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ALI = acute lung injury; CXCL = CXC chemokine ligand; CXCR = CXC chemokine receptor; IL = interleukin; PGA = Program for Genomic Appli-
cations; S1P = sphingosine-1-phosphate; SNP = single nucleotide polymorphism; uPAR = urokinase-type plasminogen activated receptor.
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Introduction
Acute lung injury (ALI) is a common and devastating illness
that most often occurs in the setting of sepsis [1]. Despite
impressive technologic advances in our ability to monitor this
critically ill population, ALI continues to carry an annual
mortality rate of 30–50%. Recently, advances in the
management of patients with ALI with low tidal volume
ventilation offered hope that combined mechanistic and
physiologically sound approaches to ALI may further reduce
mortality from this illness [2]. Our understanding of the
pathogenesis of sepsis and ALI recently improved with the

appreciation that inflammation is a fundamental component of
the pathophysiology and is exacerbated by conventional or
high tidal volume ventilation [3]. Unfortunately, these insights
have not fully been translated into novel and effective
strategies designed to increase survival. Furthermore, our
improved understanding of ALI at both the molecular and
population levels has not provided an explanation for the
heterogeneity in patient susceptibility and outcome. Clearly,
both genetic and environmental factors must be involved.
Although the genetic basis of ALI has not been fully
established, an increasing body of evidence suggests that
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Abstract

Acute lung injury (ALI) is a complex and devastating illness, often occurring within the setting of
sepsis, and carries an annual mortality rate of 30–50%. Although the genetic basis of ALI has not
been fully established, an increasing body of evidence suggests that genetic predisposition
contributes to disease susceptibility and severity. Significant difficulty exists, however, in defining the
exact nature of these genetic factors, including large phenotypic variance, incomplete penetrance,
complex gene–environment interactions, and strong potential for locus heterogeneity. We utilized the
candidate gene approach and an ortholog gene database to provide relevant gene ontologies and
insights into the genetic basis of ALI. We employed a Medline search of selected basic and clinical
studies in the English literature and studies sponsored by the HopGene National Institutes of Health
sponsored Program in Genomic Applications. Extensive gene expression profiling studies in animal
models of ALI (rat, murine, canine), as well as in humans, were performed to identify potential
candidate genes (http://www.hopkins-genomics.org/). We identified a number of candidate genes for
ALI, with blood coagulation and inflammation gene ontologies being the most highly represented. The
candidate gene approach coupled with extensive gene profiling and novel bioinformatics approaches
is a valuable way to identify genes that are involved in ALI.
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genetic predisposition contributes to disease susceptibility
and severity [4–7]. Why do some patients with Gram-
negative sepsis develop ALI whereas others do not? Why is
low tidal ventilation of great benefit in some patients and not
in others? What are the genetic determinants that convey risk
for progression to multiorgan failure in patients with ALI? A
complete understanding of the genetic basis of ALI
susceptibility and disease severity would address these
important questions.

Because ALI is a complex illness, alterations in specific illness
genes will probably not explain the physiologic derangements
fully. Large phenotypic variance, incomplete penetrance,
complex gene–environment interactions, and potential locus
heterogeneity all make genetic evaluation of ALI difficult.
Moreover, the sporadic nature of ALI makes a conventional
genomic approach such as linkage mapping (or ‘positional
cloning’) impossible. Briefly, linkage mapping involves
scanning entire genomes of families affected by an illness
using known regularly spaced variable DNA segments, thus
identifying those genetic variants (alleles) that are shared by
affected family members more frequently than would be
expected based on chance [8]. These regions can then be
isolated and cloned, and further evaluated as disease genes.
One advantage of linkage mapping is that investigators need
no prior knowledge of the biology underlying an illness; this is
especially important in complex disorders such as sepsis and
ALI. However, this approach has the disadvantage of requiring
large families with both affected and unaffected individuals.
This is a major limitation to the use of linkage mapping in the
evaluation of ALI, given the sporadic nature, low incidence,
and lack of affected families associated with this illness.

