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Smooth semi-nonparametric (SNP)
estimation of the cumulative incidence
function
Anh Nguyen Duca*† and Marcel Wolbersa,b

This paper presents a novel approach to estimation of the cumulative incidence function in the presence of com-
peting risks. The underlying statistical model is specified via a mixture factorization of the joint distribution of
the event type and the time to the event. The time to event distributions conditional on the event type are modeled
using smooth semi-nonparametric densities. One strength of this approach is that it can handle arbitrary cen-
soring and truncation while relying on mild parametric assumptions. A stepwise forward algorithm for model
estimation and adaptive selection of smooth semi-nonparametric polynomial degrees is presented, implemented
in the statistical software R, evaluated in a sequence of simulation studies, and applied to data from a clinical trial
in cryptococcal meningitis. The simulations demonstrate that the proposed method frequently outperforms both
parametric and nonparametric alternatives. They also support the use of ‘ad hoc’ asymptotic inference to derive
confidence intervals. An extension to regression modeling is also presented, and its potential and challenges are
discussed. © 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.
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1. Introduction

Competing risks refer to the situation where multiple event types are of interest and the time T and the
event type D of the first occurring event, possibly subject to censoring or truncation, is analyzed. Com-
peting risks are frequent in medical research, especially in multimorbid or critically ill study populations
[1]. The most important descriptive quantity in the analysis of competing risks data is the cumula-
tive incidence function (CIF), which measures the absolute risk of different event types j over time:
CIFj(t) = P(T ≤ t,D = j). In the presence of right censoring or left truncation, the CIF is usually esti-
mated by the nonparametric Aalen–Johansen estimator, which gives a step-function [2]. Non-parametric
estimates of the CIF for interval-censored data have also been suggested, but they are non-unique over
certain sub-intervals of the follow-up period and may have nonstandard asymptotic behavior with con-
vergence rates slower than n−1∕2 [3–5]. Parametric methods for CIF estimation provide smooth estimates,
can easily be applied to arbitrary censoring and truncation schemes, have standard asymptotic proper-
ties, and may be more efficient if the assumed parametric model is correct [6, 7]. However, they rely on
parametric assumptions, which may not be tenable.

In econometrics and survival analysis, smooth ‘semi-nonparametric’ (SNP) densities have been
successfully used as building blocks for flexible models that combine some of the advantages of nonpara-
metric and parametric approaches [8–10]. In this work, we propose a novel SNP estimator of the CIF.
The rest of this paper is organized as follows: Section 2 gives a brief overview of SNP density estimation.
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Section 3 describes the underlying model for the CIF, and Section 4 proposes an estimation algorithm
and methods for ‘ad hoc’ asymptotic inference. A test statistic to compare the CIFs for a specific event
type between independent groups is given in Section 5. Section 6 evaluates the finite-sample performance
of the proposed methods in a simulation study, and Section 7 gives an application to a trial in cryptoc-
cocal meningitis. The potential and challenges of extending our CIF-estimation approach to regression
modeling are discussed in Section 8, followed by concluding remarks.

2. Smooth semi-nonparametric density estimation – overview

The SNP densities were first introduced in the field of econometrics by Gallant and Nychka [8] to estimate
the distribution of a nuisance random part in a statistical model where little is known about the shape
of the distribution. For univariate problems, an SNP density is of the form gK(z) = P2

K(z)𝜓(z) + 𝜖0g0(z)
where PK(z) =

∑K
i=0 aiz

i, 𝜓(z) is a known base density such as the standard normal density, and g0(z) is a
known strictly positive density with expectation zero, which together with the small positive constant 𝜖0
governs the tail behavior of gK(z). For fixed K, gK(z) is fully parametrized by the finite set of polynomial
coefficients

(
a0,… , aK

)
, which can be estimated using standard techniques such as maximum-likelihood

estimation (MLE). If the polynomial degree K = Kn is adaptively chosen depending on the sample size
n such that limn→∞ Kn = ∞, then gKn

(z) can consistently estimate any density belonging to a rich class
of smooth densities allowing for skewness, kurtosis, multi-modality, or non-normal tail behavior under
certain regularity conditions [8]. Moreover, it was demonstrated in an extensive simulation study that
SNP density estimation is qualitatively similar to kernel density estimation [11].

Smooth semi-nonparametric densities were introduced as building blocks for regression modeling of
time-to-event data and estimation of the survival function by Zhang, Doehler, and Davidian [9, 10]. For
estimation of the survival function of a random variable T , a simple model of the form

log T = 𝜇 + 𝜎Z, 𝜇 ∈ R, 𝜎 ∈ R
+ (1)

is used with 𝜇 and 𝜎 governing the location and scale of log T , respectively, and Z is assumed to have a
SNP density of the form hK(z) = P2

K(z)𝜑(z), where 𝜑(z) is the density function of the standard normal
distribution and the ‘tail’ 𝜖0g0(z) is ignored as in most practical implementations of the methodology.
Alternatively, the authors suggested to parametrize the distribution of eZ by a SNP density of the form
lK(z) = P2

K(z)𝜀(z) where 𝜀(z) is an exponential density with rate 1. For fixed K, the distribution of T
in (1) only depends on 𝜇, 𝜎 and the polynomial coefficients of the SNP density, leading to a tractable
implementation of the likelihood function under arbitrary censoring and truncation. The choice of K
as well as the choice between a normal or exponential base density is made adaptively based on an
information criterion such as the criterion proposed by Akaike. In extensive simulation studies, several
authors [9, 10] demonstrated the advantages of the SNP approach compared with traditional parametric,
semi-parametric and nonparametric methods. Moreover, they ascertained earlier claims (e.g. [11]) that ‘ad
hoc’ asymptotic inference that ignores the adaptive choice of K frequently provides confidence intervals
with acceptable coverage.

