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OBJECTIVES: Aiming to improve the anatomical resolution of electrical impedance tomography images, we developed a fuzzy 
model based on electrical impedance tomography’s high temporal resolution and on the functional pulmonary signals of perfusion 
and ventilation.
INTRODUCTION: Electrical impedance tomography images carry information about both ventilation and perfusion. However, 
these images are difficult to interpret because of insufficient anatomical resolution, such that it becomes almost impossible to 
distinguish the heart from the lungs.
METHODS: Electrical impedance tomography data from an experimental animal model were collected during normal ventilation 
and apnea while an injection of hypertonic saline was administered. The fuzzy model was elaborated in three parts: a modeling of 
the heart, the pulmonary ventilation map and the pulmonary perfusion map. Image segmentation was performed using a threshold 
method, and a ventilation/perfusion map was generated. 
RESULTS: Electrical impedance tomography images treated by the fuzzy model were compared with the hypertonic saline injection 
method and computed tomography scan images, presenting good results. The average accuracy index was 0.80 when comparing 
the fuzzy modeled lung maps and the computed tomography scan lung mask. The average ROC curve area comparing a saline 
injection image and a fuzzy modeled pulmonary perfusion image was 0.77.
DISCUSSION: The innovative aspects of our work are the use of temporal information for the delineation of the heart structure 
and the use of two pulmonary functions for lung structure delineation. However, robustness of the method should be tested for the 
imaging of abnormal lung conditions. 
CONCLUSIONS: These results showed the adequacy of the fuzzy approach in treating the anatomical resolution uncertainties in 
electrical impedance tomography images.
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INTRODUCTION

In an Intensive Care Unit (ICU), the functions of many 
organs are monitored using different devices: cardiac monitor, 
pulse oximeter and invasive arterial pressure cannula, among 
others. The lungs, despite the fact that they are vital organs, 

are usually not directly monitored at the bedside. The 
physiological functions of the lungs, necessary for maintaining 
gas exchange, are ventilation (air distribution) and perfusion 
(blood circulation). Electrical Impedance Tomography (EIT), 
a functional imaging method based on the distribution of 
electrical impedances within a volume (the human chest in this 
case), has the potential to show these pulmonary functions. EIT 
devices are small and portable and do not cause harm to the 
patient.1 Victorino et al. have been developing an EIT method 
to be used for bedside lung monitoring in the ICU. They have 
demonstrated that the variations in EIT impedance images of the 
lungs are very well correlated with the changes in the air content 
within a region of interest.2 However, the cyclical movement of 
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blood through the pulmonary vessels also influences thoracic 
impedances. Consequently, at the least EIT images carry 
information about both ventilation and perfusion. Eyüboglu 
has demonstrated that it is possible to separate the thoracic 
impedance variations due to blood perfusion and those due to 
ventilation by using ECG-gated EIT images.3 Nevertheless, 
even after applying the ECG-gated method, the resultant images 
are difficult to interpret because of their insufficient anatomical 
resolution, and it is almost impossible to separate the heart from 
the lungs. In this paper we propose a fuzzy linguistic model 
for analyzing EIT images in order to identify and separate the 
heart from the lung regions. In addition, we propose a method 
to map, within the lung region, its two main functions, namely 
ventilation and perfusion.

MATERIALS AND METHODS

Recently, fuzzy set theory has been used to deal with 
uncertainties present in health sciences, and the results 
are very promising. Its application covers a wide range of 
subjects, from epidemiological studies to diagnosing system 
development.4-7 Our implementation of the EIT image 
treatment system employs the method of Mamdani and 
comprises software modules grouped in three steps: raw EIT 
data acquisition and image generation, fuzzy modeling and 
image segmentation (Figure 1). 

