rats were anesthetized with ketamine hydrochloride (80 mg/kg IP) and xylazine (8 mg/kg IP),
placed in the supine position, and S. aureus was administered intravenously (IV) in a volume
of 1 ml sterile normal saline via a sterile cannula inserted into the lateral tail vein. Pilot dose
response studies using Sprague-Dawley rats (n = 4/group) were used to establish a dose of
S. aureus that reproducibly causes sustained bacteremia and the induction of inflammatory
mediators without causing mortality in the 48 h timeframe of the study. For the definitive ex-
periments, both HCR and LCR rats were challenged IV with an identical inoculum of 5x107

CFU/kg dose based on the mean body weight of HCR rats (n = 7/group). The rats were re-
turned to their cages and monitored daily for signs of inability to right themselves, respiratory
distress (e.g., irregular breathing, wheezing), or ruffled fur. We verified that control HCR and
LCR rats treated with sterile saline (n = 3/group) had background levels of cytokines compara-
ble to levels in untreated rats. All control rats that received saline had sterile cultures of their
blood, BALF and lung homogenates.

Collection of blood, BALF and lung tissue, quantification of bacterial
counts, cytokines, and lung edema
At 48 h, the rats were sacrificed under deep anesthesia provided by ketamine/xylazine. Blood
samples were collected immediately from the inferior vena cava in vacutainer plasma tubes. In
a separate set of rats, 2 ml bronchoalveolar lavage fluid (BALF) was collected via tubes place in
the trachea. All subsequent steps were carried out at 0–4°C. Following rinsing, the right lungs
were removed, weighed aseptically, and homogenized in 1 ml cold PBS for 1 min. The homoge-
nizer was sterilized between samples to avoid cross-contamination of bacteria between differ-
ent samples. Blood, BALF, and the lung homogenates were processed immediately after
collection. Serial 10-fold dilutions were performed, and 100 microliters of appropriate dilutions
were spread on blood agar plates in triplicate. Plates were then incubated for 48 h at 37°C, and
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colonies were counted on plates that contained between 5–300 CFU. CFU/ml of lung homoge-
nates, BALF, or blood were calculated by multiplying the number of colonies on the plate by 10
and then by the dilution factor used for the plate. For lung homogenates, CFU/mg was further
calculated based on the weight of the organ prior to homogenization.

Total protein concentration was measured in the BALF fluid (Pierce BCA Protein Assay
Kit, Thermo Scientific, Rockford, Illinois). Lung wet-dry weight ratios were quantified using
the left lungs. Excess fluid was blotted from the lung. The wet weight was measured immediate-
ly, and then the lungs were dried at 80°C for 72 hours and weighed again to determine the
dry weights.

ELISAs were performed to quantify IL-6, MIP-2, IL-10 (all from R&D Systems), and IL-17A
(eBiosciences) in plasmas, BALF, and lung homogenates.

Markers of liver and kidney function, electrolytes, CO2, and lactate
Plasma levels of liver function (aspartate aminotransferase [AST] and alanine aminotransferase
[ALT]), kidney function (blood urea nitrogen [BUN] and creatinine [Cr]), electrolytes (sodium
[Na+], potassium [K+], and Chloride [Cl-]), CO2, and lactate were quantified by the clinical lab-
oratory of San Francisco General Hospital.

Histology
The lungs of rats were fixed in 4% paraformaldehyde and paraffin-embedded. Sections of 5 mi-
cron thickness were cut using a microtome and stained with hemotoxylin and eosin (H&E).

Statistical analysis
Data in the Figures are expressed as median and interquartile range. Statistical analyses for all
data were performed with 2-tailed nonparametric Mann-Whitney U tests. P values of< 0.05
were considered statistically significant. Analyses were done using GraphPad Prism 6 software,
San Diego, CA. Comparisons were made between S. aureus-infected LCR versus S. aureus-
infected HCR rats. Group sizes of n = 7/group were chosen based on a power analysis setting a
statistical significance of p< 0.05, a power of 80%, an anticipated treatment difference (in-
fected HCR versus infected LCR) of�10%, and a standard deviation of 10%. This group size
was also found to be appropriate in our previous studies addressing functional changes in this
Metabolic Syndrome model [25] and inflammatory responses to provocative stimuli in this
Metabolic Syndrome model [26]. The values for levels of cytokines, protein in BALF, or lung
weight-dry ratios were calculated by subtracting the background levels of these markers in
saline-treated rats from the levels in rats infected with S. aureus rats (i.e., cytokine value shown
on Y axis for LCR rats = cytokine level of LCR with S. aureus infection—cytokine level of LCR
rat treated with sterile saline).

