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The primary cilium is a hair-like, microtubule-based organelle that is covered

by the cell membrane and extends from the surface of most vertebrate cells. It

detects and translates extracellular signals to direct various cellular signaling

pathways to maintain homeostasis. It is mainly distributed in the proximal and

distal tubules and collecting ducts in the kidney. Specific signaling transduction

proteins localize to primary cilia. Defects in cilia structure and function lead to a

class of diseases termed ciliopathies. The proper functioning of primary cilia is

essential to kidney organogenesis and the maintenance of epithelial cell

differentiation and proliferation. Persistent cilia dysfunction has a role in the

early stages and progression of renal diseases, such as cystogenesis and acute

tubular necrosis (ATN). In this review, we focus on the central role of cilia in

kidney development and illustrate how defects in cilia are associated with renal

disease progression.
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Introduction

Cilium emanates from the mother centriole, and it is classified into motile cilia (9 + 2

structure) and nonmotile cilia (9 + 0 structure). Motile cilia have nine peripheral doublets

of microtubules with a central pair complex (9 + 2), and primary cilia lack the centrally

located pair (9 + 0) (1, 2). In vertebrates, cilia are widely distributed. Motile cilia are

distributed on the surface of cells of the cerebral ventricle, respiratory mucosa, and

reproductive system, and primary cilia are mainly distributed in embryos, kidneys and

retina. They play fundamental roles in the asymmetric development of organs, mucus

clearance of the respiratory tract, hearing, neurogenesis, and sperm motility (3–7).
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The cilia life cycle is tightly related to the cell cycle (8–11)

and consists of cilium assembly and cilia disassembly. The

diverse roles of the primary cilium depend on the well-

established balance between cilia assembly and disassembly

(Figure 1). Cilia assembly is a precise and orderly multistep

process. In the absence of mitogen or stimulation by

differentiation signals, cells escape from the mitotic phase and

enter the G0 phase. Then, cilia begin to assemble. First, within a

few minutes of mitogen deprivation, vehicles originating from

the Golgi or recycling endosomes, distal appendage vesicle

(DAV), cluster at the distal appendage of the mother centriole

(MC). This initiates the conversion from MC to the basal body,

building a platform for cilia assembly. DAVs aggregate and fuse

at the mother centriole to form the ciliary vesicle (CV) (12). CV

formation marks the maturation of the basal body. The distal

accessory structure protein Cep164 helps to maintain the

integrity of this structure and anchors its fusion with the
Frontiers in Endocrinology 02
ciliary vehicle by binding to the GTP enzymes Rab8 and

Rabin8 (13, 14). In the second step of cilia assembly, Cep164

recruits TTBK2 to the mother centriole. Proper localization of

TTBK2 is required for the disappearance of the key repressor

CP110 from the mother centriole, which thereby recruits the

intraflagellar transport protein (IFT) complex. This complex is

responsible for bidirectional protein cargo transport along

axonal microtubules and thus promotes axoneme assembly

(13, 15, 16). In this process, kinesin 2 carries the cargo from

the tip to the base of the cilium, while dynein functions in cargo

transport on the opposite side. After CV maturation, the

transition zone (TZ) begins to assemble. It then embeds into

and enlarges the CV. Subsequently, the ciliary axoneme is

wrapped by CV and extends longitudinally. It is covered by

the ciliary sheath, and finally fuses with the cell membrane.

Ultimately, the mature ciliary composition includes axonemes

composed of microtubules and associated proteins, the ciliary

membrane connected to the cell membrane, and various

matrices between the axonemes and the membrane (8).

