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Abstract 

Background:  This paper proposes a semantic segmentation algorithm that provides 
the spatial distribution patterns of pulmonary ground-glass nodules with solid portions 
in computed tomography (CT) images.

Methods:  The proposed segmentation algorithm, anatomy packing with hierarchical 
segments (APHS), performs pulmonary nodule segmentation and quantification in CT 
images. In particular, the APHS algorithm consists of two essential processes: hierarchi‑
cal segmentation tree construction and anatomy packing. It constructs the hierarchical 
segmentation tree based on region attributes and local contour cues along the region 
boundaries. Each node of the tree corresponds to the soft boundary associated with 
a family of nested segmentations through different scales applied by a hierarchical 
segmentation operator that is used to decompose the image in a structurally coherent 
manner. The anatomy packing process detects and localizes individual object instances 
by optimizing a hierarchical conditional random field model. Ninety-two histopatho‑
logically confirmed pulmonary nodules were used to evaluate the performance of 
the proposed APHS algorithm. Further, a comparative study was conducted with two 
conventional multi-label image segmentation algorithms based on four assessment 
metrics: the modified Williams index, percentage statistic, overlapping ratio, and differ‑
ence ratio.

Results:  Under the same framework, the proposed APHS algorithm was applied to 
two clinical applications: multi-label segmentation of nodules with a solid portion and 
surrounding tissues and pulmonary nodule segmentation. The results obtained indi‑
cate that the APHS-generated boundaries are comparable to manual delineations with 
a modified Williams index of 1.013. Further, the resulting segmentation of the APHS 
algorithm is also better than that achieved by two conventional multi-label image 
segmentation algorithms.

Conclusions:  The proposed two-level hierarchical segmentation algorithm effectively 
labelled the pulmonary nodule and its surrounding anatomic structures in lung CT 
images. This suggests that the generated multi-label structures can potentially serve as 
the basis for developing related clinical applications.

Keywords:  Lung CT images, Ground-glass nodule segmentation, Statistical region 
merging, Conditional random field, Hierarchical segmentation tree
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Background
Pulmonary nodules, detected by volume computed tomography (VCT) scanning, are 
potential manifestations of lung cancer [1]. Nodule characterizations, including the shape 
complexity, volume size, and the percentage of ground-glass opacity (GGO) volume, have 
shown promise in helping with differential diagnosis and assessment of treatment response 
[2–8]. The nodule shape provides useful information for differentiating malignant from 
benign cases [4, 5] and several nodule shape characteristics are related to underlying 
pathology [2]. In clinical practice, volumetric measurement [3, 7] can accurately determine 
the nodule size to assess the growth of small nodules and calculate their volume doubling 
time (VDT). Mozley et al. [6] demonstrated that nodule growth rate has the potential to 
benefit medical practice. In addition, the percentage of solid versus ground-glass portions 
of the part-solid nodule is an important feature in terms of the relationship between the 
malignancy and the extent of the solid component [9, 10]. Automatic segmentation of pul-
monary nodules is therefore well studied to provide reproducible quantitative measure-
ments for diagnosis and avoid tedious manual labor [5, 11].

Current measurement methods for assessing the response of solid nodules to chemo-
therapy include one-dimensional (1D) longest in-slice dimension, two-dimensional (2D) 
area from longest in-slice and longest perpendicular dimension, and three-dimensional 
(3D) semiautomated volume [12, 13]. 1D and 2D CT measurements of small pulmonary 
nodules, although simple to implement, are limited by poor inter- and intra-observer 
variability [14] and complex nodule shapes [15]. In an effort to deal with the variety of 
nodule morphology and appearance properties [16] and to achieve high reproducibil-
ity [12], volumetric growth assessments have frequently been adopted for lung cancer 
screening and oncological therapy monitoring. For example, Gu et  al. [17] developed 
a single-click ensemble segmentation approach with only one operator-selected seed 
point that facilitates processing of large numbers of cases. Although the utilization of 
these computer-aided segmentation algorithms were well validated for the segmentation 
of solid nodules, less research is done on subsolid nodules which actually show a higher 
malignancy rate than solid nodules [18, 19].