3. A mixture model for the cumulative incidence function based on smooth
semi-nonparametric densities

We assume that competing risks data, that is, the time to the first event T and the respective event type D,
possibly subject to censoring and truncation, are available for a sample of n independent subjects. The
event type D can take any value in {1,… , J}, where J denotes the total number of event types. The CIF
for event type j is defined as CIFj(t) = P(T ≤ t,D = j). Our model relies on a mixture factorization that
factorizes the CIF into a product of the marginal probability of the event type j and the probability of
surviving up to time t conditional on eventually experiencing an event of type j:

P(T ≤ t,D = j) = P(T ≤ t ∣ D = j)P(D = j) (2)

This factorization has been used by several authors [12–14]. However, it has also been criticized
because the marginal event probabilities, P(D = j), are poorly identified for data with a limited follow-
up duration relative to the timing of events, and because of interpretational issues due to conditioning on
the future event type D [15]. Here, we only use this factorization as a convenient mathematical tool for
model formulation and focus our attention on CIF estimation over the observed follow-up period. We
will revisit whether the identifiability issue affects our CIF estimates in an extensive simulation study
(Section 6) and the discussion.
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The marginal event probabilities P(D = j) are assumed to follow a simple multinomial model that we
parametrize by a multinomial logistic model with intercept terms only:

P (D = j) = exp
(
𝛾j

){
1 +

J−1∑
k=1

exp
(
𝛾k

)}−1

(3)

where 𝛾j, j = 1,… , J − 1, are the parameters, and 𝛾J is set to 0 to ensure model uniqueness.
Conditional on D = j, T ∣ D = j is a ‘proper’ time-to-event variable, and we parametrize its distribution

using SNP densities as suggested in [9], that is, we assume that for j = 1,… , J

log (T ∣ D = j) = 𝜇j + 𝜎jZj, 𝜇j ∈ R, 𝜎j ∈ R
+ (4)

where Zj are random variables whose distribution is modeled using SNP densities, and 𝜇j and 𝜎j govern
the location and scale of log (T ∣ D = j), respectively. As in [9], we consider two different SNP models
for Zj: (1) a direct model that assumes that Zj follows a SNP density of degree Kj with a standard normal
base density, or (2) an indirect model that models eZj based on a SNP density with an exponential base
density with rate 1. For parsimony reasons, we assume that all conditional time-to-event distributions
use the same base density but possibly different polynomial degrees Kj and parametrize the polynomial
coefficients of the SNP densities by spherical coordinates 𝜙Kj

=
{
𝜙jk ∈ (−𝜋∕2, 𝜋∕2]; k = 1,… ,Kj

}
as detailed in the web-appendix of [9]. Of note, for the special case of Kj = 0, the model specifies a
log-normal or a Weibull distribution for the conditional time-to-event distributions.

4. Model estimation and statistical inference

4.1. Likelihood construction for fixed polynomial degrees

Direct simultaneous estimation of all parameters in the model specified previously including the SNP
degrees 𝐊 =

{
K1,… ,KJ

}
is not feasible. However, for fixed base densities and a fixed set of SNP

polynomial degrees 𝐊, the underlying model is parametric with a total parameter set given by 𝜃(𝐊) =(⋃J
j=1

{
𝜇j, 𝜎j, 𝜙Kj

})⋃(⋃J−1
j=1

{
𝛾j

})
. Hence, standard MLE of 𝜃(𝐊) can be employed. Importantly, the

likelihood can easily be specified for arbitrary censoring and truncation mechanisms. For example, for
competing risks data subject to independent right or interval censoring as well as left-truncation, the
respective likelihood contribution from a subject is

P
(
T > tl

)𝐈(D′=0)

P (T ≥ l)
×

J∏
j=1

[
fj
(
tl
)𝐈(tr=tl) {Pj

(
T ≤ tr

)
− Pj

(
T ≤ tl

)}𝐈(tr>tl)
]𝐈(D′=j)

(5)

for 0 ≤ l < tl ≤ tr. Here, D′ refers to the observed event type indicator with D′ = D if an event
was observed at time tl = tr (for uncensored data) or in the interval

[
tl, tr

]
(for interval-censored data),

and D′ = 0 refers to a right-censored observation at time tl. l refers to the truncation time, fj(t) =
fT∣D=j(t)P(D = j), where fT∣D=j(t) is the density of T ∣ D = j, and Pj(T ≤ t) = P(T ≤ t ∣ D = j)P(D = j).
P(T ≤ t) equals 1 −

∑J
i=1 Pj(T ≤ t). Explicit formulas for P(T ≤ t ∣ D = j) can be derived using

integration by parts as described in [9].

4.2. Estimation procedure

For a fixed base density, we propose to choose the polynomial degrees based on an information criterion
using the following greedy step-wise forward algorithm:

Step 0: Perform MLE for the parametric model with all Kj = 0. This is the current best fit. Go to Step 1.
Step 1: Calculate MLE for the J parametric models that correspond to increasing the polynomial degrees

K1,… ,KJ , one at a time, by 1 compared with the current best fit. Among these, we call the model
with the best information criterion the new best model.

Step 2: If the new best model is better than the current best fit, replace the current best fit with the new
best model and repeat Step 1. Otherwise, go to Step 3.

Step 3: Stop and return the current best fit.