Results

Pilot dose-response study in Sprague-Dawley rats
We established the appropriate S. aureus dose using adult female Sprague-Dawley rats. With
the goals of inducing moderate inflammation as well as the hematogenous seeding of S. aureus
in the lungs, but without causing mortality, we challenged rats IV with 5×106 − 5×107 CFU/kg
(n = 4/group). Two days after IV challenge with 5×107 CFU/kg S. aureus, all rats were alive, the
mean bacterial count was 938 CFU/g lung tissue, and there was robust induction of IL-6 in
lung homogenates (data not shown). Therefore, we chose to proceed with our study in LCR
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versus HCR rats using a S. aureus dose of 5×107 CFU/kg based on the mean weight of the
HCR rats.

Weight of LCR and HCR rats before and 48 h after S. aureus
At baseline, prior to infection with S. aureus, the mean weight of HCR rats (242 ± 11 g) was sig-
nificantly lower than that of LCR rats (292 ± 49 g), (Fig 1, p = 0.005). However, there were no
significant differences in the weights of LCR rats prior to vs 48 h after challenge with S. aureus
(Fig 1, p> 0.05). Similarly, there were not significant differences in the weights of HCR rats
prior to vs 48 h after S. aureus challenge (Fig 1, p> 0.05).

Bacterial levels are higher in the blood, BALF, and lung homogenates of
infected LCR rats versus infected HCR rats
Challenge with S. aureus produced a robust bacterial load in the circulation and in lungs
(BALF and lung homogenates) at 48 h (Fig 2). HCR and LCR rats that received saline (carrier
for the S. aureus) had no CFU’s in their blood, BALF or lung homogenates (n = 3/group). Lev-
els of S. aureus (as assessed by CFUs) were significantly higher in the blood, BALF, and lung
homogenates of LCR versus HCR rats (n = 7/group, p = 0.041, 0.006, and 0.038, respectively).

Fig 1. Body weight of the HCR and LCR rats before and during infection with S. aureus. LCR rats
(Circles) and HCR rats (Squares) were weighed before (n = 10/group) and 48 h after they were challenged IV
with S. aureus (n = 7/group, purple filling). LCR rats had significantly higher body weights at baseline than
HCR rats (**p = 0.005). There were no significant differences between weights at baseline and after 48 h of
infection for either LCR or HCR (*p > 0.05, LCR baseline versus LCR-S. aureus and HCR baseline versus
HCR-S. aureus, MannWhitney U tests). Results are expressed as median with interquartile range.
HCR = high capacity runner; LCR = low capacity runner.

doi:10.1371/journal.pone.0126906.g001
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Cytokine levels in the blood, BALF, and lung homogenates of infected
LCR rats versus infected HCR rats
Cytokines and chemokines, including IL-6, IL-10, IL-17A, and MIP-2 were induced systemical-
ly and in the lungs of rats with S. aureus bacteremia. IL-6 levels were higher in the blood,
BALF, and the lung of infected LCR versus infected HCR rats (Fig 3, p = 0.0070, 0.0006, and
0.0262, respectively). In contrast to IL-6, levels of the anti-inflammatory cytokine, IL-10, which
plays an important role in resolving inflammation, were significantly lower in the blood, BALF,
and lung homogenates of infected LCR versus HCR rats (Fig 3, p = 0.007, 0.0006, and 0.0041,
respectively). Levels of MIP-2 were significantly higher in the blood and lungs of infected LCR
rats versus HCR rats (Fig 3, p = 0.004, 0.001), but not in the BALF of LCR rats versus HCR rats
(Fig 3, p = 0.053). IL-17A was significantly higher in lung homogenates of infected LCR versus
infected HCR rats (p = 0.001), but was not detectable in plasmas or BALF or either HCR or
LCR rats (data not shown).

Markers of liver and kidney function, electrolytes, CO2, and lactate
There were no significant differences in levels of the liver enzymes, AST and ALT, parameters
of kidney function (BUN and Cr), electrolytes (Na+, K+, and Cl-), lactate, or CO2 between in-
fected HCR and LCR rats (Data not shown).