The candidate gene approach refers to a strategy for
investigating the genetic basis of complex illnesses such as
ALI, which can be performed using unrelated cases and
controls. In the candidate gene approach, investigators study
the association between variants (polymorphisms) in a certain
gene, or allele and a specific disease by studying the
frequency of the target variant allele in a population of
affected patients and comparing this with the frequency in
controls. Unlike linkage mapping, this approach requires an
element of prior knowledge of disease pathogenesis so that
candidate genes can be identified. Of particular interest in
the candidate gene approach are publicly available
databases of single nucleotide polymorphisms (SNPs;
www.ncbi.nlm.nih.gov/SNP). Studying an association
between one or more SNPs and a disease can help
researchers to focus on certain areas of DNA and potentially
identify candidate genes.

In the absence of significant insights into disease patho-
genesis, comprehensive gene array analysis of tissues
derived from animal models of disease is also often helpful in
identifying candidate genes. However, this presents a difficult
challenge in determining how best to analyze the

unprecedented quantities of data generated by these
approaches. In September 2000, the US National Heart,
Lung, and Blood Institute launched the Programs for
Genomic Applications (PGAs), funding 11 centers to
generate novel data and resources for the research
community at large in order to advance functional genomic
research related to heart, lung, blood, and sleep disorders.
These resources include state of the art software programs
for array analysis and normalization, SNP analysis,
phenotyping of animal models of disease, and a rich array of
analytical tools (summarized and updated on the PGA
homepage: http://www.nhlbi.nih.gov/resources/pga). Several
PGAs are working to discover and model the associations
between single nucleotide sequence differences in the genes
and pathways that underlie interindividual variation in
inflammatory responses and their relationship to disease risk,
outcome, and treatments in common human lung disorders,
including ALI. For example, the HopGene PGA website
(http://www.hopkins-genomics.org/) contains extensive array
data for rat, murine, and canine models of ALI, ALI candidate
genes with preliminary evaluation for relevant SNPs, and
preliminary genotyping of these genes in controls and patients
with sepsis and ALI. In this review we explain how the candidate
gene approach has provided a menu of gene ontologies that
may help to unravel the genetics and pathogenesis of ALI and,
most importantly, to identify novel targets for therapy.

One approach to the identification of genes relevant to ALI
susceptibility and severity is to examine general trends in the
expression of common groups of genes in response to ALI in
diverse species. This commonality might relate to
unsuspected evolutionarily conserved responses to lung
injury. At the same time, known biologic pathways and genes,
either activated or suppressed in ALI, can be used as a
validation of novel candidate genes that are implicated in the
same pathway [9]. Figure 1 illustrates the HopGene approach
to searching for candidate genes involved in ALI expression,
as defined as the response to increased mechanical stress
delivered by increased tidal volume ventilation or to cyclic
stretching of human endothelium in vitro. Gene expression
alterations in response to mechanical ventilation alone, in the
absence of additional inflammatory stimuli, are easily detected
by microarray techniques, and they may therefore provide a
powerful framework on which to characterize normal lung
responses to mechano-transduction stresses. Responses of
four different biological systems (rat, mouse, dog, and human
endothelial cell culture) to levels of mechanical stretch relevant
to ALI were investigated (Fig. 1). The control and ventilated
lung samples were collected at the time point at which the
defining feature of ALI (i.e. vascular leakage) was detected in
each animal model [9]. The total mRNA extracted from
obtained tissues was hybridized to corresponding species-
specific Affymetrix GeneChip (Santa Clara, CA, USA).
Generated gene expression profiles from different species-
specific platforms were linked using RESOURCERER – the
PGA developed ortholog linking tool [10].
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Gene ontologies generated by the Gene Ontology™
Consortium (http://www.geneontology.org) were assigned to
corresponding genes using PGA developed tools GenMAPP
and MAPPFinder [11,12]. Genes with change in expression
of 20% or higher and a false discovery rate of less than 10%
were selected from the microarray data derived from the four
mechanical stress-challenged species. This relaxed filtering
approach was introduced by Munson and other speakers at
the Symposium on the Functional Genomics of Critical Illness
and Injury [13] and was successfully applied for selection of
candidate genes [14]. This approach is especially suited to
identification of genes with elevated basal expression levels,
upregulation of which will not produce a high fold change
ratio, meaning that these genes will be missed by more
stringent conditions. The slight increase in false discovery
rate will be applied equally throughout all gene ontologies
and will not affect individual ontology selection.