A. EIT image generation module

1) Raw EIT Data acquisition: The experiments were 
performed on an anesthetized healthy pig lying in the supine 
position, because the purpose of this work was to establish a 
fuzzy model under a well-defined physiological condition. 
The animal was tracheostomized and maintained with a 
continuous infusion of anesthetics. Controlled mechanical 

ventilation was delivered with a Servo 300 A (Siemens, 
Sweden). For the injection of hypertonic saline, a catheter 
was placed into the superior vena cava next to the entrance to 
the right atrium. For the measurement of the pressure pattern 
of the cavities, a Swan Ganz catheter was also placed into the 
superior vena cava. ECG monitoring was performed using a 
Portal DX 2020 monitor (Dixtal, Brazil). Raw EIT data were 
acquired using an impedance tomography device based on 
the ENLIGHTER technology (Dixtal, Brazil), capable of 
producing 50 images per second. Thirty-two electrodes were 
placed circumferentially (equally spaced) around the thorax 
just below the level of the axilla. An electrical current of 5 
mA was injected at 125 KHz through a pair of electrodes 
using an interleave one pattern. This means keeping one non-
injecting electrode interposed between the injecting electrodes. 
Differential voltages were measured between the other non-
injecting pair of electrodes with an interleave one pattern. 
Following this initial injection, the electrical current was 
then injected sequentially via the next pair of electrodes and 
repeated until all electrodes had served for current injection. 
The data for one complete cycle produced a so-called “frame,” 
and they were saved in a raw data file for later processing. 

Ventilation was delivered by a mechanical ventilator in 
pressure control mode. The protocol had three steps of data 
collection characterized by the PEEP value: PEEP at 18 cm 
H

2
O, PEEP at 12 cm H

2
O and PEEP at 0 cm H

2
O (ZEEP). 

Each of these steps was composed of seven different phases 
of data collection: 1) the pulmonary embolism model, with 
occlusion and deflation of the Swan Ganz balloon; 2) the 
pulmonary artery occlusion pressure study; 3) the cardiac 
debit study; 4) the pulmonary artery pressure pattern study; 
5) the left ventricle pressure pattern study; 6) the right 
atrium pressure pattern study; and 7) the superior vena cava 
pressure pattern study. In all of these 21 phases, apnea and 
saline infusion procedures were performed, resulting in 21 
raw EIT data sets collected. In each phase of data collection, 
the Swan-Ganz distal pore was placed at the vessel region of 
interest, and the correspondent pressure curve was acquired, 
synchronously with EIT data. In off-line analysis, these 
pressure curves of each vessel and cardiac chamber were 
used only for qualitative comparison to the impedance time 
curve, with the purpose of characterizing the impedance time 
curve in each anatomic region. Respiratory rate was constant 
at 20 cycles per minute. Each raw EIT data set consisted 
of a first set of 10,000 frames during normal ventilation. 
Thereafter the ventilation of the animal was put on hold 
for a pre-defined period (apnea), while the pressure within 
the airways was maintained at the PEEP level. During this 
state of apnea, 5,000 images were acquired. Then, 5 ml of a 
hypertonic saline of 20% NaCl was injected quickly through 
the catheter, and another 5,000 more images were acquired.

Figure 1 - EIT image analysis structure
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2) Offline generation of ECG-gated image set: For each 
raw EIT data set, the synchronously recorded ECG waveforms 
were used to reconstruct a sequence of time-varying ECG-
gated images. From the ECG waveform, a trigger pulse was 
produced at the rising edge of each R-wave. Following the 
detection of the R-wave, a block of frames was stored until 
the occurrence of the subsequent R-wave (one cardiac cycle). 
This process was repeated until 100 complete cardiac cycles 
were stored and one “mean cardiac cycle” could be generated 
from them. Further mean cardiac cycles were generated 
from subsequent data sets of one hundred cardiac cycles. 
This sequence of mean cycles was processed using an image 
construction algorithm, thus obtaining a series of ECG-gated 
images in which the effects of ventilation were attenuated. 21 
ECG-gated image sets were generated.

3) Offline generation of ventilation-gated image set: For 
each raw EIT data set, the beginning of each respiratory 
cycle was used as the trigger signal in order to generate the 
ventilation-gated images. A block of frames between two 
subsequent trigger signals (1 respiratory cycle) was stored, 
and this process was repeated sequentially until 12 separate 
respiratory cycles were stored. Then one “mean respiratory 
cycle” was generated from each block of 12 cycles. This 
process was repeated for all subsequent data sets. The 
resultant sequence of mean respiratory cycles was processed 
using an image construction algorithm, thus obtaining a 
series of ventilation-gated images, in which the effects of 
lung perfusion were attenuated. Twenty-one ventilation-
gated image sets were generated.

