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ABSTRACT
Background: In previous meta-analyses of prospective observa-
tional studies, we investigated the association between food groups
and risk of chronic disease.
Objective: The aim of the present network meta-analysis (NMA)
was to assess the effects of these food groups on intermediate-disease
markers across randomized intervention trials.
Design: Literature searches were performed until January 2018. The
following inclusion criteria were defined a priori: 1) randomized
trial (≥4 wk duration) comparing ≥2 of the following food groups:
refined grains, whole grains, nuts, legumes, fruits and vegetables,
eggs, dairy, fish, red meat, and sugar-sweetened beverages (SSBs);
2) LDL cholesterol and triacylglycerol (TG) were defined as primary
outcomes; total cholesterol, HDL cholesterol, fasting glucose, gly-
cated hemoglobin, homeostasis model assessment insulin resistance,
systolic and diastolic blood pressure, and C-reactive protein were
defined as secondary outcomes. For each outcome, a random NMA
was performed, and for the ranking, the surface under the cumulative
ranking curves (SUCRA) was determined.
Results: A total of 66 randomized trials (86 reports) comparing 10
food groups and enrolling 3595 participants was identified. Nuts
were ranked as the best food group at reducing LDL cholesterol
(SUCRA: 93%), followed by legumes (85%) and whole grains
(70%). For reducing TG, fish (97%) was ranked best, followed by
nuts (78%) and red meat (72%). However, these findings are limited
by the low quality of the evidence. When combining all 10 outcomes,
the highest SUCRA values were found for nuts (66%), legumes
(62%), and whole grains (62%), whereas SSBs performed worst
(29%).
Conclusion: The present NMA provides evidence that increased
intake of nuts, legumes, and whole grains is more effective at im-
proving metabolic health than other food groups. For the credibility
of diet-disease relations, high-quality randomized trials focusing
on well-established intermediate-disease markers could play an
important role. This systematic review was registered at PROSPERO
(www.crd.york.ac.uk/PROSPERO) as CRD42018086753. Am J
Clin Nutr 2018;108:576–586.

Keywords: network meta-analysis, food groups, intervention trials,
evidence synthesis, intermediate disease markers

INTRODUCTION

According to the Global Burden of Disease study, in 2016
dietary risk factors were accountable for nearly 20% of all
deaths worldwide and 10% of all disability-adjusted life years
(1). Several dose-response meta-analyses of prospective observa-
tional studies recently investigated the association between food
groups and risk of various chronic diseases (all-cause mortality,
cardiovascular disease, colorectal cancer, type 2 diabetes, and
hypertension). Overall, a lower disease risk for food groups
of plant origin (whole grains, fruits, vegetables, nuts, legumes)
was found, whereas there was a higher disease risk for sugar-
sweetened beverages (SSBs) and certain food groups of animal
origin (red meat, processed meat, eggs) (2–7).
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Prospective observational studies with hard endpoints provide
many insights into diet-disease relations and are the most
important source to derive dietary recommendations for the
primary prevention of chronic diseases (8). The core limitations
of prospective observational studies in the nutritional field, such
as residual confounding, measurement error, and small effect
sizes, need to be considered (9). Therefore, recommendations
without evidence from intervention studies should be cautiously
applied (10). However, there are many obstacles that preclude
dietary randomized controlled trials (RCTs) with hard endpoints,
including long-term adherence, difficulty to induce dietary
change, ethical considerations, and very long follow-up (11).

A promising approach to close the gap between evidence
generated by meta-analyses of prospective observational studies
and the often missing evidence from RCTs is the meta-
analytical utilization of intervention trials with intermediate
disease markers that have used similar dietary exposures as
investigated in prospective observational studies. The utilization
will be considerably enhanced by network meta-analyses (NMA)
methods. The methodology of NMA is an extension of the
pairwise meta-analysis that enables a simultaneous comparison
of intervention trials. NMA combines direct (i.e., from trials
comparing directly two interventions) and indirect evidence (i.e.,
from a connected root via one more intermediate comparators)
in a network of trials. In this way, it enables inference about
every possible comparison between a pair of interventions in the
network even when some comparisons have never been evaluated
in a trial (12–14).