© 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2017, 36 2921–2934
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In practice, we truncate the maximum allowed polynomial degrees at Kmax for computational reasons.
In survival analysis, Kmax = 2 is generally sufficient to achieve an excellent fit based on extensive simu-
lation studies [9]; in other settings, values of Kmax from 2 to 4 have been suggested [11]. Commonly used
information criteria are of the form 2 × {−l(𝜃(𝐊)) + qc}, where l(𝜃(𝐊)) is the log-likelihood evaluated
at the MLE for fixed polynomial degrees and q is the total number of parameters in the model. Typical
choices of c are c = 1 (Akaike’s information criterion, AIC), c = log(n)∕2 (Bayesian information crite-
rion, BICn), and c = log{log(n)} (Hannan–Quinn’s criterion, HQCn). Alternatively, we also considered
replacing n, the sample size, by d, the total number of events of any type, in the definition of BIC and
HQC and denote the resulting information criteria by BICd and HQCd, respectively. A schematic of the
greedy stepwise forward algorithm for 2 competing risks with Kmax = 2 and AIC as the information cri-
terion is given in Appendix A of the Supporting Information. Finally, the choice between the normal and
the exponential base density is made by comparing the best fits from both base densities using the same
information criterion.

For fixed polynomial degrees, the log-likelihood function is still relatively complex and may have
multiple extrema. Hence, good starting values for the numerical optimization algorithm are crucial. We
detail the proposed selection of starting values in Appendix B of the Supporting Information. In brief, for
step 0, starting values for 𝜇j and 𝜎j are determined based on parametric log-normal or Weibull survival
models including all subjects with an observed (or interval-censored) event of type j. Right-censored
observations are also included but weighted based on a crude estimate of their probability of ultimately
experiencing event type j. Initial values for 𝛾j ( j = 1,… , J − 1) are then obtained by optimizing the
likelihood function with respect to these parameters only. For step 1, starting values for 𝛾j are the estimates
from the current best fit. For the new polynomial coefficients (in spherical coordinates), multiple starting
values are selected from a regular grid on

[
−𝜋∕2, 𝜋∕2

]Kj+1
as suggested in [9]. Finally, corresponding new

starting values for 𝜇j and 𝜎j are selected such that the first two moments of the distribution of log T ∣ D = j
(which depend on these parameters and the spherical coordinates) remain unchanged compared with
the current best fit. For each set of starting values, numerical optimization of the log-likelihood is then
implemented using a quasi-Newton algorithm.

An implementation of the proposed estimation algorithm by the first author using the statistical
software R [16] has been uploaded to GitHub (see Section 9 for details).

4.3. Ad hoc statistical inference for cumulative incidence function estimates

A rigorous proof of asymptotic normality of smooth semi-nonparametric models based on SNP densities
is still lacking in general. However, empirical evidence from several studies on density estimation and
survival analysis suggest that the use of standard asymptotic inference for MLE based on the final fit
and ignoring the adaptive choice of the degrees of the SNP polynomials yield acceptable performance
[9,11]. Accordingly, we base the calculation of standard errors and confidence intervals on the observed
Fisher information matrix I(�̂�) with respect to �̂� ≡ �̂�(𝐊) with 𝐊 being the SNP polynomial degrees
of the final fit. Specifically, to obtain pointwise confidence for CIFj(t), we propose to first determine a
Wald-type confidence interval for the complementary log-log (cloglog) transform of this quantity using
the delta-rule and then to transform this confidence interval back to the original scale. Operating on the
cloglog-scale is expected to improve the validity of the normal approximation and avoids having out
of range confidence intervals. Of note, we also considered the usage of sandwich type robust variance
estimator (e.g., equations (4.5.2) and (4.5.4) in [17]) for the aforementioned calculations, but they did
not lead to improved coverage in our simulation studies.

5. Between-group comparisons of cumulative incidence functions

Doehler and Davidian suggested methods for comparing survival functions between two independent
groups based on SNP estimates [10]. A similar approach is possible for between-group comparisons of
CIFs. Without loss of generality, assume that the CIF corresponding to the first event type is of interest.
The null hypothesis and alternative hypothesis are

H0 ∶ CIF1
1(⋅) = CIF2

1(⋅)
HA ∶

(
CIF1

1(⋅) ≥ CIF2
1(⋅) or CIF1

1(⋅) ≤ CIF2
1(⋅)

)
and CIF1

1(⋅) ≠ CIF2
1(⋅)
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where superscripts denote the groups. A suitable test statistic is the integrated weighted difference (IWD):

IWD = ∫
𝜏

0
W(t)

{
ĈIF

1

1(t) − ĈIF
2

1(t)
}

dt (6)

where W(⋅) is a positive weight function and 𝜏 is a suitably chosen time horizon. In principle, the weight
function W(⋅) can be manipulated to make the test more sensitive to a specific alternative hypothesis,
and for non-parametric CIF estimates, W(⋅) also serves as a stabilization tool to down-weight time points
where the risk set is small and hence the test statistic unstable [18]. Instability is less of an issue for
parametric or SNP estimates. Thus, if we are not interested in any specific alternative hypothesis, we
can simply set W(⋅) = 1. Two possibilities for deriving the null distribution are available. First, one can
estimate the variance of the test statistic based on ad hoc asymptotic inference and the delta-rule and use
this as the basis of a Wald-type test. Alternatively, the null distribution and the resulting p-value can be
evaluated exactly without relying on a normal approximation by implementing a permutation test (or a
Monte-Carlo approximation to it). Details regarding the Wald-type test as well as the permutation test
are given in Section F of the Supporting Information.