Compared to cilium assembly, the signaling pathways for

cilia disassembly are poorly understood (17). The Aurora A-

HDAC6 and Nek2-Kif24 pathways and actin polymerization are

the key signaling pathways that can induce cilia disassembly. It is

widely accepted that Aurora A is the major pathway for the

direct induction of ciliary microtubule deacetylation through the

activation of HDAC6 (18). Nek2 ensures Kif24 activation in cells

that lack cilia, and Nek2 is mainly expressed during the S and G2

phases (19). Imbalance between cilium assembly and

disassembly leads to the loss of cell cycle regulation, and the

loss of cilia may be an initiating factor of the oncogenesis of renal

cancer, melanoma, and breast, pancreatic and prostate cancer

(20–22).
Cilia in kidney development
and function

Ciliary membranes are rich in receptors and ion channels

that can be activated by mechanical or chemical stimuli (23). The

proper spatiotemporal localization of receptors and the

coordinated transportation of related signal modules that

localize to the cilium lay the foundation for cilia sensory

function (1, 24). The cilium is an important nexus for

Hedgehog signaling, Wnt signaling, GPCR signaling and

transforming growth factor-b (TGF-b)/bone morphogenetic

protein (BMP) signaling (1, 25, 26). In nephrogenesis, Wnt

signaling is of great importance (26). The Wnt signaling

branches to b-catenin-dependent (canonical) and b-catenin-
independent (noncanonical) pathway.

Wnt9b is expressed in the stalk of the ureteric bud (UB) as it

invades and branches into the metanephric mesenchyme (MM)

and acts as a paracrine signal to induce the expression of
FIGURE 1

The ciliary life cycle is in tune with the cell cycle. Ciliogenesis
occurs in the G0/early G1 phase or differentiation stage. Each
stage of the cell cycle is as indicated (G1, S, G2 and M phase),
and blue and orange arrows indicate cilium assembly and
disassembly, respectively. The mother centriole (light blue
cylinder) can initiate ciliogenesis (cilium assembly). (1) Distal
appendage vehicles (DAVs, dark blue triangles) accumulate near
the distal appendage of the mother centriole. (2) DAVs aggregate
and fuse with the mother centriole, forming a ciliary vehicle. (3)
Assembly of the transition zone (TZ). (4) The ciliary axoneme
(indicated by parallel green rods) covered by CV elongates
vertically and fuses with the cell membrane. (5) Extension of the
ciliary axoneme and membrane. These microtubule structures
disassemble as cells progress to S phase. Several key signaling
pathways that mediate cilia disassembly are summarized in the
box. During the later S phase, centrosomes begin to duplicate.
After mitosis, centrosomes set out to assemble primary cilia.
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tubulogenic pathway markers, such as fibroblast growth factor-8

(FGF8), Wnt4 and Pax8 (27).. Wnt9b is required for the planar

cell polarity (PCP) signaling pathway (28). Wnt4 was detected in

condensing mesenchyme, pre-tubular aggregates (Figure 2) (29).

Inactivation of FGF8 block formation of Wnt4-expressing pre-

tubular aggregates, which led to S-shaped bodies, the precursor

of nephron cannot develop (30, 31). Wnt9b and Wnt4 primarily

employ the canonical, b-catenin-dependent pathway. Studies

have shown that b-catenin activation is necessary and sufficient

to initiate the tubulogenic program and induce MM in Wnt9b-/-

andWnt4-/- mice. However, it is important to maintain a proper

balance of canonical Wnt signaling activity, and constitutive b-
catenin activation results in cyst formation in all tubular

segments (32). Ksp-cre conditional inactivation of APC, which

enhances b-catenin activity, results in cystic kidneys in all

tubular segments and a hyperproliferative epithelium (33).

Module component jouberin (JBN)-deficient mice show cystic

kidneys and malformations of the central nervous system caused

by dysregulated Wnt-b-catenin signaling (34).

Simon et al. suggested that Wnt functions primarily via b-
catenin-dependent pathways in the absence of flow (35). Flow

sensing by the primary cilium is thought to function as a switch

from canonical pathway to noncanonical pathway (Figure 3).

Studies have suggested that the primary cilium inhibit the

activity of canonical Wnt signaling (perhaps promoting

noncanonical signaling pathway) in mouse embryos, primary

fibroblasts and embryonic stem cells (36).

Activation of GPCR signaling, functionally coupled to

calcium channels, led to an increase in calcium concentration

in the cilia, and cilium was lengthened by mediating actin

depolymerization (1). TGF-b signaling induces the shortening
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of primary cilia in mouse renal tubular epithelial cells (RTECs)

and is related to epithelial and mesenchymal transition (37).

In addition, shear stress stimulates lipophagy and

mitochondrial biogenesis in RTECs to produce fatty acids that

provide substrates for mitochondrial b-oxidation to generate

ATP. This ensures an energy supply for the reabsorption of

glucose in RTECs, and this process is dependent on the primary

cilium (38). Unilateral ureteral obstruction (UUO) in mice

reduced fluid flow, and the authors found defects in lipophagy.