The aim of the present NMA was to investigate the hypothesis
that increased intake of foods of plant origin, such as nuts,
legumes, whole grains, fruits, and vegetables is more effective
at the primary prevention of metabolic disturbances and diseases
than intake of other food groups. Therefore we compared the
effects of different food groups across randomized intervention
studies on established intermediate markers of chronic disease
that were previously meta-analyzed using prospective observa-
tional studies (2–7).

METHODS

The NMA was registered at PROSPERO International
Prospective Register of Systematic Reviews (https://www.crd.yo
rk.ac.uk/prospero/display_record.php?RecordID=86753). The
present NMA was planned, conducted, and reported in adherence
to standards of quality for reporting NMAs (15, 16).

Search strategy

The literature search was performed using the electronic
databases PubMed, Cochrane Central Register of Controlled
Trials (CENTRAL), and Google Scholar until January 2018, with
no restriction of language and calendar date, and with a prede-
fined search strategy (Supplemental Appendix 1, Supplemental
Figure 1, and Supplemental Table 1).

Furthermore, reviews and the reference lists from the identified
articles were screened to search for additional relevant studies.
Searches were conducted by one author (LS), with disagreements
being resolved with the involvement of another author (GH).

Eligibility criteria

Studies were included in the review if they met all of the
following criteria:

1) Randomized study design (parallel or crossover) comparing
at least two of the following food groups: refined grains (grain
products that were modified to remove the bran and germ, e.g.,
refined wheat, spaghetti, cookies, white rice, pretzels, breakfast
cereals); whole grains (grain products containing the whole grain,
e.g., whole grain oatmeal, whole grain cookies, whole grain
pasta, whole grain bread, brown rice); fruits and vegetables (e.g.,
berries, apples, carrots); nuts (e.g., almonds, hazelnuts, walnuts,
pistachio); legumes (e.g., beans, lentils, peas, chickpeas, soy);
eggs; dairy (e.g., milk); fish (e.g., sardines, salmon, snook); red
meat (e.g., ground beef, pork); and SSBs;

2) Similar energy intake across intervention arms within a
randomized trial;

3) Minimum intervention period of 4 wk;
4) Patients with a mean age ≥18 y;
5) Outcomes including LDL cholesterol (mmol/L) and tri-

acylglycerol (TG) (mmol/L) (defined as primary outcomes);
total cholesterol (TC), HDL cholesterol, fasting glucose (FG),
glycated hemoglobin (HbA1c), HOMA-IR, systolic and diastolic
blood pressure (SBP/DBP), and C-reactive protein (CRP)
(defined as secondary outcomes).

The following studies were excluded:
1) Randomized trials including pregnant women, children and

adolescents, and patients with cancer;
2) Intervention studies solely based on dietary patterns,

multiple food groups (>1 of the above-mentioned food groups
within a intervention arm), or dietary supplements;

3) Studies with a co-intervention (e.g., lifestyle, drug) that was
not applied in all the intervention arms.

Data extraction

After determination of the study selection, two reviewers
extracted the following characteristics: name of first author, year
of publication, study origin (country), study design (randomized
controlled trial: parallel or crossover, washout period), sample
size, mean baseline age, mean baseline BMI, study duration,
sex, description of the food group arms, type of diet (energy
restricted, ad libitum, isocaloric), drop outs, and conflict of
interest. Outcome data included postintervention values with
corresponding standard deviations.

Risk of bias assessment

Full copies of the studies were assessed by one author (LS)
for methodological quality using the risk of bias assessment tool
from the Cochrane Collaboration (17). The following sources of
bias were assessed: selection bias (random sequence generation
and allocation concealment), performance bias (blinding of
personnel), attrition bias (incomplete outcome data), reporting
bias (selective reporting), and funding bias.

Studies were classified as being at low risk of bias (if ≥4 of a
maximum of 6 items were rated as low risk and a maximum of 1
item was rated with a high risk of bias), high risk of bias (if ≥2
out of a maximum of 6 items were rated with a high risk of bias),
and moderate or unclear risk (all other studies) (Supplemental
Figure 2).

https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=86753


578 SCHWINGSHACKL ET AL.

Refined grains

Whole grains

Fruit & VegetablesNuts

Legumes

Eggs

Dairy

Fish
Red Meat

SSB

FIGURE 1 Network diagram for LDL cholesterol. The size of the nodes
is proportional to the total number of participants allocated to each food
group, and the thickness of the lines is proportional to the number of studies
evaluating each direct comparison. SSB, sugar-sweetened beverages.