6. Simulation study

Simulation study for two event types (J = 2) — Setting: Several competing risks scenarios with right
or interval censoring were investigated to compare the proposed SNP-CIF estimation method to alterna-
tive parametric and nonparametric approaches in a series of simulations. All scenarios considered two
competing events only, that is, J = 2, and uncensored data were simulated either according to the mix-
ture factorization (2) or a latent failure time model. For the scenarios based on the mixture factorization,
we either chose a Weibull distribution for both conditional time to event distributions or a log-normal
distribution for the first event type and a SNP distribution with K = 1 and a standard normal base den-
sity for the second event type, respectively. For simulation from a SNP distribution, we used rejection
sampling as suggested in [19] and detailed in Appendix C of the Supporting Information. The corre-
sponding marginal distribution of the first event type was chosen as 25% or 50%, respectively. The last
scenario was based on two independent latent failure times T1 and T2 leading to T = min

(
T1,T2

)
and

D = 1𝐈
(
T1 ≤ T2

)
+ 2𝐈

(
T1 > T2

)
. We chose a mixture log-normal distribution for T1 and a Weibull

distribution for T2. Exact parametric choices for all scenarios are summarized in Table I.

Table I. Specification of the distribution of uncensored competing risks data
for the scenarios investigated in the simulation study.

Mixture representation based scenario
Scenario T ∣ D = 1 T ∣ D = 2 P1%

2 Weibull
W

(
1−1, e−1

)
W

(
0.2−1, e−0.25

)
25

2 SNP stdnorm

LN
(
−0.1, 12

)
SN

(
−0.1, 0.5, 𝜋

9

)
50

Latent failure times-based scenario
Scenario T1 T2 P1%

Logmixturenorm + Weibull

0.3LN
(
−0.1, 0.32

)
+ 0.7LN

(
0.7, 0.12

)
W

(
0.5−1, e1

)
66

Note: T ∣ D = j is the time to event distribution for event type j conditional on
the occurrence of that event type. P1 is the marginal probability of event type 1. Tj

is the independent latent failure time distribution associated with event type j used
in the latent failure times-based scenario. W(𝜎−1, e𝜇) refers to a Weibull distribution
with shape 𝜎−1 and scale e𝜇 and LN

(
𝜇, 𝜎2

)
to a log-normal distribution with mean

𝜇 and variance 𝜎2 for the log-transformed data. SN(𝜇, 𝜎, 𝜙) is a random variable T
satisfying log T = 𝜇+𝜎Z, where Z has a smooth semi-nonparametric distribution with
a standard normal base density and polynomial degree K = 1 with a corresponding
spherical coordinate 𝜙.

© 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2017, 36 2921–2934
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For scenarios with independent right-censoring, a censoring time C was simulated and the observed
right-censored data defined as

(
T ′ = min{T ,C},D′ = Δ × D

)
, where Δ = 1 if T ≤ C and Δ = 0

otherwise. The censoring distribution C was simulated as C = min{tm,CE} where the maximum follow-
up duration tm was chosen as the 50% or 90% quantile of the total survival time T and CE was simulated
according to an exponential distribution with rate 𝜆 chosen appropriately to ensure the desired overall
right censoring probability of 65% or 35%, respectively. The parameters tm and 𝜆 were determined via
simulation using a large competing risks dataset of size n = 106 from the respective scenario. In the pre-
sentation of the simulation results, the two different right-censoring schemes are denoted as ‘65% RC’
and ‘35% RC’, respectively.

For scenarios with independent interval censoring, we first determined the maximum follow-up time
tm as the 50% or 90% quantile of the total survival time T as before. Interval censoring was then simu-
lated as follows: If tm corresponded to the 90% quantile (respectively median) of T , we split the interval
[0, tm] into 10 (respectively 7) equally spaced sub-intervals. For each observation, the corresponding
observation process was defined as occurring at the sub-interval cut-points plus some observation-specific
normally distributed ‘noise’ with mean 0 and standard deviation equal to 1/5 of the sub-interval length
for time points other than 0 and tm. If a subject had an event before time tm, then their data was consid-
ered interval-censored between the two adjacent time points of the observation process; otherwise, they
were considered right-censored at tm. In the presentation of the simulation results, the two different inter-
val censoring schemes are denoted as ‘IC-1’ (tm=90% quantile, 10 sub-intervals) and ‘IC-2’ (tm=50%
quantile, 7 sub-intervals), respectively.

Finally, the sample size was varied between 100 and 500 leading to 12 simulation settings with right
censoring and 12 with interval censoring. Reported simulation results are based on 1000 simulated
datasets per setting and maximum allowed polynomial degrees Kmax = 3.

For the adaptive choice of the polynomial degrees and base density, the following information criteria
were investigated: AIC, BICn, BICd, HQCn, and HQCd. As simulation results based on the sample size
n and the number of events d were very similar, only results based on n are reported, and the best fits
according to the different information criteria are denoted as SB-AIC, SB-BICn, and SB-HQCn. Com-
peting methods included parametric and non-parametric estimators. Parametric estimators were based
on the mixture factorization assuming log-normal or Weibull conditional time to event distributions that
are available as a special case of our algorithm with polynomial degrees restricted to K = 0. For right-
censored data, the standard nonparametric Aalen–Johansen estimator of the CIF was used and estimates
for interval-censored data were based on a nonparametric maximum likelihood estimator for bivariate dis-
tribution (X,Y) described in [20] and implemented in functioncomputeMLE of the R packageMLEcens
[21]. As the nonparametric maximum likelihood estimator can only assign mass to a finite number of
disjoint intervals, we chose a unique representation by distributing the assigned mass uniformly across
the respective intervals.