Selected using this approach, stretch-affected genes were
dynamically linked to an expansive menu of known gene
ontologies using MAPPFinder tool developed by the PGA-
BayGenomics Center (Fig. 1). The MAPPFinder analyzed
total of 1329 bioprocesses and selected 32 related to ALI
(Z > 2.0). Further filtering for bioprocesses that had five or

more involved genes (number of changed genes column in
Table 1) and exclusion of broadly defined terms such as
‘signal transduction’ revealed five prominent mechanical
stretch-related ALI biological processes with different
degrees of contribution to this injury (Table 1; the unfiltered
MAPPFinder output is provided in Additional file 1). A total of
49 genes were involved in these bioprocesses (Table 1,
number of changed genes), of which 10 genes were involved
in two bioprocesses and three genes in three bioprocesses
simultaneously (Table 2). Thus, the actual candidate list
comprised 33 individual genes.

Negative regulation of cell proliferation
ontology
IL-1β and IL-6 were the most commonly upregulated ALI-
related genes that were cited as lung injury related in 287
and 173 references, respectively (Table 2). IL-6 is a
differentiation factor cytokine with activity toward a wide
variety of biologic systems [15–17] and IL-1β is involved in
regulating multiple biological pathways, including inflam-
matory and immune responses and immune cell differentiation
[18]. Clinical studies showed that IL-1β and IL-6
concentrations in bronchoalveolar lavage fluid from patients
with established severe ALI (acute respiratory distress

Figure 1

The approach to identify mechanical stress induced candidate genes using schematic representation of cross-species ortholog database and gene
ontology processes. Total RNA from rat, mouse, and canine ventilator-injured lung tissues and human endothelial cell cultures exposed to injurious
mechanical stretch was extracted, and gene expression data were generated by hybridization of corresponding total mRNAs to HG-U34A, HG-
U74A, HG-U133A, and HG-U95A Affymetrix arrays, respectively. These steps were performed at the PGA-HopGene center. Gene expression
profiles were analyzed by the HopGene PGA center using in silico multispecies cross-platform database applying the RESOURCERER tool
designed by the TIGR PGA center. Gene ontology assignment and analysis was conducted by HopGene PGA center using the MAPPFinder tool
designed by the BayGenomics PGA center. The acute lung injury (ALI)-related ontologic groups were selected using filtering conditions described
in Table 1. The contribution of each bioprocess to ALI is represented as the percentage of values calculated by MAPPFinder and shown in the
percentage changed genes column. The literature search was done by the HopGene PGA center using PubMatrix tool designed by PGA
collaborators at the National Institute on Aging, National Institutes of Health.
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syndrome) were higher than in bronchoalveolar lavage fluid
from normal volunteers [19,20]. Moreover, IL-1β was self-
sufficient in causing acute lung tissue injury when
overexpressed in mouse lungs [21] and was directly related
to ALI in another mouse model [22]. Consistent with current
concepts of the role played by the ventilator in ALI, studies by
Copland and coworkers [23] identified upregulation of IL-1β,
with cluster analysis confirming linked expression of these
genes; this is again consistent with very early signal
amplification, which begins to evolve a mechanically
stimulated inflammatory phenotype.

The most interesting ALI related candidate genes in this
ontological group were B-cell translocation (BTG) and type-2
phosphatidic acid phosphohydrolase (PAP2) genes.
Microarray analysis of alveolar microphages [24] showed that
expression of BTG-2 was stimulated by diesel exhaust
particles, which are a known cause of adverse respiratory
system reactions. The correlation between high expression of
BTG-2 transcript and cell death was reported for the alveolar
epithelial A549 cell line [25]. Our microarray analysis revealed
a trend toward upregulation of another candidate gene, BTG-
1, in mechanical stretch challenged human pulmonary artery
endothelial cells. These finding suggest that the BTG gene
family is ubiquitously represented in lung tissues and could be
a viable candidate for further investigation.