4) Off-line generation of saline injection image set: For 
each raw EIT data set, the saline injection images set were 
generated. In order to minimize the cardiac pulsating effect 
on the saline injection image series, a low pass filter was 
used, with the cut-off frequency set at 0.5 Hz. As a final 
result, 21 saline injection image sets were generated.

5) EIT image construction algorithm: For image 
construction, we used the black-box/sensitivity matrix 
algorithm developed by Lima and collaborators.8,9

 6) Fuzzy model development: As explained above, the 
experiment was performed for three different PEEP values, 
covering the situation from zero to high PEEP. The fuzzy 
model was developed using the data of PEEP at 18 cm H

2
O, 

due to the assumption that the lungs are more uniform in 
terms of perfusion and ventilation distribution under these 
conditions. The model developed was applied to the data 
collected for PEEP at 12 and zero cm H

2
O.

B. Fuzzy model for EIT image treatment

Each EIT image is formed by a matrix containing 32x32 
pixels. The fuzzy modeled image was obtained by running 

the model once for each pixel, requiring 1024 runs to form 
one modeled image. All fuzzy linguistic models developed 
for this study applied the Mamdani inference procedure 
and the center of area defuzzification method, and the 
models were based on expert experience in EIT chest image 
analysis.

1) Heart fuzzy model: The fuzzy linguistic model for 
the heart has three antecedent variables in its propositions: 
normalized perfusion amplitude; normalized time delay 
(TD), obtained dividing each pixel’s TD value by the period 
of cardiac cycle; and pixel position. All of these were 
derived from ECG-gated images. The model also has one 
consequent variable: the possibility that the pixel carries the 
heart information (heart possibility). The pixel position is 
derived from the pixel order. The pixel of order 1 is located 
at the upper-left corner and the pixel of order 1024 is located 
at the lower-right corner of the image. Pixel orders from 1 to 
512 belong to the anterior region of the image, while pixel 
orders from 513 to 1024 belong to the posterior region of 
the image. 

2) Lung perfusion fuzzy model: The lung perfusion 
linguistic fuzzy model has two antecedent variables - 
normalized perfusion amplitude and normalized heart 
possibility - as well as one consequent variable, the 
possibility that the pixel carries lung perfusion information. 
The defuzzified output obtained from running the heart 
possibility model was normalized in the interval [0,1] to 
obtain the normalized heart possibility. This fuzzy model is 
composed using nine inference rules.

3) Lung ventilation fuzzy model: As in the perfusion 
lung model, the lung ventilation fuzzy model has two 
antecedent variables - normalized ventilation amplitude 
and normalized heart possibility - and one consequent 
variable, the possibility that the pixel carries lung ventilation 
information. The normalized ventilation amplitude was 
derived from ventilation-gated images and was selected 
from the ventilation-gated images of an image data segment 
comprising at least one respiratory cycle. Then, for each 
pixel, the amplitudes were calculated as the difference of 
maximum and minimum impedance values in the selected 
respiratory cycles. The pixel amplitudes were normalized in 
relation to the highest amplitude. This fuzzy model is also 
composed of nine inference rules.

C. Median fuzzy modeled heart images

The heart fuzzy model, as previously described and 
depicted in Figure 1, was run for each of the 21 ECG-gated 
image sets, totaling 21 modeled heart images. Afterwards, 
three median heart images were generated, one for each 
step of the protocol: PEEP at 18 cm H

2
O, 12 cm H

2
O and 
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ZEEP. Each median heart image was calculated as the pixel-
by-pixel median of the seven modeled heart images of each 
step of the protocol.

D. Median fuzzy modeled lung perfusion images

The lung perfusion model, as previously described, 
was run for each of the 21 ECG-gated image sets, totaling 
21 modeled perfusion images. Afterwards, three median 
perfusion images were generated as the pixel-by-pixel 
median of the seven modeled perfusion images of each step 
of the protocol.