Dealing with missing data

We contacted authors to request missing outcome data (one
author was sent additional data). If the postintervention values
with the corresponding standard deviations were not available,
the change scores with the corresponding standard deviations
were used (Supplemental Table 2), according to the guidelines
of the Cochrane Handbook (18).

Data synthesis

Description of the available data

We illustrated the available direct comparisons between
different food groups using a network diagram for each outcome
(19). The size of the nodes is proportional to the sample size
of each dietary intervention and the thickness of the lines is
proportional to the number of studies available (Figure 1).

Assessment of transitivity

To evaluate the assumption of transitivity, we compared
the distribution of the potential effect modifiers across the
available direct comparisons. We considered the following effect
modifiers: age, BMI, length of follow-up, sample size, percentage
of female participants (Supplemental Figures 3–7).

Statistical analysis

For each outcome measure of interest, we performed random
effects NMA in order to determine the pooled relative effect of
each food group against every other food group. The similarity
of trials within each direct comparison was assessed. NMA
was then used to synthesize the direct and indirect effects
(Supplemental Table 3). Compared with the standard pairwise
meta-analysis, the method of NMA is an extension and enables
a simultaneous comparison of multiple interventions, forming a
connected network while preserving the internal randomization

of individual trials. We ran random effects NMA for each
outcome to estimate all possible pairwise relative effects and to
obtain a clinically meaningful relative ranking of the different
dietary interventions. The summary mean differences (together
with their 95% CIs) are presented in league tables (Tables 1
and 2, Supplemental Tables 4–11). The relative ranking of the
different food groups for each outcome were estimated using the
distribution of the ranking probabilities and the surface under the
cumulative ranking curves (SUCRA) (Table 3) (20). We fitted all
analyses described into a frequentist framework in Stata (21) with
the network package (22), and produced presentation tools with
the network graphs package (23).

Assessment of inconsistency

To evaluate the presence of statistical inconsistency, we used
a loop-specific approach (24) (Supplemental Figures 8 and
9) to detect loops of evidence that might present important
inconsistency, as well as a side-splitting approach (25) to detect
comparisons for which direct estimates disagree with indirect
evidence from the entire network (Supplemental Tables 12 and
13). We used a design-by-treatment interaction model (26, 27) to
investigate the presence of inconsistency jointly from all possible
sources in the entire network simultaneously.

Sensitivity analyses

We conducted a sensitivity analysis by excluding studies
considered to be at high risk of bias for the two primary
outcomes (LDL cholesterol and TG) (Supplemental Tables 14
and 15), excluding trials conducted before the year 2000, and by
comparing food groups of plant origin with ones of animal origin.

Small study effects and publication bias

We produced a comparison-adjusted funnel plot (19) to assess
the magnitude of funnel plot asymmetry for the primary outcomes
(Supplemental Figures 10 and 11).

Quality of evidence

To make inferences about the quality of evidence from the
NMA, we used the GRADE system extended for NMA following
the approach suggested by Salanti et al. (28) for the primary
outcomes (Supplemental Tables 16 and 17).

RESULTS

Out of 15,192 records identified by the literature search,
309 full-text articles were assessed in detail as they reported
on one or more of the food groups of interest in the title or
abstract (Supplemental Figure 1). Of these, 223 were excluded
(Supplemental References). The reasons for exclusion are
summarized in Supplemental Table 1.