Another potential candidate for involvement in ALI is the
PAP2 gene, which encodes sphingosine-1-phosphate (S1P)
and ceramide-1-phosphatases, which are degrading plasma
membrane enzymes. It has been reported that pulmonary
phosphatidic acid phosphohydrolases directly control
surfactant secretion and indirectly regulate cell division,
differentiation, apoptosis, and mobility through lowering S1P
levels (see review by Nanjundan and Possmayer [26]). As we
previously showed, S1P possess properties that are
protective against inflammatory lung injury [27] and vascular
leakage [28,29], and therefore the S1P regulating enzyme
became a very attractive ALI-related candidate. Moreover, our

group also linked S1P effects to chemotaxis, which is yet
another gene ontology identified by our candidate gene
approach. We demonstrated that S1P regulates secretion of
the potent chemoattractant IL-8 in human bronchial epithelial
cells [30] and regulates endothelial cell chemotaxis [31].

Immune response ontology
The gene encoding the cytokine IL-13, similar to another
ontology member, namely cytokine IL-1β, described above, is
involved in multiple biologic pathways (Table 1). It has been
shown that this cytokine has protective properties and
attenuates vascular leakage during lung injury inflicted by IgG
immune complexes [32]. Further investigations linked this IL-
13 protective effect to pulmonary vascular endothelium.
Corne and coworkers [33] showed that IL-13 exerts its
effects in part by stimulating pulmonary isoform-specific
vascular endothelium growth factor accumulation.

Another gene assigned to this ontology, the VNT gene, which
encodes vitronectin, is also involved in pulmonary vascular
permeability regulation. Binding of the VNT gene product to
αvβ3 integrin receptor increases vascular leak and activates
an integrin-induced proinflammatory response [34]. Interest-
ingly, the αvβ3 integrin receptor was found on the luminal and
abluminal faces of the lung microvascular endothelium and
could not be detected on the apical surface of the alveolar
epithelium [35].

The same gene product distribution pattern was described
for the candidate gene IL1R2 (HopGene Candidate Gene
List), which encodes IL-1 receptor type II; based on a cyclic
stretch model in human pulmonary endothelial cells [36], this
gene was previously selected by our group. Later,
overexpression of this gene was confirmed in our in vivo ALI
models. The lack of expression of IL1R2 – the ligand of
which, IL-1β, is a central cytokine in ALI – by epithelial cells
[37] suggests that this candidate gene also is integrated into
the vascular component of ALI. These and other observations
throughout the present review relate most of the selected

Available online http://ccforum.com/content/8/6/440

Table 1

Biological processes identified by MAPPFinder based on gene expression

Number of Number of Number of Percentage Percentage 
changed measured genes changed present 

GOID GO Name genes genes in GO genes genes Z score

7596 Blood coagulation 8 26 74 30.77 35.14 3.56

6954 Inflammatory response 13 44 168 29.55 26.19 4.35

8285 Negative regulation of cell proliferation 8 32 129 25.00 24.81 2.88

6935 Chemotaxis 7 31 107 22.58 28.97 2.28

6955 Immune response 13 61 569 21.31 10.72 4.17

The bioprocesses affected by mechanical stretch were identified using MAPPFinder [12] software, designed by the BayGenomics PGA group for
dynamic linkage of gene expression data to the Gene Ontology (GO; http://www.geneontology.org) hierarchy. Data were filtered by number of
changed genes (> 5) and Z score (> 2.0) and sorted by percentage changed genes.
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Table 2