E. Median fuzzy modeled lung ventilation images

The lung ventilation fuzzy model, as previously 
described, was run for each of the 21 ventilation-gated 
image sets, totaling 21 modeled ventilation images. In a 
way analogous to perfusion images, three median ventilation 
images were generated, one for each step of the protocol, 

F. Median saline injection lung images

The hypertonic saline solution acts as an EIT image 
contrast medium because it is much more conductive than 
blood, generating a much higher signal than physiological 
perfusion. During the data acquisition protocol, a set of 
images was made during apnea (without ventilation) in 
which a hypertonic saline solution (20% NaCl) was injected 
through a catheter inserted inside the superior vena cava. 
A series of images was made just after the injection. These 
images show the pattern of saline flow inside the chest: 
from the right atrium through the right ventricle, pulmonary 
arteries and lung vessels, until the recollection through the 
pulmonary veins to the left atrium. For each saline injection 
image set, experts in EIT images observationally selected a 
representative saline injection lung image, which was then 
used as the reference image for the lung perfusion images10 
(Figure 2). Finally, 21 saline injection lung images were 
generated. Afterwards, three median saline lung images were 
generated as the pixel-by-pixel median of the seven saline 
lung images of each step of protocol.

G. Segmentation of modeled perfusion and ventilation 
images

For evaluation purposes, and in order to partition the 
modeled images into regions of practical interest, three 
segmented images were generated, one for each step 
of protocol. The method used for segmentation was the 
threshold of the median modeled images. The thresholds 

were heuristically determined: 0.31 for the median 
ventilation image and 0.28 for the median perfusion image. 
The heuristic used was the experimental search of threshold 
values in order to obtain a qualitative match of the outer 
lung contour of the total lung map and one CT-scan image 
of a pig, acquired in a different animal but under similar 
conditions of ventilation and axial level.

 The segmentation process generated two maps for 
each step: one representing lung perfusion and the other 
representing lung ventilation. A segmented image was 
generated, one for each step, as the pixel by pixel overlay 
composition of the two previous maps. A total lung map 
was generated, for each step as the classical union of the 
two previous ones. 

H. Fuzzy modeled image evaluation

For each step, the median perfusion image was compared 
with the median lung saline injection image, considered 
as the reference image (Figure 2). Two variables were 
calculated: a) sensitivity, defined as the number of pixels 
that belonged at the same time to the lung perfusion map 
and the reference image, divided by the number of pixels 
in the reference image; and b) specificity, defined as the 
number of pixels that, at the same time, did not belong to 
either the perfusion map or the reference image, divided by 
the total number of pixels that did not belong to the reference 
image. Both sensitivity and specificity, when closer to a 
value of one, indicate a better match between reference and 
target images. To generate the segmented reference image, 
a fixed threshold of 0.1 was used. Then, sensitivities and 
specificities were calculated for each perfusion map, with 
varying thresholds from 0.1 to 1, stepped by 0.05, in order 
to build the ROC curve. 

Figure 2 - Lung perfusion reference image, obtained by hypertonic saline 
injection
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I. Comparison of segmented lung and CT-scan lung 
images

The aim of image segmentation is to partition the 
image into several constituent components. In our study, 
the major components of interest are the lung perfusion 
map, lung ventilation map and heart region. Despite the 
difference in purposes of the two imaging methods, we 
chose the Computerized Tomography scan (CT-scan) image 
as the anatomic gold standard for comparison with the 
fuzzy modeled segmented image. The total lung map was 
compared with a CT-scan lung image of a pig, acquired in a 
different animal but under similar conditions of ventilation 
and axial level. The CT-scan lung image was sub-sampled 
to a 32x32 pixel lung map, and the accuracy indexes were 
calculated for each PEEP step. The accuracy index was 
defined as the proportion of true pixels in the 32x32 matrix; 
where true pixels were defined as both true positive pixels 
(defined as the number of pixels that belonged at the same 
time to the total lung map and to the CT-scan lung image) 
and true negative pixels (defined as the number of pixels that, 
at the same time, did not belong to either the total lung map 
or the CT-scan lung image). An accuracy index of 1 (100%) 
means that the modeled total lung map completely matched 
the CT-scan lung map.

