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Abstract
In the 1990s several biocontrol agents on that contained  strainsBurkholderia
were registered by the United States Environmental Protection Agency (EPA).
After risk assessment these products were withdrawn from the market and a
moratorium was placed on the registration of -containing products,Burkholderia
as these strains may pose a risk to human health. However, over the past few
years the number of novel  species that exhibit plant-beneficialBurkholderia
properties and are normally not isolated from infected patients has increased
tremendously. In this commentary we wish to summarize recent efforts that aim
at discerning pathogenic from beneficial  strains.Burkholderia
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The genus Burkholderia: past and present
When the genus Burkholderia was defined in 1992 by Yabuuchi 
et al. to accommodate most of the former rRNA group II pseu-
domonads, it consisted of only seven species1. Two of these spe-
cies (Burkholderia pseudomallei and Burkholderia mallei) are  
primary pathogens of animals and humans, two species  
(Burkholderia caryophylli and Burkholderia gladioli) are known 
as plant pathogens, two species (Burkholderia solanacearum [a 
plant pathogen] and Burkholderia pickettii [an opportunistic human 
pathogen]) were later transferred to the genus Ralstonia, and the 
remaining species, Burkholderia cepacia, was originally described 
as the causative agent of bacterial rot of onion bulbs2. Since the 
first description of the genus, the number of validly named species 
has increased to almost one hundred (http://www.bacterio.net/
burkholderia.html). During this time, it has become apparent 
that this genus has tremendous biotechnological potential, with  
species that produce a large variety of commercially important 
hydrolytic enzymes and bioactive substances, that promote plant 
growth and health, and that can degrade various recalcitrant  
pollutants. Yet their agricultural and industrial use is severely lim-
ited due to the potential threat that some strains pose to human 
health3. In addition to B. pseudomallei and B. mallei, it is a group 
of currently 20 closely related bacterial species in particular, 
referred to as the Burkholderia cepacia complex (Bcc), which have 
emerged as opportunistic pathogens that can cause severe infec-
tions in cystic fibrosis (CF) and immunocompromised patients4–6.  
However, virtually all Bcc species have also been isolated from 
the natural environment, often from soil samples or from the  
rhizosphere of various plants. The use of Burkholderia in agricul-
tural applications is therefore considered a double-edged sword, 
and a lot of effort has been invested into discriminating between 
the beneficial environmental (the good) and the clinical (the bad)  
Burkholderia strains7,8. Recently, these efforts have gained  
momentum, as many new Burkholderia species have been iden-
tified in environmental samples that exhibit potentially valu-
able beneficial traits. These species are believed to be safe for  
applications, as there are very rarely clinical reports that they would 
pose a risk to human health.

Burkholderia species in the environment
Recent work has shown that members of the genus Burkholderia 
are common soil inhabitants and that their biogeographic distribu-
tion is strongly affected by soil pH9–12. Due to their intrinsic acid 
tolerance, Burkholderia strains have a competitive advantage in 
acidic soils but are outcompeted in alkaline soils. Moreover, it has 
been reported that Burkholderia significantly co-occurs with a wide 
range of fungi, which normally also prefer acidic environments13. 
This finding is in line with reports demonstrating that many  
Burkholderia species can form either antagonistic or mutualistic 
interactions with fungi. While antagonistic behavior of Burkholderia  
species is well described and is dependent on the production of 
a large variety of antifungal compounds (for a review, see 14), 
other species have been demonstrated to live in mutualistic asso-
ciations with fungi. A well-investigated example is represented by 
the association of Burkholderia terrae and Lyophyllum species, for 
which it was shown that the bacteria can not only use the hyphae 
of the fungus for transportation and dispersal but also use fungal  
exudates as nutrients15–17. This is in full agreement with the finding 
that Burkholderia strains are among the main consumers of carbon 

released from arbuscular mycorrhizal fungi18. Another intriguing 
example is Burkholderia rhizoxinica, which invades hyphae of 
the fungus Rhizopus microsporus19,20, the causative agent of rice 
seedling blight. The symbiont is involved in the biosynthesis of 
the antimitotic toxin rhizoxin21, which efficiently stalls plant cell 
division. In the absence of the endosymbiont, the fungus was  
found to be unable to reproduce vegetatively22.