Lung vascular edema and histology in LCR and HCR rats infected with
S. aureus
S. aureus infection caused increased lung vascular permeability to protein and increased lung
wet-dry weight ratios, both indicators of pulmonary edema. The range of BALF protein and
lung wet-dry weight ratios were consistent with those reported in the literature in acute lung
injury in rats [40]. BALF protein levels were substantially higher in infected LCR rats as com-
pared with HCR rats (Fig 4A, left panel; p = 0.0006). Similarly, the lung wet-dry weight ratio
was higher in LCR rats versus HCR rats (Fig 4A, right panel; p = 0.0379). H&E staining of lung
sections (Fig 4B) demonstrated an inflammatory cell influx, edema, extravascular blood cells,

Fig 2. Bacterial levels in rats with S. aureus bacteremia. LCR rats (Circles) and HCR rats (Squares) were challenged IV with S. aureus (n = 7/group). 48 h
later levels of S. aureuswere significantly higher in the blood, BALF, and lung homogenates of LCR as compared with HCR rats (*p = 0.041, **p = 0.0006,
and *p = 0.038, respectively, MannWhitney U tests). Results are expressed as median with interquartile range. HCR = high capacity runner; LCR = low
capacity runner; BALF = bronchoalveolar lavage fluid; CFU = colony-forming units.

doi:10.1371/journal.pone.0126906.g002
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Fig 3. Systemic and lung cytokine and chemokine levels in LCR and HCR rats infected with S. aureus.
LCR rats (Circles) and HCR rats (Squares) were challenged IV with S. aureus (n = 7/group). Levels of IL-6, IL-
10, MIP-2, and 1L-17A were quantified in the serum, BALF, and lung homogenates 48 h after challenge with
S. aureus. Compared with infected HCR rats, infected LCR rats had higher levels of IL-6 in plasmas, BALF
and lung homogenates (**p = 0.007, **p = 0.0006, and *p = 0.0262, respectively), higher levels of MIP-2 in
plasmas and lung homogenates (**p = 0.004 and **p = 0.0006, respectively), and higher levels of IL-17A in
lung homogenates (**p = 0.0006). In contrast, compared with infected HCR rats, infected LCR rats had lower
levels of IL-10 in plasmas, BALF and lung homogenates (**p = 0.007, ***p = 0.0006, and **p = 0.0041,
respectively). The figures show levels of cytokines after subtracting out the values measured in control rats
treated with sterile saline from the values measured in rats treated with S. aureus (i.e.: cytokine value shown
on Y axis for LCR rats = cytokine level of LCR with S. aureus infection—cytokine level of LCR rat treated with
sterile saline, similarly for HCR rats). Data were analyzed using MannWhitney U tests; results are expressed
as median with interquartile range. HCR = high capacity runner; LCR = low capacity runner;
BALF = bronchoalveolar lavage fluid; IL = interleukin; MIP = macrophage inflammatory protein.

doi:10.1371/journal.pone.0126906.g003
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Fig 4. Lung permeability, edema and histology in LCR and HCR rats infected with S. aureus. Protein level in the BALF, lung wet-dry weight ratios, and
lung histology were assessed 48 h after LCR and HCR rats were challenged IV with S. aureus (n = 7/group). (A) Compared with infected HCR rats (Squares),
infected LCR rats (Circles) had higher levels of BALF protein and higher lung wet-dry weight ratios (***p = 0.0006 and *p = 0.0379, respectively, Mann
Whitney U tests). Results are expressed as median with interquartile range. The values shown in the figures represent the BALF protein and lung wet-dry
ratios after subtracting out the values in control rats treated with sterile saline from the levels measured in rats treated with S. aureus (i.e.: BALF protein or
lung wet-dry ratio value shown on Y axis for LCR rats = BALF protein or lung wet-dry ratio of LCR with S. aureus infection—BALF protein or lung wet-dry ratio
of LCR rat treated with sterile saline, similarly for HCR rats). (B) H & E staining of lung sections demonstrated augmentation of inflammatory cell influx, blood,
edema, and thickening of the lung interstitium in LCR rats as compared with HCR rats (40-fold magnification, scale bar = 40 μm). HCR = high capacity runner;
LCR = low capacity runner. BALF = bronchoalveolar lavage fluid.

doi:10.1371/journal.pone.0126906.g004
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and thickening of the interstitium in the lungs of S. aureus-infected rats, which were all sub-
stantially more pronounced in LCR versus HCR rats with S. aureus infection.