RESULTS

In all three PEEP steps, the fuzzy modeled heart images 
are identified in the anterior region (Figure 3, column a) as 
expected by the pig anatomy in the supine position. The lung 
perfusion possibility maps (Figure 3, column b) show a clear 
subtraction of the heart image from the original perfusion 
image. The same heart subtraction occurs with ventilation 
possibility images (Figure 3, column c). 

ROC curves (sensitivity vs. 1-specificity) were plotted 
comparing the lung perfusion image with the saline injection 
reference image (Figure 4), one for each PEEP step. The 
average area under the ROC curve was 0.77. 

On the segmented lung map (Figure 5) the predominantly 
perfused regions (light gray) were found mainly for the lower 
regions of the lung. An increase in this region was noted, from 
the 18 cm H

2
O PEEP step to ZEEP. In ZEEP, the perfused 

region totally occupied the left lung region. The matched 
areas (dark gray) were concentrated in the middle region, and 
the predominantly ventilated regions appeared at the lung 
periphery. The heart region is clearly subtracted from the lung 
map. The comparison between the fuzzy modeled total lung 
maps (Figure 8) and the sub-sampled 32x32-pixel CT-scan 
lung map (Figure 7) resulted in an accuracy index of 0.81 
for PEEP at 18 cm H2O, 0.81 for PEEP at 12 cm H2O and 
0.78 for PEEP at zero cm H2O. In the CT-scan image there 
was a clear separation between the left and right lungs, but 
in the total lung map the lungs were presented as one single 
region, without left and right delineation. Figures 6-A and 6-B 
present the original EIT images of perfusion and ventilation, 
respectively, before the fuzzy analysis.

DISCUSSION

EIT is a medical imaging technology that has evolved 
from tracking pulmonary ventilation2 to the study of lung 

Figure 3 - Gray scale map of fuzzy modeling results: column a) median 
heart possibility map; column b) median lung perfusion possibility map; 
and column c) median lung ventilation possibility map. The lines represent 
the results for PEEP steps: from top to bottom, 18 cm H

2
O, 12 cm H

2
O 

and ZEEP

Figure 4 - ROC curve for lung perfusion map evaluation, for PEEP steps at 18 cm H
2
O, 12 cm H

2
O and ZEEP
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perfusion.3,10 However, combining the functional information 
contained in both ventilation and perfusion images to process 
clinically useful additional information remains a challenge. 
One important step towards achieving this objective is 
to construct a pulmonary mask that delineates the lung’s 
anatomic boundaries. Our fuzzy modeling of EIT images 
uses simultaneously acquired information from both lung 
ventilation and perfusion in order to determine the lung 
contour. 

The heart fuzzy model proposed in this study clearly 
identified the heart region. When compared to a CT-scan 
image of the animal thorax, the modeled heart showed a 
good correspondence in both position and shape (Figures 3, 
column a, and 6-C). In this work we first identified the heart 
region and then, by heart subtraction, obtained the perfused 
and ventilated lung regions (Figures 3, column b and c). 
The anatomical a priori knowledge that the heart is normally 
situated in the anterior portion of the chest made it possible 
to use the pixel position as one of the antecedent variables 
of the fuzzy model. The use of pixel position resulted in a 
lower heart possibility in the posterior region of the image, 
as can be observed in Figure 3, column a. In contrast, the 
simple parameter of pixel position cannot be used to identify 
the lung regions, since pulmonary ventilation and perfusion 
occur in the anterior and posterior regions of the thorax at 
the same time.

The ROC curve (Figure 4) was plotted to evaluate the 
quality of the lung perfusion map in comparison to the 
reference method (Figure 2). The average area under the 
curve was 0.77, showing a good agreement between the two 
methods.

Comparing the segmented total EIT lung maps and the 
sub-sampled CT-scan lung map (Figure 7), the average 
accuracy index obtained was 0.80, with standard deviation 
of 0.02, showing a good similarity between the modeled and 
CT-scan lung maps. The low value of the standard deviation 
shows a high repeatability of the segmented total EIT lung 
map in different experimental conditions, in this case with 
varying PEEP values. On the CT-scan lung map, the right 
and left lung are separated by a central region not seen on the 
EIT-derived images. On the EIT segmented image the lungs 
are fused together in the middle of the thorax. We can point 
out one factor that may be responsible for this difference: 
the low spatial resolution of the EIT method. According to 
Thomas11, the observability of the central region is poor in 
the EIT method, compared to the peripheral regions.