Candidate genes in acute lung injury

Gene Ontology PubMatrix terms

Encoded protein Gene symbol NR IM CT IN BC Lung Lung injury

Interleukin-1β IL1B × × × 1536 287

Interleukin-6 IL6 × 963 173

Tissue factor precursor TF × × 411 54

Plasminogen activator inhibitor-1 PAI1 × 201 31

Cyclo-oxygenase-2 COX2 × 257 28

Interleukin-13 IL13 × × 327 21

Vitronectin ↓VNT × 138 11

Macrophage stimulatory protein ↓MSP × 102 11

Plasminogen activator, urokinase receptor PLAUR × × 83 8

Tissue-type plasminogen activator PLAT × 101 7

Fibrinogen α FGA × 22 4

CCAAT/enhancer binding protein beta CEBPB × 27 3

Proteinase activated receptor 2 PAR-2 × 35 2

Plasma prekallikrein ↓KLKB1 × × 22 2

Cell chemokine 2 (MCP-1) CCL2 × × 11 1

Interleukin-8 receptor IL8R × × 11 1

Chemokine CXC ligand 2 (MIP-2 alpha) CXCL2 × × × 4 1

CC chemokine receptor 5 (CD 195) CCR5 × × 3 1

Annexin I ANXA1 × 56 0

Eosinophil granule major basic protein EBMP × × 56 0

Guanine nucleotide-binding protein 2 GBP2 × 38 0

Cathepsin C CTSC × 17 0

Interleukin-1 receptor type II IL1R2 × 11 0

Cyclin-dependent kinase inhibitor 1 (p21) CDKN1A × 8 0

B-cell translocation gene 2 BTG2 × 3 0

B-cell translocation gene 1 BTG1 × 2 0

Type-2 phosphatidic acid phosphohydrolase PAP2 × 1 0

Insulin-like growth factor binding protein 6 ↓IGFBP6 × 1 0

CXC chemokine receptor type 4 (LESTR) CXCR4 × × × 0 0

XC chemokine ligand 1 (lymphotactin) XCL1 × × 0 0

Allograft inflammatory factor-1 AIF1 × × 0 0

Linker for activation of T cells LAT × 0 0

B-cell antigen receptor complex protein ↓CD79B × 0 0

Abbreviation in parenthesis represents the old cytokine nomenclature. The ‘×’ symbol designates gene ontology bioprocesses in which a given
gene is involved. Numbers in PubMatrix terms columns represent citations containing the terms ‘lung’ and ‘lung injury’ terms. The ‘↓’ symbol
indicates downregulated genes; all genes with unmarked gene names are upregulated. BC, blood coagulation; CT, chemotaxis; IM, immune
response; IN, inflammatory response; NR, negative regulation of cell proliferation.
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genes to the pulmonary vasculature, which seems crucial to
the development of ALI.

Inflammatory response and chemotaxis
ontologies
These ontologies were heavily represented by diverse
cytokines and cytokine receptors (Table 2). The CC chemo-
kine-2 and the CC chemokine receptor-5 genes were
reported to be involved in several lung inflammatory disorders
[38] and in amplifying inflammation in lung [39], respectively.

The gene encoding CXC chemokine ligand (CXCL)2 was
recently linked to ventilator-induced ALI [40] and hyperoxia-
induced ALI [41], and it contributes to three out of five
identified ALI-related bioprocesses. CXCL2 is involved in the
inflammatory response as a potent neutrophil chemo-
attractant, and inhibition of its receptor (CXC chemokine
receptor [CXCR]2) leads to a marked reduction in neutrophil
sequestration and lung injury [40]. A similar expression and
ontology pattern to CXCL2 is noted for another chemokine
receptor, namely CXCR4, which is expressed by human
bronchial epithelial cells [42]. It has been shown that this
receptor is heavily involved in allergic airway processes [43]
and promotes small cell lung cancer cell migration by altering
cytoskeletal regulation [44]. The role of this potential
candidate gene in ALI is yet to be identified, but the similarity
in expression, bioprocess involvement, and comparable
upregulation of CXCL2 and CXCR4 by IL-1β [42,45] warrant
further investigation of the involvement of CXCR4 in ALI.

Another candidate gene regulated by IL-1β, namely that
which encodes annexin1 (ANXA1), is involved in these
ontologies (Table 2) and limits neutrophil infiltration and
reduces production of inflammatory mediators in vivo [46] by
mimicking the effects of steroids at inflammatory sites [47].
This suggests a tightly IL-1β regulated mechanism of
neutrophil migration out of the bloodstream and into lung
tissues during development of ALI.

The enzyme gene family was represented by the
prostaglandin-endoperoxide synthase 2/cyclo-oxygenase-2
gene, the product of which is involved in eicosanoid synthesis
and appears to be important in both edemagenesis and the
pattern of pulmonary perfusion in experimental ALI. Gust and
coworkers [48] showed that the effect of endotoxin on
pulmonary perfusion in ALI could be in part the result of
activation of inducible cyclo-oxygenase-2. Upregulation of the
cyclo-oxygenase-2 gene is also linked to increased pulmonary
microvascular permeability during combined burn and smoke
inhalation injury in a sheep model [49].