Simulation study for two event types (J = 2) — Results: Detailed results for interval-censored
settings are provided here. Right-censored settings are only summarized but detailed results are provided
in Appendix D of the Supporting Information. Table II summarizes how frequently our method selected
both the correct base density and the correct polynomial degrees of the corresponding conditional time
to event distributions for mixture representation-based scenarios. For the lower sample size of n = 100,
the average proportion of correctly chosen base densities and polynomial degrees was quite low, ranging
from 32% for AIC to 58% for BICn. For n = 500, these proportions increased sharply and ranged from
60% for AIC to 91% for BICn with an intermediate value of 80% for HQCn. Slightly higher proportions
and a similar pattern were observed for right-censored settings; for n = 500 and HQCn, the proportion
of correctly chosen models was 85% (Table 1 of Appendix D of the Supporting Information). The last
two rows in Table II show the frequency with which fits to data from latent failure time models (which do
not follow a SNP mixture model) used the maximum allowed polynomial degree of K = 3. In general,
AIC was more likely to exhaust the maximum complexity, although for right-censored data this was not
true for one right-censored setting with n = 500, which can be explained by the fact that AIC frequently
chose a different base density compared with the other criteria (Table 1 of Appendix D of the Supporting
Information).

The precision of CIF estimates was evaluated based on the integrated mean squared error (IMSE) from
time 0 to tm, which was defined for event type j as

IMSEj =
1
Ns

Ns∑
i=1

[
∫

tm

0

{
ĈIFji(t) − CIFj(t)

}2
dt

]
(7)
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Table II. Frequency with which the proposed smooth semi-nonparametric estima-
tors based on AIC, BICn, or HQCn, respectively, chose the correct base density
and correct polynomial degrees for mixture representation based scenarios (first
four rows).

AIC BICn HQCn

Scenario n 100 500 100 500 100 500

Frequency of correct base density and polynomial degrees
2 Weibull IC-1 343 650 649 977 488 888

2 Weibull IC-2 162 496 447 769 286 657
2 SNP stdnorm IC-1 471 657 677 970 597 875
2 SNP stdnorm IC-2 305 585 528 915 436 787

Frequency that the selected model chose K1 = 3 or K2 = 3
Logmixturenorm + Weibull (LFT) IC-1 250 243 25 50 102 136
Logmixturenorm + Weibull (LFT) IC-2 12 45 1 0 2 5

AIC, Akaike’s information criterion; BICn, Bayesian information criterion; HQCn,
Hannan–Quinn’s criterion; LFT, latent failure times.
For the other scenarios, the frequency with which the maximal allowed polynomial degree
was chosen (i.e., K1 = 3 or K2 = 3) is reported (rows 5 and 6). All results are for scenarios
with interval censoring.
All frequencies are based on 1000 simulated data sets per scenario.
IC-1 refers to interval censoring with 10 sub-intervals and right-censoring at the 90%
quantile.
IC-2 refers to interval censoring with seven sub-intervals and right-censoring at the 50%
quantile.

where Ns is the total number of simulated datasets, ĈIFji refers to the estimated CIF for event type j
from the ith dataset of the considered simulation setting and CIFj is the respective true CIF. Table III
shows the relative IMSE of parametric and nonparametric methods compared with the SB-HQCn model
and absolute IMSE values for SNP-based models for scenarios with interval censoring. If a parametric
Weibull or log-normal model was the true model for the respective CIF, SNP models based on HQCn were
slightly outperformed by the true parametric model. If this was not the case, the SNP-based model usu-
ally outperformed the parametric models, sometimes dramatically so. Moreover, our method consistently
outperformed the non-parametric estimator. Conclusions were similar for right-censored data (Table 2 in
Appendix D of the Supporting Information), although in this setting the non-parametric estimator out-
performed our estimator for one scenario. Regarding the investigated information criteria, BICn often
performed best, although for some complex right-censored scenarios, AICn performed considerably bet-
ter. HQCn, the recommended information criterion in survival analysis [9, 10], provided intermediate
performance and CIF estimates that resembled the truth quite closely (Figure 1). Furthermore, to see if
the IMSE might be driven by single time regions, we also looked at the mean squared error at the specific
time points tm and tm∕2. However, this leads to qualitatively identical conclusions to the results for the
IMSE reported previously (data not shown).

Table IV and Table 2 in Appendix D of the Supporting Information give point-wise Monte Carlo cover-
age probabilities of nominal Wald-type 95% confidence interval for all CIF estimators at two selected time
points, 0.5tm and tm, for interval-censored and right-censored scenarios, respectively. All confidence inter-
vals were based on the complementary log-log transformation, and for SNP-based estimates, they used
ad hoc asymptotic inference as described in Section 4.3. Our model based on HQCn showed some under-
coverage, but observed coverage was larger than 90% for 45/48 reported values for interval-censored
settings and 43/48 reported values for right-censored settings with the lowest observed coverage being
82%. Models based on BICn and AICn showed comparable although overall slightly worse coverage.

Parametric models usually performed well if the parametric model reflected the truth but demonstrated
dramatic undercoverage in some other settings. Coverage for the non-parametric estimator in the presence
of interval censoring was not evaluated as confidence intervals are not provided by the used software and
the estimator has non-standard asymptotic properties [21]. For right-censored settings, the nonparametric
estimator performed well with observed coverage of at least 93.5% across all scenarios except for two
very low observed values for the Weibull mixture scenario with n = 100. The latter is potentially due to
the very low observed frequency of events of type 2 before time 0.5tm in these settings.