Overall, 66 trials (86 reports) (29–114) met the eligibility
criteria and provided sufficient data to be included in the meta-
analysis. The included studies were published between 1979 and
2018, and had enrolled a total of 3595 participants (280 type 2
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TABLE 1
League table for LDL cholesterol1

Nuts
−0.04
(−0.23, 0.14)

Legumes

−0.12
(−0.24, 0.01)

−0.08
(−0.24, 0.09)

Whole grains

−0.24
(−0.35, −0.13)

−0.19
(−0.36, −0.03)

−0.12
(−0.18, −0.06)

Refined
grains

−0.15
(−0.36, 0.07)

−0.10
(−0.31, 0.11)

−0.03
(−0.23, 0.18)

0.09
(−0.11, 0.29)

Fruits and
vegetables

−0.25
(−0.45, −0.06)

−0.21
(−0.45, 0.04)

−0.13
(−0.33, 0.06)

−0.02
(−0.21, 0.18)

−0.11
(−0.38, 0.17)

Eggs

−0.32
(−0.76, 0.12)

−0.28
(−0.72, 0.16)

−0.20
(−0.64, 0.24)

−0.08
(−0.52, 0.35)

−0.18
(−0.65, 0.29)

−0.07
(−0.54, 0.40)

Dairy

−0.34
(−0.54, −0.14)

−0.29
(−0.50, −0.08)

−0.22
(−0.42, −0.02)

−0.10
(−0.29, 0.10)

−0.19
(−0.45, 0.07)

−0.08
(−0.35, 0.18)

−0.01
(−0.45, 0.42)

Fish

−0.34
(−0.50, −0.18)

−0.30
(−0.46, −0.13)

−0.22
(−0.38, −0.06)

−0.10
(−0.26, 0.05)

−0.20
(−0.43, 0.03)

−0.09
(−0.32, 0.15)

−0.02
(−0.43, 0.39)

−0.01
(−0.14, 0.13)

Red meat

−0.35
(−0.91, 0.20)

−0.31
(−0.87, 0.25)

−0.24
(−0.79, 0.32)

−0.12
(−0.67, 0.44)

−0.21
(−0.79, 0.37)

−0.10
(−0.68, 0.48)

−0.03
(−0.37, 0.31)

−0.02
(−0.57, 0.53)

−0.01
(−0.55, 0.52)

SSBs

1The value below the food groups corresponds to the difference in mean (95% CI) in LDL cholesterol (mmol/L) between the column and the row (e.g.
the mean difference in average LDL-cholesterol between nuts and red meat is −0.34 mmol/L). SSB, sugar-sweetened beverage.

diabetes patients). Detailed study and participant characteristics
are summarized in Supplemental Table 2.

Of the trials, 8 were judged to be at low risk of bias,
11 trials were judged to be at high risk of bias, and 47
trials were classified to be at moderate or unclear risk of
bias (Supplemental Figure 2). The most common comparison
in the trials was between a whole grains arm and a refined
grains arm (n = 30). In the transitivity analyses, we observed
differences for the distribution of participant characteristics,
BMI, age, and percentage of female participants across the direct
comparisons. For the study characteristics, study length, and
sample size, the differences between direct comparisons was
minor. For several direct comparisons, the number of included
trials was too low to appropriately test transitivity (Supplemental

Figures 3–7). Study effects came more often from indi-
rect comparisons than from direct comparisons (Supplemental
Table 3).

The effect size estimates for the comparison of every food
group compared with each other food group on LDL cholesterol
and TG (Tables 1 and 2), TC, HDL cholesterol, FG, HOMA-IR,
HbA1c, SBP, DBP, and CRP are given in Supplemental Tables
4–11.

Primary outcomes

Nuts were more effective at reducing LDL cholesterol (−0.34
to −0.24 mmol/L) compared with refined grains, eggs, fish, and
red meat. Legumes and whole grains were more effective at

TABLE 2
League table for triacyglycerols1

Nuts
−0.05
(−0.18, 0.08)

Legumes

−0.07
(−0.17, 0.03)

−0.02
(−0.14, 0.11)

Whole grains

−0.15
(−0.23, −0.06)

−0.09
(−0.21, 0.03)

−0.08
(−0.12, −0.03)

Refined grains

−0.12
(−0.26, 0.02)

−0.07
(−0.23, 0.09)

−0.05
(−0.19, 0.09)

0.03
(−0.11, 0.16)

Fruits and
vegetables

−0.19
(−0.30, −0.07)

−0.13
(−0.29, 0.02)

−0.12
(−0.24, 0.01)

−0.04
(−0.16, 0.08)

−0.07
(−0.24, 0.10)

Eggs

−0.10
(−0.38, 0.17)

−0.05
(−0.35, 0.24)

−0.03
(−0.32, 0.25)