These defects resulted in lipid droplet accumulation in kidney

cortical cells, intensifying the central role of the primary cilium

in sensing mechanical stress to regulate mitochondrial activity

and lipophagy (38). Miceli and Roccio et al. hypothesized that

the primary cilium–autophagy axis plays a key role in the

response to shear stress induced by fluid flow (39–41).

Mutations leading to ciliary structure and function defects

give rise to multiple organ-involved disorders termed

ciliopathies (42–44). These ciliopathies are accompanied by

the following phenotypes: retinal degradation, hearing loss,

malformation of the central nervous system, and polycystic

kidney (45, 46). The significance of the renal cilium is

reinforced by the fact that defects in this organelle lead to

polycystic kidney disease, Meckel-Gruber syndrome (MKS),

Bardet–Biedl syndrome (BBS), nephronophthisis (NPHP) and

renal cell carcinoma (RCC) (5, 45–48) (Table 1).
Cystic kidney disease

Cystic kidney diseases are classified into two broad groups

(49): (1) polycystic kidney disease (PKD), which includes
FIGURE 2

Molecular control of early kidney development. Wnt9b is expressed in ureteric bud and turns on differentiation markers FGF8, Wnt4 and Pax8
via b-catenin pathway. These cells form the pre-tubular aggregate highlighted by the expression of critical differentiation factors Pax8 FGF8 and
Wnt4.
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autosomal dominant polycystic kidney disease (ADPKD) and

autosomal recessive polycystic kidney disease (ARPKD), is

characterized by large, polycystic kidneys; (2) the group of

hereditary cystic diseases with interstitial nephritis that are

characterized by small- to normal-size kidneys with tubular

atrophy and interstitial fibrosis, including nephronophthisis

(NPHP), Bardet-Biedl syndrome (BBS), and Meckel-Gruber

syndrome (MKS). The cysts are lined by epithelial cells and

filled with fluid and amorphous material.
Frontiers in Endocrinology 04
Polycystic kidney disease

ADPKD is a genetic disease with a prevalence of 1:1000; it is

caused by mutations in PKD1 and PKD2 (50). PKD1 and PKD2

encode polycystin-1 (PC1) and polycystin-2 (PC2), respectively.

Colocalization of GPCR PC1 and ion channel PC2 mediates

flow-sensitive mechanotransduction in primary cilia and

responds to flow by increasing calcium influx (51). Loss of

cilia causes PC1 and PC2 to fail to localize to cilia to perform
FIGURE 3

Fluid flow flip the switch from canonical to noncanonical Wnt signaling pathway. In the absence of flow, ligand binding with the Frizzled and
LRP5/6 complex results in the inactivation of the b-catenin destruction complex (GSK3b, CK1, APC, Axin), led to stabilization of cytoplasmic b-
catenin, which translocate to nucleus and coactivate the transcription level of LEF-TCF family. Fluid flow stimulated primary cilia, which is
thought to increase the expression of inversin (INVS) and then reduce the cytoplasmic levels of dishevelled (DVL) by increasing its proteasomal
degradation pathway. This process is deemed as switch off canonical signal pathway due to the activation of b-catenin destruction complex.
The question mark indicate uncertainty as to the INVS-DVL complexes localization. The dotted box mark indicate that whether b-catenin is
phosphorylated and ubiquitylated within the cilium is unknown.
TABLE 1 Cilia phenotype in kidney disease.

Kidney disease Cilia phenotype Related gene

Acute Kidney Injury Increase in cilium length at the early stage —

Cystic Kidney
Disease

Polycystic kidney disease(PKD): ADPKD and ARPKD Absence of cilium in most cases Pkd1,Pkd2, PKHD1,
Kif3a etc.

Cystic Diseases with Interstitial Nephritis: (NPHP, BBS,
MKS, Alström syndrome etc.)