Another emerging theme is the tight association of some  
Burkholderia species with plants. Over the past few years, the 
number of novel plant-associated Burkholderia species has 
increased tremendously. These new species show various degrees 
of plant dependence, with some strains living freely in the rhizo-
sphere, exhibiting an endophytic lifestyle, nodulating legumes, or, 
most intriguingly, forming an obligate leaf symbiosis with their  
host plants. Burkholderia species have been frequently isolated 
from diverse surface-sterilized plants (e.g. 23–27). Probably 
the best studied endophytic Burkholderia strain is Burkholderia  
phytofirmans PsJN, which was originally isolated from onion roots  
and was subsequently demonstrated to establish endophytic popu-
lations in various plants28,29. Interestingly, B. phytofirmans is not 
only capable of protecting plants from pathogens (through an  
unknown mechanism) but was also shown to increase the plants’ 
stress resistance, particularly against low temperatures, high salt, 
and drought30–32. Some Burkholderia species have been shown to 
be specifcally associated with                   mosses33,34. Since Moulin  
et al. demonstrated that two Burkholderia species, which were iso-
lated from root nodules of a legume, possessed nodulation genes35,  
many more nodulating Burkholderia species have been described 
(for recent studies, see 36–38). Although these strains have mainly 
been isolated from Mimosa species, recent work showed that some 
Burkholderia strains can also nodulate fynbos legumes in South 
Africa39–43. Some plant genera of the Rubiaceae and Primulaceae 
families carry members of the genus Burkholderia within leaf  
nodules44–47. This unique association is the only known exam-
ple of an obligate plant-bacterium symbiosis with both partners 
being unable to exist outside the symbiotic association. The bac-
terial symbiont is thought to be hereditarily transmitted to the 
progeny via colonization of the developing seeds. Although the  
molecular nature of the leaf nodule symbiosis is still unknown, 
it was recently shown that the bacterial symbiont produces large 
amounts of secondary metabolites, which appear to protect the 
plants from herbivores48,49.

Finally, a large body of evidence demonstrates that many insect 
species harbor symbiotic bacteria of the genus Burkholderia50–53. 
The association of Burkholderia species with the bean bug 
Riptortus pedestris has emerged as a promising experimental 
model to study the molecular mechanisms involved in insect- 
bacterium symbiosis54,55. This symbiosis appears to be particularly 
tight, as it was recently reported that the insect has a previously 
unrecognized animal organ used to specifically sort the symbiont 
into the posterior gut region, which is devoid of food flow and is  
transformed into an isolated organ for symbiosis56.

We are convinced that these examples represent just the tip of 
the iceberg and that many more Burkholderia fungus/plant/insect  
associations will be discovered in the future.

Sphagnum
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Can we tell the good from the bad by taxonomy?
Phylogenetic investigations have provided evidence that mem-
bers of the genus Burkholderia can be divided into two main 
lineages (Figure 1) and several species that represent unique lines 
of descent. One clade comprises pathogens of humans, animals, 
and plants, including B. pseudomallei, B. mallei, and Burkholderia  
glumae, as well as the Bcc species. However, this clade also con-
tains many strains that can be used for plant growth promotion and 
biocontrol of plant pests, including Burkholderia vietnamiensis  
TVV74 and Burkholderia ambifaria AMMD, respectively57. 
Ironically, although Burkholderia cenocepacia is generally 
considered the most problematic Bcc species in patients with 
CF58, recently a genome sequence of a plant-beneficial endo-
phytic B. cenocepacia strain with both biocontrol and plant- 
growth-promoting characteristics was reported59. Also, non-Bcc 
Burkholderia species within this clade can have both beneficial 
and harmful properties. One intriguing case with great potential  
for agricultural applications is represented by Burkholderia gladioli, 
which is a well-known pathogen of plants (e.g. causing rice pani-
cle blight)60 as well as humans61–63. However, recent work has dem-
onstrated that some B. gladioli strains live endophytically within 
various wild and ancient Zea plants without causing any disease 
symptoms64,65. In contrast, this endophyte was shown to produce 
an unidentified antifungal compound in planta and was able to  
suppress the fungal pathogen Sclerotinia homoeocarpa66.

The second main phylogenetic Burkholderia cluster contains many 
plant-beneficial environmental Burkholderia species, as mentioned 
above67. Several of these species have been reported to fix nitrogen, 
to be capable of nodulating legumes, to promote plant growth, and 
to degrade recalcitrant compounds68. Given that species of this clus-
ter are only rarely isolated from infected patients69–71, they are often 
considered to pose no risk to human health and have therefore been 
suggested to be promising candidates for applications in biocontrol, 
biofertilization, and bioremediation72–74. In our opinion, this is a 
wishful, potentially dangerous, and certainly oversimplified view.