0.04
(−0.24, 0.32)

0.01
(−0.29, 0.32)

0.08
(−0.21, 0.37)

Dairy

0.07
(−0.00, 0.14)

0.12
(−0.02, 0.26)

0.14
(0.01, 0.27)

0.22
(0.10, 0.33)

0.19
(0.03, 0.35)

0.26
(0.12, 0.39)

0.17
(−0.10, 0.45)

Fish

−0.01
(−0.07, 0.04)

0.04
(−0.09, 0.16)

0.06
(−0.04, 0.15)

0.13
(0.04, 0.22)

0.10
(−0.04, 0.25)

0.17
(0.05, 0.30)

0.09
(−0.18, 0.36)

−0.08
(−0.17, −0.00)

Red meat

−0.23
(−0.63, 0.16)

−0.18
(−0.60, 0.23)

−0.16
(−0.57, 0.24)

−0.09
(−0.49, 0.32)

−0.11
(−0.53, 0.31)

−0.05
(−0.46, 0.37)

−0.13
(−0.42, 0.16)

−0.30
(−0.71, 0.10)

−0.22
(−0.61, 0.18)

SSBs

1The value below the food groups corresponds to the difference in mean (95% CI) in triacylglycerols (mmol/L) between the column and the row (e.g. the mean difference in average triacyglycerols
between nuts and red meat is −0.01 mmol/L). SSB, sugar-sweetened beverage.
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reducing LDL cholesterol (−0.30 to −0.12 mmol/L) compared
with refined grains, fish, and red meat (Table 1). Regarding TG
reduction, nuts and whole grains were more effective compared
with refined grains (−0.15 to −0.08 mmol/L). Fish was more
effective at reducing TG (−0.26 to −0.08 mmol/L) compared
with whole grains, refined grains, fruits and vegetables, eggs, and
red meat (Table 2).

Nuts had the highest SUCRA value (93%), followed by
legumes (85%) and whole grains (70%), for LDL cholesterol
reduction, whereas fish (97%) had the highest SUCRA value
for TG reduction, followed by nuts (78%) and red meat (72%)
(Table 3).

The loop-specific approach showed some inconsistency in the
loop formed by refined grains, whole grains, eggs, and red meat
for LDL cholesterol and TG (Supplemental Figures 8 and 9).
However, the side-splitting approach suggested no significant
inconsistency for LDL cholesterol (Supplemental Table 12) or
TG (Supplemental Table 13), and also the design-by-treatment
model showed no significant inconsistency for LDL cholesterol
(P = 0.87) and TG (P = 0.92).

Secondary outcomes

Total cholesterol and HDL cholesterol

Nuts were more effective at reducing TC (−0.39 to −0.30
mmol/L) than were refined grains, eggs, fish, and red meat.
Legumes and whole grains were more effective at reducing TC
(−0.39 to −0.16 mmol/L) than were refined grains, eggs, fish,
and red meat (Supplemental Table 4). Nuts, whole grains, refined
grains, fish, and red meat were more effective at increasing
HDL cholesterol (0.06 to 0.13 mmol/L) than were legumes
(Supplemental Table 5).

Nuts had the highest SUCRA value (92%) for TC reduction,
whereas fish (91%) had the highest SUCRA value to improve
HDL cholesterol (Table 3).

We observed some important inconsistency (with the side-
splitting approach) for TC in the comparisons of refined grains
with nuts and nuts with red meat, but not for HDL cholesterol.
The design-by-treatment model showed no significant inconsis-
tency for TC (P = 0.36), and HDL cholesterol (P = 0.86).

Glycemic control

Nuts, whole grains, and refined grains were more effective
at reducing FG (−0.43 to −0.35 mmol/L) than were fruits and
vegetables and red meat (Supplemental Table 6). Whole grains
were more effective at reducing HOMA-IR (−0.22; 95% CI:
−0.40, −0.05) than were refined grains. Whole grains, nuts,
legumes, and refined grains were more effective at reducing
HOMA-IR (−1.01 to −0.53) compared with eggs and dairy
(Supplemental Table 8). No significant effects were detected for
HbA1c (Supplemental Table 7).