© 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2017, 36 2921–2934

2927



A. N. DUC AND M. WOLBERS

Table III. IMSE for different estimation methods for all scenarios
with interval censoring.

n = 100 n = 500

Scenario CIF1 CIF2 CIF1 CIF2

2 Weibull IC-1
LN/SB-HQCn 0.96 0.008 1.61 0.049 1.13 0.015 4.66 0.178
WB/SB-HQCn 0.95 0.006 0.76 0.016 0.97 0.005 0.93 0.013
NP/SB-HQCn 1.19 0.010 1.88 0.045 1.49 0.021 3.02 0.089
SB-AIC ×104 8.71 3.72 1.53 0.62
SB-BICn ×104 8.33 3.16 1.47 0.56
SB-HQCn ×104 8.54 3.43 1.51 0.58
2 Weibull IC-2
LN/SB-HQCn 0.95 0.005 1.02 0.015 0.98 0.005 1.19 0.034
WB/SB-HQCn 0.96 0.005 0.90 0.010 0.98 0.004 0.81 0.017
NP/SB-HQCn 1.22 0.010 1.78 0.038 1.45 0.020 3.36 0.108
SB-AIC ×104 9.05 4.78 1.84 1.03
SB-BICn ×104 8.77 4.31 1.79 0.81
SB-HQCn ×104 8.89 4.54 1.81 0.90
2 SNP stdnorm IC-1
LN/SB-HQCn 0.93 0.013 2.37 0.065 1.09 0.019 8.68 0.325
WB/SB-HQCn 0.92 0.013 1.55 0.031 1.24 0.027 4.63 0.156
NP/SB-HQCn 1.50 0.027 1.32 0.018 2.21 0.056 1.67 0.032
SB-AIC ×104 17.61 11.18 3.12 2.17
SB-BICn ×104 16.73 11.57 2.98 2.10
SB-HQCn ×104 17.19 11.31 3.04 2.13
2 SNP stdnorm IC-2
LN/SB-HQCn 0.92 0.008 1.25 0.016 0.99 0.011 2.24 0.054
WB/SB-HQCn 0.97 0.008 1.23 0.014 1.19 0.017 2.53 0.066
NP/SB-HQCn 1.30 0.014 1.22 0.011 1.58 0.024 1.43 0.022
SB-AIC ×104 21.25 12.52 4.10 2.58
SB-BICn ×104 20.16 12.69 3.95 2.49
SB-HQCn ×104 20.89 12.52 4.01 2.53
Logmixturenorm + Weibull (LFT) IC-1
LN/SB-HQCn 1.80 0.043 1.13 0.025 5.40 0.166 2.42 0.060
WB/SB-HQCn 1.65 0.041 0.91 0.011 5.10 0.148 1.22 0.013
NP/SB-HQCn 1.24 0.013 1.28 0.017 1.35 0.016 1.60 0.036
SB-AIC ×104 17.06 14.88 3.62 2.75
SB-BICn ×104 16.86 14.09 3.77 2.69
SB-HQCn ×104 16.94 14.46 3.64 2.67
Logmixturenorm + Weibull (LFT) IC-2
LN/SB-n 0.96 0.004 0.95 0.011 0.93 0.005 1.03 0.011
WB/SB-HQCn 0.99 0.005 0.89 0.010 1.12 0.009 0.88 0.014
NP/SB-HQCn 1.26 0.011 1.38 0.019 1.53 0.022 1.80 0.039
SB-AIC ×104 20.23 15.67 3.74 2.77
SB-BICn ×104 16.86 14.09 3.77 2.69
SB-HQCn ×104 16.94 14.46 3.64 2.67

Note: LN/SB-HQCn, WB/SB-HQCn, and NP/SB-HQCn are the ratios (in
bold) of the integrated mean squared error (IMSE) of the parametric log-
normal, Weibull, and the nonparametric models, respectively, versus the
SB-HQCn model with corresponding bootstrap standard errors. For each sce-
nario, the last three rows give IMSE values of smooth semi-nonparametric-
based models for all information criteria. IC-1 (IC-2) refers to interval
censoring with 10 (7) sub-intervals and right-censoring at the 90% (50%)
quantile.2928
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Figure 1. Simulation results for SB-HQCn models for all scenarios with interval censoring and a sample size of
n = 500. Note: Bold lines show the true CIF1 for event type 1, and 1 − CIF2 for event type 2 from time 0 to tm.
Bold dashed lines show the corresponding point-wise averaged fitted cumulative incidence functions across 1000
simulation runs. Light dashed lines show curves, resulting from the two simulation runs leading to the minimal
and maximum average residual from the true curve based on 300 equally spaced time point from 0 to tm, that
is, they display the worst observed under-estimation and over-estimation. From left to right are the scenarios:
2 weibull, 2 SNP stdnorm, logmixturenormal + Weibull (LFT). Top and bottom rows correspond to ‘IC-1’ and

‘IC-2’ scenarios, respectively.

Bootstrap-based confidence interval for SNP-estimators might lead to improved coverage as demon-
strated in the survival setting in [10], but we did not explore this in our simulations as the estimation
algorithm is computer intensive. Specifically in our simulation, median (mean) computing times for CIF
estimation based on HQCn with a sample size of n = 500 were 91 (88) and 127 (212) seconds across
the six interval-censored and right-censored settings, respectively (on a Windows PC with an Intel Core
i7-3770 CPU and 10GB Ram).

Additional simulation study for three event types (J = 3): An additional simulation study was
conducted for a scenario with three competing risks based on SNP distributions having standard normal
base densities and polynomial degrees of 0, 2, and 3, respectively. The simulation scenario and results
are detailed in Appendix E of the Supporting Information. A lower frequency of choosing the correct
base densities and polynomial degrees (reported in Table 5 of the Supporting Information) than for the
simpler scenarios with J = 2 and true Kmax = 1 reported in Table II was noted. This is not unexpected
and a similar effect could already be seen when contrasting results from the competing risks settings with
J = 2, shown in Table II, against results from the less complex survival settings investigated by Doehler
and Davidian [10]. However, performance in terms of the integrated mean-squared error (Table 6 of the
Supporting Information) remained superior to the parametric and non-parametric alternatives and true
coverage of nominal 95% confidence intervals (Table 7 of the Supporting Information) was also generally
acceptable acknowledging some mild undercoverage.
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Table IV. Observed coverage probabilities of nominal 95% CI for the
cumulative incidence functions at times 0.5tm and tm for interval-censored
scenarios.