Dividing the genus Burkholderia into two genera was recently 
proposed, with the novel genus Paraburkholderia containing the 
primarily environmental species (the alleged good ones) to demar-
cate them from Burkholderia sensu stricto, which comprises 
environmental, human clinical, and phytopathogenic species (the 
alleged bad ones)72. In this study, the percentage guanine plus  
cytosine content and conserved indels in whole genome sequences 
of some 25 formally named Burkholderia species and several  
unclassified strains were studied. Species belonging to the  
Burkholderia sensu stricto clade were characterized by a percentage 
guanine plus cytosine content of 65 to 69% and shared six conserved 
sequence indels, while all other Burkholderia strains examined had 
a percentage guanine plus cytosine content of 61 to 65% and shared 
two conserved sequence indels. The phylogenetic heterogeneity 
among the remaining Burkholderia species as revealed by 16S 
rRNA-based divergence and by differences in the distribution of  
22 additional conserved sequence indels was ignored, as the authors 
proposed reclassifying all remaining Burkholderia species into a 
single novel genus, Paraburkholderia72. These novel names were 
subsequently validated75 and now have formal standing in bacterial 

nomenclature. The scientific community may adopt these novel 
names or not. Authors who are convinced that these name changes 
are ill founded can continue to work with the original species 
names, as all these were validly published.

A recent study employed comparative genomics to assess the 
pathogenic potential of environmental strains on the basis of the 
presence or absence of known virulence factors73. This bioinfor-
matic study clearly showed that many virulence factors, including  
the type III, IV, and VI secretion systems, are mostly found in rep-
resentatives of the Burkholderia sensu stricto clade while they are 
often absent in strains of the Paraburkholderia clade. The authors 
also show that Paraburkholderia strains exhibit no virulence in 
a Caenorhabditis elegans infection model. While these are valu-
able approaches, they also have their caveats. Many virulence 
factors of Burkholderia species have been shown to be host spe-
cific, and there is little correlation between the different infection 
models commonly used, e.g. C. elegans, Galleria mellonella, 
and Drosophila melanogaster. This probably reflects the need for 
Burkholderia strains to compete for survival in diverse habitats 
such as soil, plants, insects, and mammalian hosts. Only very few 
universal virulence factors could be identified in B. cenocepacia 
(namely quorum sensing, siderophore production, and lipopoly-
saccharide biosynthesis) and therefore extrapolations from non- 
mammalian infection models to mammalian infections, particularly 
to chronic CF lung infections, must be made with caution76,77. For 
example, most Burkholderia multivorans strains show no virulence 
in a C. elegans or G. mellonella infection model78,79, although most 
virulence factors that were suggested to be indicative for pathogenic 
Burkholderia species could be identified in this Bcc species73. Yet 
B. multivorans (along with B. cenocepacia) is one of the predomi-
nant Burkholderia species infecting people with CF58,80. On the 
other hand, B. cenocepacia strain H11181, which is closely related 
to strains of the epidemic ET12 lineage (e.g. J2315 and K56-2), 
did not cause acute symptoms in the infected CF patient from 
whom it was isolated and was cleared after a 6-month co- 
infection period with Pseudomonas aeruginosa82, while infec-
tions with strains of the ET12 lineage have resulted in high  
mortality among patients58,83. In contrast to its clinical impact, 
strain H111 shows a similar level of pathogenicity in the  
G. mellonella and C. elegans infection models to K56-2 (an ET12 
lineage strain) and both strains are much more virulent in these 
models than J2315 (another ET12 lineage strain)77.