Whole grains had the highest SUCRA value for improvements
in FG (87%), HbA1c (76%), and HOMA-IR (86%) (Table 3).

Although no significant inconsistency in the side-splitting
approach was observed for HbA1c and HOMA-IR, some
inconsistency was observed for FG when comparing refined
grains with fruits and vegetables, and between nuts and legumes.
The design-by-treatment model also showed no significant
inconsistency for HbA1c (P = 0.95) or HOMA-IR (P = 0.48),
but did for FG (P < 0.01).

Blood pressur

Whole grains were more effective at reducing SBP (−1.79 mm
Hg, 95% CI −3.55, −0.03 mm Hg) compared with refined grains,
whereas fruits and vegetables were more effective at reducing
SBP compared with nuts and refined grains (−8.61 to −7.49 mm
Hg) (Supplemental Table 9). No significant effects were observed
for DBP (Supplemental Table 10).

TABLE 3
Food group relativeranking for each individual primary and secondary outcome and summary ranking across outcomes1

Primary outcomes Secondary outcomes
Summary
ranking

Food group LDL-C TG TC HDL-C FG HbA1c HOMA-IR SBP DBP CRP
All outcomes

combined

Nuts 93 78 92 62 84 37 67 32 42 76 66
Legumes 85 58 91 12 51 61 76 69 70 45 62
Whole grains 70 53 71 44 57 76 86 44 57 61 62
Refined grains 42 25 42 49 74 70 56 14 30 36 44
Fruits and vegetables 63 35 58 49 20 52 43 91 54 26 49
Eggs 40 16 30 58 NA NA 6 41 41 80 39
Dairy 33 44 33 49 32 NA 21 NA NA 48 37
Fish 23 97 23 91 NA NA 47 62 33 32 51
Red meat 20 72 28 57 24 5 NA 48 74 46 42
SSBs 30 23 32 30 28 NA NA NA NA NA 29

1The values represent the SUCRA for all outcomes (e.g, nuts were ranked as the best food group for reducing LDL cholesterol, SUCRA: 93%; fish was
ranked as the best food group for reducing triacylglycerol, SUCRA: 97%). CRP, C-reactive protein; DBP, diastolic blood pressure; FG, fasting glucose;
HbA1c, glycated hemoglobin; HDL-C, HDL cholesterol; LDL-C, LDL cholesterol NA, not applicable; SBP, systolic blood pressure; SSB, sugar-sweetened
beverage; SUCRA, surface under the cumulative ranking curves; TC, total cholesterol; TG, triacyglycerols.
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Fruits and vegetables had the highest SUCRA value (91%) to
improve SBP, whereas red meat (74%) had the highest SUCRA
value to improve DBP (Table 3).

The side-splitting approach and design-by-treatment model
suggested that there was no significant inconsistency for SBP
(P = 0.34) and DBP (P = 0.96).

C-reactive protein

Nuts were more effective at reducing CRP (−0.43 to
−0.28 mg/L) compared with refined grains, fish, and red
meat, whereas eggs were more effective compared with nuts,
refined grains, fish, and red meat (−0.77 mg/L to −0.35 mg/L)
(Supplemental Table 11).

Eggs had the highest SUCRA value (80%) for CRP reduction
(Table 3).

The side-splitting approach and design-by-treatment model
suggested no significant inconsistency.

Summary across outcomes

When combining all 10 outcomes (LDL cholesterol, TG, TC,
HDL cholesterol, FG, HbA1c, HOMA-IR, SBP, DBP, and CRP),
the highest SUCRA values were found for nuts (66%), legumes
(62%), and whole grains (62%). SSBs performed the worst (29%)
(Table 3).

Sensitivity analyses

The results of the main analyses were confirmed in the
sensitivity analyses excluding high risk of bias trials (n = 11) for
the primary outcomes (LDL cholesterol and TG) (Supplemental
Tables 14–15). The comparison of foods of plant origin with
foods of animal origin showed that there was a more pronounced
reduction in LDL cholesterol for the food groups of plant origin
(−0.22 mmol/L; 95% CI: −0.33, −0.12 mmol/L), but that
there was no difference in TG (0.03 mmol/L; 95% CI: −0.05,
0.10 mmol/L). Moreover, the sensitivity analysis excluding trials
conducted prior to the year 2000 also confirmed the findings of
the main analysis.