NPHP- BBS- MKS-
related gene

Primary
Glomerular Disease

IgA nephropathy — —

Membranous Nephropathy — —

Focal segmental Glomerulosclerosis (FSGS) (1) TTC21B-/-lead to cilia defect (2) Increase in cilium length
compared to healthy control

TTC21B

Secondary Kidney
Disease

Lupus Nephritis Morphological alterations (from 9+2 to atypical 8+2 pattern) —

Diabetic Kidney Disease — —
—: not reported.
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their functions. This results in excessive proliferation and

enlargement of kidney epithelial cells, leading to polycystic

kidneys. Inactivation of Pkd1 and other ciliary proteins in

adult animals can cause cystic disease. This suggests that cilia

are required not only for proper kidney development but also for

maintenance of normal function and morphology (52).

ARPKD occurs mainly in infants and young children, with a

prevalence of 1:20,000 (53). It is caused by mutations in PKHD1

and is characterized by cystic dilatations predominantly of the

collecting duct. PKHD1 encodes polyductin/fibrocystin (PD).
Cystic diseases with interstitial nephritis

Nephronophthisis (NPHP) is an autosomal recessive disease

that accounts for 10%-20% of cases of renal failure in children. It

is characterized by cystic kidney tubules and interstitial fibrosis

with inflammatory infiltrate. NPHP-related genes (NPHP1,

NPHP2/inversin, NPHP3, NPHP4, NPHP5, NPHP6/CEP290,

NPHP7/GLS2, NPHP8/RPGRIP1L, NPHP9/NEK8) have been

implicated in NPHP. Unidentified mutated genes still need to

be explored in 70% of cases (54).

BBS is a rare autosomal recessive syndrome characterized by

postaxial polydactyly, retinitis pigmentosa, intellectual disability,

obesity, hypogonadism in men, and a variety of renal

abnormalities that include cysts, calyceal clubbing and

blunting, tubulointerstitial nephropathy, and dysplastic

kidneys. More than 12 genes have been implicated in BBS.

Alström syndrome is a rare autosomal recessive disease

caused by mutations in ALMS1. It is mainly characterized by

retinitis pigmentosa, hearing loss, insulin resistance, and obesity

in children. In adult patients, the presentation of hyalinization of

tubules and interstitial fibrosis in kidneys are observed. The

ALMS1 protein is located at the base of cilia and centrosomes.
Primary cilium and cystic kidney disease

The first functional evidence linking primary cilium to cystic

disease was derived from Caenorhabditis elegans IFT88 and its

mouse homologue, polycystic kidney disease gene tg737 mutant

mice. Ift88Orpk/Orpk (Tg737) mutant mice have shorter and

blunted primary cilia in collecting ducts (55). Genetic

repairment of Ift88-/- cells may possibly restore ciliary length

and normalize ciliary function. The Kif3A conditional knockout

mouse model also suggests that cystic disease can result from

disrupting ciliary function and increasing canonical Wnt-b-
catenin activity (36, 56). Evidence linking ciliary function to

kidney cyst formation and PCP signaling was demonstrated

using Ift20 Hoxb7Cre conditional mice (57). Wnt signaling

activation and a misoriented axis of cell division account for

cyst formation. Ksp-Cre; Wnt9b mutant mice have few cysts at

P1 but many at P10. This is mainly because of a misoriented and
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random mitotic axis along the tubule in mutants compared to

controls, suggesting that the Wnt9b mutant links noncanonical

Wnt signaling to cyst formation (28). In summary, these findings

support that defective PCP signaling plays a key role

in cyst formation during kidney development. However, how

these processes deregulate cellular orientation to prompt

cystogenesis remains elusive.

An overwhelming abundance of data linking to cilia to cystic

kidney disease but the causal relationships between them still

need to be defined. A possible explanation for the primary cilia

anomalies that cause cyst formation is that ciliogenesis is a

multistep process. In this process, the NPHP complex, BBSome

and over 20 cystoproteins are localized to the centrosome or the

base body of cilium (58, 59), and any gene mutation that causes a

loss/gain of function leads to defective ciliogenesis. It disables the

function of the canonical Wnt-b-catenin or noncanonical Wnt-

PCP signaling pathway, or certain proteins fail to localize to the

cilium to induce downstream signaling pathways. Such

disruptions lead to the overproliferation of epithelial cells and

cystogenesis. Recently Hansen et al. elucidated the contribution

of ciliary-derived cAMP signalosome to renal cystogenesis,

ciliary cAMP signaling activates mTOR signaling and drives

cell proliferation, countering the level of cAMP inhibits cyst

formation (60). The study unravels a new molecular mechanism

promoting PKD and provides new therapeutic targets to the

treatment of PKD.
Acute kidney injury

Acute kidney injury (AKI) is a clinical syndrome of rapid

decline in kidney function over a short period of time (a few hours

or days), resulting in the retention of metabolic waste products,

urea and creatinine (61, 62). Acute tubular necrosis (ATN)