n = 100 n = 500

Time point 0.5tm tm 0.5tm tm

Scenario CIF1 CIF2 CIF1 CIF2 CIF1 CIF2 CIF1 CIF2

2 Weibull IC-1
LN 94.1 63.1 95.2 81.6 92.3 8.5 95.0 39.0
WB 94.6 95.9 94.5 94.3 95.5 96.1 94.7 94.6
SB-AIC 94.6 82.6 93.6 92.4 94.8 90.8 95.1 93.4
SB-BICn 94.0 86.3 94.2 92.9 95.5 95.1 94.7 94.5
SB-HQCn 94.4 83.9 93.8 93.1 95.2 93.2 94.8 94.2
2 Weibull IC-2
LN 95.3 95.5 95.8 94.9 94.6 79.9 95.2 94.1
WB 95.2 95.6 95.7 94.4 94.4 95.7 95.5 94.7
SB-AIC 94.3 89.4 95.5 93.6 94.4 86.7 95.6 94.7
SB-BICn 94.5 94.5 95.8 94.2 94.6 90.8 95.5 94.5
SB-HQCn 94.3 93.2 95.7 94.2 94.8 89.5 95.5 94.7
2 SNP stdnorm IC-1
LN 94.5 91.3 93.9 64.4 95.1 69.5 94.3 5.4
WB 95.0 85.2 94.0 80.5 92.3 37.0 95.1 42.0
SB-AIC 94.0 96.1 93.0 94.3 95.3 94.0 95.3 95.8
SB-BICn 94.5 94.9 93.6 93.5 95.8 94.0 95.7 95.6
SB-HQCn 94.1 95.8 93.4 94.1 95.7 93.9 95.6 95.6
2 SNP stdnorm IC-2
LN 94.9 94.7 94.3 95.6 92.3 82.1 94.3 94.1
WB 94.4 91.3 93.9 95.2 86.9 48.6 94.7 93.8
SB-AIC 93.7 94.5 94.5 95.2 92.5 95.0 95.8 94.7
SB-BICn 94.0 94.4 94.2 95.4 93.3 94.9 95.5 94.5
SB-HQCn 93.5 94.4 94.4 95.5 92.6 94.9 95.5 94.5
Logmixturenorm + Weibull (LFT) IC-1
LN 89.5 85.6 33.3 96.5 44.5 72.9 0.1 94.2
WB 84.4 93.6 56.0 95.6 22.6 93.1 3.8 91.9
SB-AIC 92.4 94.1 94.8 94.5 86.8 93.9 94.2 93.7
SB-BICn 92.3 93.5 94.1 95.0 83.0 94.4 92.9 93.1
SB-HQCn 92.1 93.7 94.3 94.3 86.4 94.5 93.4 93.3
Logmixturenorm + Weibull (LFT) IC-2
LN 94.7 93.7 95.4 95.4 96.6 91.6 95.6 95.7
WB 96.9 96.6 95.4 94.5 93.0 95.9 95.6 94.8
SB-AIC 93.3 94.3 95.3 94.1 93.0 93.7 95.6 95.0
SB-BICn 94.2 94.5 95.3 94.5 95.1 92.5 95.6 95.2
SB-HQCn 93.7 94.4 95.3 94.2 94.2 92.8 95.6 95.1

Note: LN and WB refer to parametric log-normal and Weibull models.
SB-AIC, SB-BICn, and SB-HQCn refer to smooth semi-nonparametric-

based models using different information criteria. Estimated Monte Carlo
standard error of observed coverage ≈ 0.69%. IC-1 refers to interval cen-
soring with 10 sub-intervals and right-censoring at the 90% quantile. IC-2
refers to interval censoring with seven sub-intervals and right-censoring at the
50% quantile.

Type I error for the between-group comparisons of cumulative incidence functions: We used our
main simulation study (with J = 2) to investigate whether the asymptotic IWD-based test proposed in
Section 5 protects the type I error at the nominal 5% significance level. Specifically, we used the 1000
simulation runs from each scenario to form 500 pairs of two-group comparisons under the null hypothesis
that both groups are equal. According to normal plots (provided in Figure 3 of Section G of the Supporting
Information), the resulting 500 IWD statistics using the simple weight function W(⋅) = 1 had an approx-
imate normal distribution for all scenarios and both event types. However, estimates of its standard error
calculated based on ad hoc asymptotic inference and the delta-rule tended to be too large. The conse-
quence of this was that the simulated type-I errors were conservative, that is, below 5% for all scenarios
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and event types, but they were generally too small with 8∕20(40%) and 8∕20(40%) of values < 1% for
simulations with n = 100 and n = 500 per group, respectively. Quantile plots of the p-values against the
target uniform distribution are provided in Figure 2 of Section G of the Supporting Information. Based on
these results, we suggest using the proposed (exact) permutation test instead acknowledging the higher
computational burden.