Discussion
These studies indicate that, as compared with HCR rats, LCR (MetaS) rats with S. aureus bac-
teremic sepsis have higher systemic and lung levels of bacteria (Fig 2) and pro-inflammatory
cytokines and chemokines (Fig 3), and reduced levels of the anti-inflammatory cytokine, IL-10
(Fig 3) after 48 h of infection. Consistent with the cytokine and chemokine profile and higher
bacterial levels in LCR rats, S. aureus infection also caused more profound vascular leak, as evi-
denced by increased BALF protein levels and increased lung wet-dry weight ratios (Fig 4A),
and well as more pronounced histologic evidence of lung inflammation and injury (Fig 4B) in
LCR vsHCR rats. There were no differences in levels of lactate or liver enzymes, or parameters
of renal function in HCR vs LCR rats. However, at the 48 h collection time, infected HCR and
LCR rats had very low levels of these markers of organ dysfunction and perfusion, which sug-
gests that they not yet developed severe shock and multiple organ failure. Thus the study does
not rule out a role for the MetaS in the later development of shock and multiple organ failure.
Taken together, our novel findings support an important role for the Metabolic Syndrome in
exacerbating a sustained pro-inflammatory response, early lung injury, and lung vascular per-
meability, and in reducing the host’s defense against S. aureus infection. The higher levels of
bacteria in the blood and lungs of LCR rats is even more notable when one considers that the
dosing of S. aureus was based on the mean weight of the HCR rats (242 g) which was signifi-
cantly lower than that of the LCR rats (292 g). Thus the S. aureus dose was, in fact, lower on a
per weight basis in LCR rats (4.1x107 CFU/kg) than in HCR rats (5x107 CFU/kg).

We chose to use LCR rats as a surrogate model of MetaS, rather than isolated genetically-
manipulated animals such as the leptin-deficient ob/ob and leptin-resistant db/dbmice [41],
because MetaS is likely a polygenic rather than monogenic disorder. This is suggested by the
multiplicity of metabolic derangement encountered in humans with MetaS. The LCR and HCR
rat lines were generated by two-way (divergent) artificial selective breeding for low and high in-
trinsic (i.e., untrained) capacity for treadmill running performance. The selection was initiated
using the genetically heterogenous stock of N/NIH rats as the founder population [23]; at gen-
eration 28 the lines differed by over 8-fold in running performance [42]. LCR rats display stan-
dard features of MetaS, including, elevated cholesterol, blood pressure, triacylglycerols, fasting
glucose, insulin, visceral adiposity, and body weight [24]. The aggregation of disease risk factors
in the LCR rats may be at least partly explained by diminished energy metabolism and defective
mitochondrial function relative to the HCR rats [43].

Because acute inflammation caused by sterile and infectious processes share many immuno-
logic features, our earlier identification of alterations in the inflammation resolution following
aseptic trauma in a model of MetaS are pertinent to our current study. These alterations in the
innate immune response, which include resistance to the inflammation-resolving cholinergic
actions of α7nAChR agonists, fewer circulating regulatory T cells to orchestrate anti-inflamma-
tory responses, and eicosanoid products that are pro-inflammatory in lieu of pro-resolving
[26], are likely responsible for the exaggerated inflammation and concurrent impaired bacterial
clearance in response to S. aureus bacteremic sepsis in rats. While inflammation is required to
control and clear microorganisms during sepsis, under some circumstances, an abnormal in-
flammatory state characterized by high levels of pro-inflammatory cytokines, but also immu-
nosuppression, prevails in sepsis and is associated with high lethality [44].