The EIT image construction algorithm assumes that the 
measurement electrodes are placed equidistantly and on the 
same transverse plane of the thorax. In practice this may 
not always be true when individual electrodes are placed 
manually. Thus, there might be a considerable positioning 

Figure 5 - Segmented lung map composed of three regions: dark gray - perfu-
sion and ventilation match; light gray - predominantly perfused region; and 
white - predominantly ventilated region. The maps from left to right cor-
respond to PEEP steps at 18 cm H

2
O, 12 cm H

2
O and ZEEP, respectively

Figure 6 - The EIT image of the lung before fuzzy analysis: lung perfusion 
(A) and lung ventilation (B). The total lung map through fuzzy model (C) 
and CT-scan image (D)

Figure 7 - Lung map obtained by sub-sampling a CT-scan lung image (figure 
6 - D) to a 32x32 pixel map

Figure 8 - Total lung maps with respective accuracy indexes obtained from 
comparison to a sub-sampled 32x32 pixel lung map (figure 7). The maps 
from left to right correspond to PEEP steps at 18 cm H

2
O, 12 cm H

2
O and 

ZEEP, respectively
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error. Due to the lack of another applicable gold standard, 
we used EIT hypertonic saline injection images as an 
anatomical reference in this study. These reference images 
were produced by the same algorithm that generated the 
modeled fuzzy images and would therefore be subject to the 
same positioning errors. 

The use of saline injection to map vascular perfusion is 
not new. Brown12 has already used it in humans to depict 
upper arm vessels, as well as the lung and heart, through the 
injection of saline from a dorsal hand vein. In his study, he 
was able to demonstrate not only venous perfusion but also 
an arterial perfusion at a later acquisition. Frerichs10 also 
proposed the use of saline injection as a contrast medium 
for the EIT method for diagnosis of pulmonary embolism. 
Therefore, saline injection may become a useful and reliable 
method of depicting heart and lung perfusion in critical 
patients, in part because it can be administered either by 
a central venous catheter or by peripheral access. In spite 
of the fact that the saline injection is innocuous in several 
clinical situations, it still requires an invasive method of 
venous access. The advantage of the fuzzy method would 
be its noninvasiveness, insofar as it uses only information 
gathered from time variations in physiological impedance.

Considering costs constraints as well as the fact that 
this was a preliminary study for proposing the use of fuzzy 
methods, we chose to use a single animal to derive our fuzzy 
model. In spite of that, our results show good reliability for 
the method. The fuzzy model is based entirely on EIT data, 
which are measurements of thoracic electrical impedance 
changes resulting from physiological phenomena. Electrical 
impedance is a physical property characteristic of each 

biological tissue. In similar tissue compositions, as in the 
thorax of different animals, one may expect a similar value 
for electrical impedance. The major determinant of thoracic 
electrical impedance variation is the amount of air inside the 
lungs, as already pointed out by Eyüboglu.3 In the experiments 
performed in this study; the PEEP was varied from zero to 18 
cm H

2
O, which changes the amount of lung air content. Even 

with this change, which causes a major electrical impedance 
change, the fuzzy model showed good repeatability when 
compared with CT images, as shown by the low standard 
deviation of the calculated accuracy indexes. 

Since the aim of this study was to develop an EIT 
imaging tool that is based on fuzzy models, the analyzed 
data were acquired only from a healthy pig. Thus, the 
robustness of the method should, in the future, also be tested 
in abnormal lung conditions. 

The preliminary results of this study are encouraging, 
and future studies should be developed in order to answer 
questions regarding the clinical utility of the information 
presented by the fuzzy modeling.

CONCLUSIONS

The encouraging results of this study demonstrated the 
adequacy of the fuzzy modeling method for treatment of 
anatomical uncertainties in EIT images.

The model provided new lung structure delineation 
based on pulmonary functions not available in the original 
EIT images. The use of temporal information resulted in 
a significant enhancement of the spatial resolution of EIT 
images.
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