There is evidence of epithelial involvement in ALI, such as
upregulation of the CCAAT enhancer binding protein gene
(C/EBP), which regulates [50] expression of surfactant
proteins A and D; these are heavily involved in pulmonary
host defense and innate immunity [51] during ALI [52,53].

However, the number of candidate genes related to vascular
endothelium, as was mentioned above, is striking. The
following gene ontology was completely represented by
vasculature related genes.

Blood coagulation ontology
That involvement of the blood coagulation pathway was
identified in ALI-related bioprocesses is not unexpected. There
are several reports of increased levels of coagulation factor III
(tissue factor) and plasminogen activator inhibitor type 1 in
patients with ALI [54–56] and ventilator-induced lung injury
[57,58]. Fibrinogen A and plasminogen activator, urokinase
receptor are involved in IL-1β signaling and regulation,
respectively. It has been shown that fibrinogen indirectly
activates transcription of IL-1β [59], which in turn increases
expression of urokinase receptor [60]. Urokinase-type
plasminogen activated receptor (uPAR) was assigned to blood
coagulation and chemotaxis pathways by our approach
(Table 2), and represents direct linkage between these two
biological processes. It has been shown that uPAR not only
promotes degradation of fibrin but also confers adhesive
properties to cells by binding vitronectin. Staining of lung
biopsy specimens from patients with ALI indicated that fibrin
and vitronectin colocalize at exudative sites where
macrophages bearing uPAR accumulate [61]. Opposite to
expression of the PLAUR gene (which encodes plasminogen
activator, urokinase receptor), downregulation of the VNT gene
(Table 2) suggests dual regulatory mechanisms of macrophage
sequestration at the injury site. Another downregulated gene
was that which encodes plasma prekallikrein (KLKB1). It has
been shown that prekallikrein not only participates in blood
coagulation in tandem with factor XII [62] but also is a major
source of bradykinin (potent stimulus of vascular permeability)
during the inflammatory response [63].

This interconnection of coagulation and inflammation is well
recognized in that inflammation leads to increased coagulation,
and the two are linked by the vascular endothelium, which is
particularly relevant to ALI (see review by Russell [64]). The
cytokines IL-1β and IL-6 activate neutrophils and monocytes,
which in turn alter endothelial integrity. Furthermore, platelets
bind to the injured endothelial surface and trigger a
procoagulant and inflammatory response. These cytokines
also directly activate tissue factor and plasminogen activator
inhibitor type 1, which lead to activation of the extrinsic
pathway of coagulation and inhibition of fibrinolysis,
respectively. There is some evidence that the ‘crosstalk’
between coagulation and inflammation can be reversed. It
has been shown that blood coagulation in vitro stimulates
release of inflammatory mediators from neutrophils and
endothelial cells [65,66]. Based on these reports and data
generated by our cross-species analysis of ALI, we
speculated that mechanical stretch causes the initial injury to
the pulmonary endothelium, which is followed by platelet
aggregation at the damaged site and activation of the
coagulation cascade. Therefore, procoagulation genes

Available online http://ccforum.com/content/8/6/440
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become major players in early stages of the onset of ALI, and
then proinflammatory genes become upregulated and
promote further ALI development. In order to prove or
disprove this hypothesis, further studies of ALI are needed,
especially time course analysis of the expression patterns of
selected candidate genes in response to ALI.

Conclusion
Our data suggest that combined gene expression and gene
ontology analyses of ortholog-linked multiple ALI models can
be useful tools in selecting candidate genes that are involved
in this patho-biologic process. We showed that 18 out of 33
genes selected by our procedure were previously linked to
ALI. These results strongly implicate the other 15 selected
genes as potential ALI-related candidates. Further analysis of
these candidate genes may provide insight into the
mechanisms of ALI and uncover unsuspected evolutionarily
conserved targets that may lead to therapeutic strategies in
this illness. The genetic determinants that render patients
susceptible to the adverse effects of mechanical ventilation in
the setting of ALI are unknown. The identification of novel
therapeutic targets is essential if progress is to be made in
the treatment of this condition. New molecular targets will be
deduced from genetic susceptibility loci for ventilator-
associated lung injury and evaluated. This approach will help
to unravel the pathophysiologic mechanisms of ventilator-
associated lung injury and will accelerate the development of
therapies for this devastating disease.
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