In our earlier studies pursuing the mechanisms for postoperative cognitive decline we estab-
lished that inflammation-resolving mechanisms involving neural (cholinergic) and humoral
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pathways [45] are launched in tandem with pro-inflammatory cytokine secretion; a dampening
of these resolving mechanisms is implicated in exaggerating postoperative cognitive decline
[46]. In our current report, in which we explore the lung as the target organ for a dysregulated
immune system, we observed similar changes as previously seen in our surgical model. These
included (1) a pro-inflammatory cytokine panel, (2) histological evidence of a sustained pro-in-
flammatory response associated with a profound leukocyte infiltration, (3) increased expres-
sion of the chemokine MIP-2, a major participant in leukocyte mobilization from the bone
marrow and migration to sites of acute inflammation, and (4) increased expression of IL-17A.
The last-mentioned, produced by helper T lymphocytes, is involved in inducing tissue chemo-
kine production and is believed to contribute to tissue damage [47,48]. In the setting of a dysre-
gulated immune system, whether it is engaged by trauma, infection, or other provocative
factors, patients with MetaS may poorly tolerate diseases such as cancer and infection, which
have a pivotal immune component. Indeed, there is growing evidence suggesting that the fail-
ure to resolve inflammation contributes to poor outcomes in acute inflammatory disorders
such as sepsis [49–51]. Our results that show increased systemic and lung pro-inflammatory
cytokines/chemokines, and lower levels of the anti-inflammatory cytokine, IL-10, in LCR ver-
sus HCR rats suggest that MetaS may contribute to this failure to shift to a pro-resolving phase.

Our study may have direct relevance to humans with sepsis and multiple organ failure
caused not only by S. aureus, but also by other bacteria. In humans, MetaS is associated with in-
creased rates of infection and with worse acute outcomes of infections [27–34]. Surprisingly,
however, studies suggest that obesity, a component of the MetaS, does not worsen, and may
positively impact long-term outcomes of human sepsis [52–54]. The possibility that obesity
may serve a protective role in sepsis is supported by a recent report that obese patients have
higher one year survival rates than nonobese patients [55]. However, studies also suggest that
obese patients have longer ICU length of stay as well as higher rates of MODS, a complication
of acute inflammatory critical illness [53,56]. Our study focused only on the acute stages of S.
aureus sepsis, and the results neither support nor refute the concept that obesity may improve
long-term outcomes of sepsis. Furthermore, we cannot extrapolate from our study the specific
contribution that obesity had on the acute outcomes because LCR rats have multiple derange-
ments in addition to obesity, including insulin resistance, hyperlipidemia, and hypertension.
Ultimately, genetically modified mice rather than the polygenic rat model of MetaS should be
helpful in defining the independent effects of the elements of MetaS, including obesity, on
short- and long-term outcomes.

Sepsis and critical illness are associated with cellular immune dysfunction, which increases
susceptibility to infections, and may potentiate organ injury due to lack of appropriate resolu-
tion of acute inflammation [44]. Our data suggest that MetaS may exacerbate inflammation as
well as acute lung injury through a failure to resolve the pro-inflammatory response. While the
identification of the specific mediators involved in the worse outcomes of septic rats with
MetaS (LCR) is beyond the scope of the current manuscript, we speculate that differences in
specific pro-resolving mediators (SPMs) in the LCR versus HCR rats may contribute to the dif-
ferent outcomes in LCR and HCR rats. A number of recent studies support an important role
for lipid-derived SPMs, such as resolvins and lipoxins in resolving inflammation [50]. Notably,
the available data suggest that pathways involved in resolution of inflammation also promote
antibacterial defenses [57,58]. Consistent with reports on resolvins and other lipid mediators
in sepsis, our data suggest that despite promoting a pro-inflammatory state, MetaS also leads to
a state of immune dysfunction with reduced bacterial clearance.

Severe S. aureus pneumonia and bacteremia are associated with high mortality rates, and
cause substantial morbidity in survivors [10–12,59]. The development of tissue foci of infec-
tions in patients with S. aureus bacteremia, and conversely of bacteremia in patients with
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localized S. aureus infections, portends worse outcomes [6–9]. Current treatment options for
sepsis caused by S. aureus and other microorganisms are limited to antibiotics, removal of in-
fectious sources, and the supportive care of failing organs. Strategies that globally interfere with
pro-inflammatory mediators or receptors have not been successful in clinical trials, and the
failures of several recent Phase 3 human sepsis trials provide the impetus to identify novel ther-
apeutic targets [5,60–62]. The available evidence suggests that the Metabolic Syndrome, which
is prevalent in humans in developed countries, promotes more profound dysregulation of in-
flammatory responses and is associated with worse acute and subacute outcomes in critically ill
patients. Our study is in line with this paradigm, and suggests that MetaS reduces the host’s
ability to clear bacteria from the bloodstream and facilitates bacterial seeding of the lung
during hematogenous S. aureus infection. The identification of factors that differ between
individuals with and without the MetaS may provide novel mediators or pathways to target
therapeutically.
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