Small study effects

The comparison-adjusted funnel plots for both primary
outcomes appear slightly asymmetric in all trials (Supplemental
Figures 10–11).

Quality of evidence

The credibility of the evidence for LDL cholesterol and TG
was rated very low or low, as was the evidence for all comparisons
between the different food groups (Supplemental Tables 16–17).
The reason for the low and very low quality of evidence ratings
were mainly driven by the small number of trials, the risk of bias,
the imprecision, and the indirectness of several comparisons. This
implies that further research is needed to provide more evidence
on which to base judgments.

DISCUSSION

In the present NMA, we ranked 10 major food groups (refined
grains, whole grains, fruits and vegetables, nuts, legumes, eggs,
dairy, red meat, fish, and SSBs) according to their effects on
cardiometabolic outcomes. Nuts showed the highest SUCRA
value for LDL cholesterol and TC reduction; whole grains was
the most effective food group at improving glycemic control (FG,
HbA1c, and HOMA-IR); fish was ranked best at improving TG
and HDL cholesterol; fruits and vegetables were ranked best for
SBP reduction; and red meat was ranked best for DBP reduction.
However, red meat was the worst at LDL cholesterol reduction
and eggs were the worst at TG reduction, respectively.

Comparison with published pairwise meta-analyses

Our results are in congruence with previous pairwise meta-
analyses of intervention trials, although most of them did not
investigate all of the intermediate disease markers. One meta-
analysis showed that consumption of whole-grain diets reduces
LDL cholesterol and TC (115), while no such effects were
reported with regard to either HDL cholesterol, FG, or SBP
(116, 117). A Cochrane Review of 10 RCTs focusing on
interventions to increase consumption of fruits and vegetables
showed reductions in DBP, SBP, and LDL cholesterol (118).
Meta-analyses investigating the effects of nut intake reported
reductions in TC, LDL cholesterol, TG, DBP, FG, and HbA1c
(119–121), but no effects on HDL cholesterol, SBP, or CRP
(120, 122, 123). Regarding legumes, a meta-analysis of 10 RCTs
indicated improvements in TC and LDL cholesterol levels (124),
and others reported reductions in CRP, SBP, and FG (125, 126).
Higher consumption of eggs increased TC, LDL cholesterol, and
HDL cholesterol, but not TG, compared with control diets (127).
Discrepancies between the present NMA and past meta-analyses
were observed for egg consumption, which ranked worst for TG
and best for CRP in our analyses. Synthesizing available data of
RCTs showed that higher dairy intake has no significant effect on
SBP (128). Additionally, neither high nor low fat dairy products
seem to affect cardiovascular risk factors (129). Consumption
of fatty fish resulted in significant improvements in TG and
HDL cholesterol, whereas no effects were observed for TC, LDL
cholesterol, DBP, SBP, FG, and CRP (130). Regarding red meat
intake, a systematic review suggested that consumption of ≥0.5
servings/d of total red meat has no detrimental effect on blood
lipids or blood pressure compared with lower red meat intakes
(131). In contrast to previous findings, in the present NMA, red
meat performed best for improvement in DBP and third best
for TG.

Possible explanations of our findings

The LDL cholesterol–lowering effects of nuts might be
mediated by the decreased (re)absorption and increased excretion
of cholesterol and bile acid owing to their high content of
phytosterols (132) and higher LDL-receptor activity (133).
Moreover, the LDL cholesterol and TC-lowering effects provide
critical mechanistic evidence to support a potential causal link
between nut intake and lower cardiovascular risk (134). In
addition, nuts are rich in MUFA and PUFA, both of which
might trigger antioxidative as well as anti-inflammatory effects,
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leading to decreased levels of CRP (135). Soluble fiber may
contribute to the cholesterol-lowering effects of legumes; in
particular, it binds to bile acids in the intestines and prevents
reabsorption. Consequently, an increase in the production of bile
acids decreases the liver pool of cholesterol and increases uptake
of serum cholesterol by the liver, thereby decreasing circulating
cholesterol in the blood (136). Compared with refined grains,
whole grains were more effective at reducing LDL cholesterol,
TG, TC, HOMA-IR, and SBP. Whole grains, like legumes, might
reduce cholesterol concentrations through soluble fiber, and they
might exert antioxidant and anti-inflammatory properties owing
to the presence of polyphenols and other phytonutrients. Whole
grains might also modulate blood glucose and insulin responses,
as well as improve vascular function, blood pressure, and weight
control (137). Several components may contribute to the blood
pressure–lowering effect of fruits and vegetables; for example,
potassium, magnesium, vitamin C, folic acid, flavonoids, and
carotenoids have all been postulated to lower blood pressure by
improving endothelial function, modulating baroreflex sensitiv-
ity, or causing vasodilation (138, 139). The beneficial effects
of fish on TG and HDL cholesterol are biologically plausible
through effects of long-chain n–3 PUFA, which have been
associated with antiatherosclerotic and antithrombotic effects
(140).