These examples strongly suggest that neither the presence of 
virulence genes in a strain nor acute virulence as assessed in rou-
tinely used non-mammalian infection models is an absolutely 
reliable predictor of clinical prevalence or outcome in CF patients. 
The taxonomic position of a strain is also not an unambiguous 
indicator for its pathogenic potential and thus decisions on the 
industrial or biotechnological use of a Burkholderia strain can be 
made only on a case-by-case basis after careful molecular and phe-
notypic characterization of the strain. On the comparative genom-
ics side, it will be interesting to see whether the co-occurrence of 
certain genes may be a suitable indicator of the phenotypic 
potential of a strain, as has recently been proposed in the case of 
plant-growth-promoting bacteria84.
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Figure 1. Maximum-likelihood phylogenetic reconstruction based on 16S rRNA gene sequences of 55 Burkholderia species and 
Ralstonia solanacearum LMG 2299T (outgroup). The alignment was performed using SINA v1.2.11 (http://www.arb-silva.de/aligner/)93.  
After gap removal with TrimAl94, the final alignment consisted of 1289 positions. The phylogenetic reconstruction was conducted with 
MEGA695 using Tamura-Nei evolutionary model96 with gamma rate distribution (five gamma categories and 70% of invariable sites). Bootstrap  
test values are shown if greater than 50%. Some phenotypic characteristics are indicated. No boxes indicate that no information is  
available. The information on the presence of the type III secretion system is taken from 73.
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The use of Burkholderia as biocontrol agents
Although endophytic or nitrogen-fixing Burkholderia strains show 
great promise as agents for plant growth promotion and biore-
mediation, it should be kept in mind that in terms of biocontrol 
applications the most outstanding property of Burkholderia strains 
is the production of various compounds with potent antifungal 
activity14,85. In fact, several Bcc strains have been registered by 
the United States Environmental Protection Agency (EPA) for 
use as biocontrol agents against phytopathogenic fungi, including 
Deny®, Blue Circle®, and Intercept®, in the 1990s. However, after 
risk assessment, these products were withdrawn from the market 
and the EPA placed a moratorium on the registration of products 
containing Bcc species (https://www.gpo.gov/fdsys/pkg/FR-2004-
09-29/pdf/04-21695.pdf). Would it be possible to replace these 
Bcc-based biocontrol agents with strains of the Paraburkholderia 
lineage? Literature research, genome mining, and experimental 
evidence (Figure 1) have revealed that only three species of the  
Paraburkholderia cluster, namely Burkholderia phenazinium,  
Burkholderia megapolitana, and Burkholderia bryophila, all of 
which have been isolated from mosses86, show antifungal activ-
ity. In contrast, most strains of the Bcc and many of the human and 
plant pathogenic species produce antifungal compounds85. Given 
that most antifungal agents exhibit more general toxic effects in 
eukaryotic organisms, these compounds may contribute to the 
virulence of a strain. B. phenazinium was reported to produce the 
phenazine iodinin87, which exhibits not only high anti-microbial  
but also cytotoxic activity. While iodinin may be valuable for clini-
cal purposes, as it is potent against leukemia cell lines88, it may 
not be useful for biocontrol applications. To our knowledge, 
the antifungal compounds produced by B. megapolitana and  
B. bryophila have not been identified nor has their pathogenic  
potential been evaluated in an infection model. In conclusion,  
while many Bcc strains have been demonstrated to exhibit excel-
lent biocontrol activities, there are only very few Paraburkholderia 
strains that are potentially useful for biocontrol purposes.

Is there a safe Burkholderia strain?
Given the lack of reported cases in the literature, many strains of 
the Paraburkholderia lineage seem unlikely to cause infections in 
humans and therefore could be considered for agricultural applica-
tions. The same may also apply to some strains of the Burkholderia  
lineage, as has recently been suggested for the Bcc strain  
Burkholderia contaminans MS14, which was found to possess 
multiple antimicrobial biosynthesis genes but not major genetic loci 

required for pathogenesis89. While the phylogenetic status of a strain 
may be helpful as a first approximation of the pathogenic potential 
of a strain, it is clear that the Paraburkholderia lineage contains 
some pathogenic strains and that several Bcc strains exhibit good 
biocontrol properties and attenuated virulence. Hence, independ-
ent of a strain’s phylogenetic status, a thorough characterization of 
a strain will be required before it can be considered safe. It will 
be important to use well-established infection models such as the 
mouse model90 for the assessment of the potential pathogenicity of 
a strain and to carefully examine whether related strains have been 
isolated from infected humans. Likewise, the biocontrol activity 
of the strain has to be tested in field trials. It is also worth noting 
that several species of the Paraburkholderia clade, including the 
well-investigated endophyte B. phytofirmans, are unable to grow  
at 37°C (in contrast to Burkholderia sensu stricto species), a  
property that is considered to be essential to infect and colonize 
humans. The capability to grow at 37°C has recently been proposed 
as a simple means to differentiate between pathogenic and non-
pathogenic Stenotrophomonas maltophilia and Stenotrophomonas 
rhizophila isolates91. Representatives of the latter species have 
therefore been suggested to provide an alternative to biotechno-
logical applications without posing any risk to human health92. 
An important line of future research will therefore be to assess 
the pathogenicity of environmental strains in suitable infection  
models, particularly using a mammalian host at 37°C, and ideally 
in multispecies infection scenarios, which may more accurately  
reflect the genuine clinical situation.
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