represents only one of multiple causes of AKI; it results largely

from ischemia–reperfusion injury (IRI) (62). Deficiency of cilia

promotes TGF-b-induced EMT and exacerbates the signaling

under its pro-fibrotic signals (37), so restoring cilium length or

occurrence may be a promising therapeutic target to anti-fibrosis

in IRI. Cilia are critical for epithelial repair in renal IRI, indicating

a relationship between the change in cilium length and sensitivity

in the altered environment of the injured kidney (63, 64).

Elizabeth Verghese et al. identified that acute tubular

necrosis causes an increase in the length of renal cilia,

modifying their sensory sensitivity during repair (63). Biopsies

from human renal transplants suffering ATN showed a dramatic

increase in cilium length at 7 days post transplantation and a

trend toward the normalization of cilium length at the later

stage. A mouse model of ischemia–reperfusion injury (IRI)

showed a similar trend. There was an increase in renal cilium

length 1 week post-IRI and a return to normalization at 6 weeks.

In addition, Jee In Kim et al. reported that the average length of

the cilium in the proximal tubule initially shortened after IRI,
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and the length of cilia increased at 4 and 7 days, facilitating the

initiation of the repair mechanism (64). Thus, we summarized

the role of the renal cilium in response to injury and repair of

damaged tubular epithelial cell reconstruction.
Primary glomerular disease

Focal segmental glomerulosclerosis (FSGS) is a pathologic

diagnostic term that is mainly characterized by sclerosis of part

of the glomerular (focal) or part of the glomerular capillary loops

(segmental) (65). Evelyne Huynh Cong et al. reported that a

homozygous missense mutation in the ciliary gene TTC21B

causes familial primary FSGS, and knockdown of the TTC21B

gene product IFT139 in podocytes leads to primary cilia defects

and abnormal cell migration (66). Nevertheless, mutations of the

ciliary gene TTC21B that lead to primary FSGS indicate a novel

cilia function in primary glomerulus disease.

Ivana Solic et al. recently summarized the length of the

primary cilium between healthy control and pathologically-

changed kidney tissues, including FSGS, CSF and MCDK. In

MCDK, CNF and FSGS, cilia were significantly elongated

compared to healthy controls (67).

There are still many cilia-related phenotypes and functions

that need to be explored in the near future in IgA nephropathy

and membranous nephropathy.
Secondary kidney disease

Lupus nephritis

Lupus nephritis represents the most severe clinical

manifestation of systemic lupus erythematosus (SLE) and leads

to a high percentage of morbidity and mortality in patients. The

etiology of SLE is characterized by interactions between genetic

susceptibility, immune system abnormalities and hormone

regulation disorders that result in tolerance disorders and

sustained autoantibody production (68). Numerous 9 + 2 cilia

and atypical 8 + 2 pattern cilia were found in the kidney biopsy

from a patient with lupus nephritis, suggesting that the frequent

occurrence of cilia in the lupus kidney results from metabolic

and chemical derangements (69).
Diabetic kidney disease

Diabetic kidney disease (DKD) is one of the most serious

complications of diabetes and has become the most common

cause of ESRD worldwide (70). Studies have suggested that the

pathogenesis of DKD includes an early increase in glomerular

ultrafiltrate velocity leading to an increase in mechanical force in

the renal tubule lumen, damage to and reduction in podocytes,
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thickening of the glomerular basement membrane, and

expansion of the mesangial membrane (71, 72). Glomerular

hyperfiltration is the initial factor contributing to kidney disease

in diabetes (71). The high glucose environment also stimulates

the activation of the following metabolic pathways (73): (1) the

pentose phosphate pathway; (2) the polyol pathway; (3) the

hexosamine pathway; (4) the protein kinase C (PKC) pathway;

and (5) the advanced glycation end (AGE) pathway.