7. Analysis of a trial in cryptococcal meningitis

We used data from a randomized controlled clinical trial comparing antifungal therapies in HIV-infected
patients with cryptococcal meningitis [22], and for simplicity, we restricted attention to two of the three
randomized interventions: Amphotericin B monotherapy (a frequent treatment in Asia) and combination
therapy with amphotericin B and flucytosine (an expensive treatment recommended by treatment guide-
lines). The competing risks endpoint of interest here was the time from randomization to clearance of
quantitative fungal counts in cerebrospinal fluid (beneficial event of interest) or death without prior fun-
gal clearance (harmful competing event) during a follow-up period of 30 days. Quantitative fungal counts
were only measured weekly, and hence, the time of fungal clearance was only known to have occurred
between the last positive and the first zero measurement, that is, it is interval-censored. The date of death
was known exactly, and the time to death was treated as interval-censored during the corresponding
24-h interval. Patients without an event were right-censored at the time of their last positive fungal count
measurement. Of note, because of interval-censoring, the data could in principle have missed unobserved
fungal clearances for patients who died without observed fungal clearance. However, based on the avail-
able quantitative fungal count measurements for these patients, this seemed highly unlikely for almost all
cases. The dataset contained 175 patients: 103 reached fungal clearance, 43 died without prior clearance,
and 29 were right-censored.

Cumulative incidence function estimates are displayed in Figure 2 and show good agreement between
the SNP-based estimator using HQCn and the nonparametric estimator. The figure suggest both a faster

Figure 2. Estimated cumulative incidence function for the time to fungal clearance (increasing lines) and
one minus cumulative incidence function for prior death (decreasing lines) by treatment arm for the smooth
semi-nonparametric-based estimator using HQCn and the nonparametric estimator. Black lines correspond to
amphotericin B monotherapy, gray lines to amphotericin B plus flucytosine. Solid lines refer to smooth semi-
nonparametric estimates, dashed lines to nonparametric estimates. As the nonparametric maximum likelihood
estimator for interval-censored outcomes can only assign mass to a finite number of disjoint intervals, we chose

a unique representation by distributing the assigned mass uniformly across the respective intervals.
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time to clearance and a lower risk of prior death for the combination therapy. For a formal comparison,
we calculated p-values for the IWD-based test statistic introduced in Section 5 using a trivial weight
function and ad hoc asymptotic inference or, alternatively, a permutation test (approximated using 1000
Monte Carlo samples). P-values were p < 0.001 (asymptotic and permutation test) for the comparison
of CIFs for fungal clearance and p = 0.020 (asymptotic) or p = 0.026 (permutation test) for prior death,
respectively.

8. Discussion

In this paper, we have developed a new SNP CIF estimation technique for competing risks data. The
underlying statistical model is specified via a mixture factorization of the joint distribution of the event
type and time. The time to event distributions conditional on the event type are modeled using SNP den-
sities. One key strength of the approach is that it can handle arbitrary censoring and truncation while
producing smooth estimates with only mild parametric assumptions. We further suggested a stepwise for-
ward procedure for model estimation. This procedure returns parametric mixture log-normal or Weibull
models as starting points, and gradually increases model complexity until the optimal model based on
some information criterion is found.

In an extensive simulation study, we demonstrated that the proposed approach provides smooth esti-
mates of the CIF over the observed follow-up period that are frequently more accurate than parametric
and nonparametric alternatives even under heavy censoring. The simulations also support the use of ‘ad
hoc’ asymptotic inference to derive confidence intervals although some undercoverage was observed.
This is in accordance with other statistical areas such as density estimation [11], time-series analysis [19],
random effects modeling [23], and survival analysis [9, 10] where the SNP approach has been success-
fully applied. Of note, the CIF is identifiable over the observed follow-up period, but the marginal event
probabilities, P(D = j), are not identifiable in a non-parametric sense. However, the proposed model is
weakly identifiable for each SNP polynomial degree because of the additional parametric assumptions.
As shown in our simulations, this weak identifiability does not appear to corrupt estimation of the CIF
over the observed time range. In principle, our model also allows for the extrapolation of the CIF beyond
the observed follow-up period and the estimation of marginal event probabilities. However, we caution
against this usage of our method except if there is minimal censoring and these probabilities are truly iden-
tifiable from the data. Not unexpectedly, the simulations also revealed that it is more difficult to identify
the true data-generating SNP models when the number of competing risks increased from two to three.
However, in the setting of three competing risks, our proposed method remained competitive compared
with parametric and non-parametric alternatives in terms of the accuracy of the estimated CIFs.

An extension of the proposed model to the regression setting is straightforward by including covariates
into the accelerated failure time sub-model (4) and the multinomial logistic sub-model (3). This leads to
a flexible regression model for competing risks data that can handle arbitrary censoring and truncation,
which has been investigated in detail in the PhD thesis of the first author [24]. Of note, in common
with other proposed competing risks models based on the mixture factorization [12, 14], the model has
interpretational and identifiability issues, especially if there is insufficient follow-up relative to the timing
of the events.

Despite the strong performance of models based on SNP densities in simulation studies across sta-
tistical areas, a formal theory that would allow to derive asymptotically valid confidence intervals and
hypothesis tests is still largely lacking. This provides a potential area for future research that could ben-
efit from recent advances in asymptotic theories for the broader class of sieve MLE estimators [25, 26].
Moreover, while the proposed algorithm worked well, it is computationally intensive. The development
of faster and more robust algorithms would allow for the exploration of bootstrap methods to improve
the coverage of confidence intervals and of models with larger polynomial degrees K, which could fur-
ther improve estimation if the true CIFs are very irregular. Finally, this paper focused on the CIF as the
target of inference. However, competing risks models based on modeling the cause-specific hazards are
also popular [27]. One approach to applying SNP densities to cause-specific hazards models would be to
extend the SNP Cox proportional hazards model developed by [9].

9. Software and datasets

An implementation of the proposed estimating algorithm by the first author in the statistical software
R [16] has been uploaded to GitHub: https://github.com/nguyenducanhvn101087/R_SNP_Competing_
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Risks We thank our clinical colleagues [22] for allowing us to make the cryptococcal meningitis dataset
discussed in Section 7 freely available. This dataset and corresponding analysis code has also been
uploaded to the same GitHub location.
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