Comparison with observational evidence

A recent dose-response meta-analysis of 123 cohort studies
investigating the association between major food groups and
risk of cardiovascular disease showed that each daily serving
of whole grains, fruits, vegetables, nuts, legumes, and fish was
associated with reduced risk of coronary heart disease (CHD).
In contrast, each additional daily serving of red meat, processed
meat, and SSBs was positively associated with CHD, whereas
no associations were observed for eggs, dairy, and refined grains
(2). In the present NMA of intervention trials, we were able to
confirm the beneficial effects of nuts, legumes, and whole grains
and the detrimental effect of red meat on LDL cholesterol, as
well as the favorable effects of fish, nuts, and whole grains on
TG levels. Both LDL cholesterol and TG are considered to be
causal risk factors for CHD (141). Interestingly, the detrimental
associations between SSB consumption and CHD risk observed
in meta-analyses of prospective observational studies (2) could
not be confirmed in the present NMA with respect to any of the
risk factors assessed, most likely owing to the low number of trials
(n = 2). However, it should be noted that a proper comparison
between results from randomized trials and observational studies
needs to take into account whether the studies referred to
isocaloric trial arms respective of observational substitution
models or ad libitum arms and models that investigated the
addition of intake (142). In our dose-response meta-analysis, the
low number of published substitution models prevented a direct
comparison (2).

Strengths and limitations

The main strengths include the application of the novel
methodology of NMA to compare the effects of different food
groups across randomized intervention studies on established

intermediate markers of chronic disease that were previously
meta-analyzed using prospective observational studies. Other
strengths are the large number of included trials, food groups, and
outcomes, the a priori published protocol, and the assessment of
both risk of bias and quality of evidence. Nevertheless, important
limitations of the present NMA should also be considered. First,
only 12% of all trials were judged to be in the low risk of
bias category; only 8% of the included studies indicated a low
risk of bias for allocation concealment and 15% for blinding of
personnel, whereas 68% of the included trials reported a potential
conflict of interest. Concerns have been reported about industry
benefit bias in nutrition research (143). Second, the credibility of
evidence was rated very low or low for the primary outcomes,
which indicates that the evidence is very limited and uncertain,
and further research will likely change the effect estimate. Third,
the comparability of our findings with previous pairwise meta-
analyses is limited owing to the fact that food groups were mostly
compared with control diets or groups rather than directly with
other food groups. Fourth, the similarity across the included
trials was only modest, which limits the generalizability of our
findings.

Conclusion

In conclusion, the present network meta-analysis with inter-
mediate metabolic health markers supports the hypothesis that
increased intake of nuts, legumes, and whole grains is more
effective at primary prevention of metabolic disturbances and
diseases than other food groups. However, findings of the NMA
were rated as being of low and very low quality of evidence.
For the future, NMAs with high-quality isocaloric randomized
trials are needed to confirm the results of observational studies
presenting the study results primarily as substitution models.
To improve the quality of evidence for future NMAs, RCTs
should improve dietary adherence by direct observations of
study participants in experimental in-house settings. By applying
adequate methods of sequence generation, allocation conceal-
ment, blinding, conducting intention-to-treat analysis, reporting
funding sources, increasing sample sizes, and measuring diet
carefully, risk of bias can be reduced. Moreover, new randomized
study designs like large simple trials, registry-based design, or n-
of-1 trials may play an important role in the future of nutrition
research.
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