Subsequently, ROS, diglyceride, pyruvaldehyde and lactic acid

accumulate and cause cell damage (74). These changes in energy

supply and metabolites are collectively termed metabolic

reprogramming. A recent study showed that shear stress is

transmitted into the cell via “antennas” on the surface of

RTECs and primary cilia, which direct the metabolic

reprogramming of cells to adapt to the environment (38).

However, the function of primary cilia in diabetic kidney

disease is still unknown.

The primary cilium of RTECs is an important mechanical

force sensor for the shear stress, regulates the energy metabolism

homeostasis in RTECs to ensure the energy supply for

reabsorption function (38). Diabetic kidney disease is

characterized by an increase in luminal shear stress induced by

a high ultrafiltrate flow rate originating from the glomerulus. we

hypothesized that elongated cilium were observed in the RTECs

from DKD. It has been shown that glomerular expression of

Sirtuin-1 (SIRT1), an NAD+-dependent protein/histone

deacetylase, is reduced in human diabetic glomeruli (75), the

expression and acetylation of HDAC6 is regulated by Sirt1 (76),

so expression of HDAC6 exhibit down-regulated and activity of

tubulin deacetylation was inhibited, so we speculated that

glomerular hyperfiltration induced the key cilia disassembly

regulator HDAC6 down-regulation, promoting cilium

elongation and accelerates the progression of diabetic kidney

disease. Lipid nanoparticles targeting renal cilium to remote

control of cilia movement will be a possible therapeutic target to

the diabetic kidney disease.
Renal cell carcinoma

In patients with RCC with mutations in the VHL (von

Hippel–Lindau disease tumor suppressor) gene, primary cilia

have been lost, and the re-expression of VHL proteins restored

cilia occurrence (77). Ciliogenesis is inhibited in many types of

cancer, including renal cell carcinoma (78), prostate cancer (79),

pancreatic cancer (80), breast cancer and ovarian cancer (81, 82).

Primary cilia are essential for Hedgehog signaling activation

during development (1). Abnormal activation of Hedgehog can

lead to a variety of tumorigenesis (83–85). The importance of

cilium loss in tumorigenesis, maintenance, and progression, as

well as chemotherapeutic resistance emerged, which suggesting

that restoration of primary cilia in tumor cells may be a potential

therapeutic approach.
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Ciliary-targeted therapy technology

Since proper cilium assembly and disassembly are required

for embryogenesis and organ function, agents regulating cilia-

associated proteins to control cilium length and number may

become promising treatments for ciliopathy. The need to

develop specific cilia-targeted treatments is urgent.

Rajasekharreddy Pala. et al. designed an iron oxide

nanoparticle-based and cilia-targeted delivery system to deliver

agents specifically to the primary cilia, The hearts of ciliopathic

displayed hypertrophy with declined functions in left ventricle

because of prolonged hypertension. Magnetic field or fluid flow

control cilia and then lead to the increase of Intraciliary and

cytosolic Ca2+. The CT-Fe2O3-NPs significantly improved

cardiac function in the ciliopathic hypertensive models (86)..

Techniques for tissue-specific mRNA delivery and CRISPR-Cas

gene editing nanoparticles have been developed (87), so we can

specifically rescue the compromised cilia phenotype in

ciliopathy by tissue-specific gene editing.

Histone deacetylase 6 (HDAC6), a cytoplasmic enzyme, is

the major driver of cilium disassembly, and small molecules that

inhibit HDAC6 have been demonstrated to restore the ciliary

defective phenotype (88–90). Anti-proliferating agents could

also be candidates for polycystic kidney disease due to

defective cilia-induced cell overproliferation. In addition,

tissue-specific mRNA delivery and the CRISPR-Cas gene

editing system could be applied to edit cilia-related genes and

may be possible therapeutic targets for ciliopathies.
Conclusions

In summary, the primary cilium is the center platform that

regulates diverse developmental signaling pathways, and its

function relies on the control of the precise dynamic balance

between cilia assembly and disassembly. More details of these
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signaling pathways and their involvement in kidney disease

remain to be explored. How cilia sense mechanical stimuli is

still an ongoing research topic. Ciliary-targeted technology

urgently needs to be developed. Insights into ciliary defects in

kidney disease will help us identify therapeutic targets for kidney

injury relief and provide novel insights into disease mechanisms

and ciliopathy intervention.
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