In subsolid nodules, the amount of informative features extracted from the pixels is 
limited. Therefore, the segmented nodules with strong heterogeneous texture show 
inconsistent boundaries, making these computer-aided segmentation algorithms less 
robust in quantitative analysis. The primary difficulty lies in estimating the proportion 
of ground-glass components in a nodule and its spatial distribution patterns. Figure 1 
depicts a thin-section CT with 3-mm collimation showing a ground-glass dominant 
nodule and a pure ground-glass nodule. Pulmonary nodules, which we want to segment, 
are indicated by red boxes and have various appearances, implying various interpreta-
tions [20]. Further complicating the problem is the presence of numerous objects with 
various shapes and textures. Therefore, one cannot rely on visual assessment or thresh-
olding for quantitative measurement.

We propose a compositional segmentation algorithm [called anatomy packing with 
hierarchical segments (APHS)] that overcomes these problems. The APHS algorithm 
consists of two essential processes: hierarchical segmentation tree construction and 
anatomy packing. In the first process, the perceptual grouping of the image can be 
defined as a tree of regions, ordered by inclusion. A joint framework is then utilized to 
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extract the pool of segments from a hierarchical segmentation tree (HST). Each node of 
the tree corresponds to the soft boundary associated with a family of nested segmen-
tations through different scales applied by a hierarchical segmentation operator (HSO) 
that is used to decompose the image in a structurally coherent manner. Based on the 
region attributes and local contour cues along the region boundaries, the HST is then 
represented as an ultrametric contour map (UCM) that represents an indexed hierarchy 
of regions as a soft boundary image. In the second process, anatomy packing localizes 
individual object instances by optimizing the hierarchy conditional random field (CRF) 
model based on the HST.

The remainder of this paper is organized as follows: we review related work on pul-
monary nodule segmentation in “Related work”. “Methods” reviews the statistical region 
merging (SRM) method [21], details the concepts underling HST, and presents the pro-
posed APHS algorithm. “Results” and “Discussion” discuss the results obtained from 
experiments conducted using APHS. “Conclusions” concludes this paper. (Note: an ear-
lier version of this work was presented as a conference paper [22]. This journal version 
extends the previous work with more concrete examples of complete theories, experi-
ments, and comparisons.)

Related work
Instead of presenting a full review of pulmonary nodule segmentation algorithms, in this 
section, we discuss methods that are most relevant to our study. We begin by focusing on 
computerized segmentation of pulmonary nodules using freehand sketches or single click. 
We then review variational methods that have been successfully applied to many medical 
image processing problems. Finally, we discuss related work based on graph partitioning 
approaches applied to pulmonary nodule segmentation.

Figure 1  Pulmonary nodule on chest CT. a Thin-section CT with 3-mm collimation showing a 2.2-cm 
ground-glass dominant nodule at the upper left lobe. b Thin-section CT with 3-mm collimation showing a 
lobulated contour of the pure ground-glass nodule.
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Computerized segmentation of pulmonary nodules using single click or freehand sketches

Lung nodule segmentation plays a critical role in the development of computer-aided 
diagnosis (CADx) systems for lung cancer [5]. To improve the usability of segmentation 
algorithms, it is essential that computerized schemes with only a few incidents of manual 
user interaction be adopted in order to reduce inter- and intra-observer variability. Previ-
ous studies have demonstrated that these computerized schemes can address various types 
of pulmonary nodules, including high and low contrast nodules, nodules with vasculature 
attachment, and nodules in the close vicinity of the lung wall or diaphragm [17, 23, 24]. 
Many of these schemes adopted region growing with few seed points [17, 23] or break-
and-repair strategies followed by freehand sketches [24].

Region growing is a technique in which the nodule boundary is delineated by identi-
fying a seed point, calculating the connectivity of the points of the images to the seed 
point, and applying the halting criteria. The enhancement procedure is aimed at preserv-
ing the appearance of nodule margins and diminishing the background. Dehmeshki et al. 
[23] proposed a technique in which adaptive sphericity oriented contrast region growing 
is performed on a generated fuzzy connectivity map of the object of interest for nodule 
segmentation. However, the contrast between nodules and surrounding structures was 
changed due to different seed points. Gu et  al. [17] proposed a CT-based single-click 
ensemble segmentation approach based on the use of multiple seed points with region 
growing, and then using a voting strategy to obtain the final tumor area.

Instead of utilizing single or multiple seed points, Qiang et al. [24] performed freehand 
sketching analysis to infer adaptive information (e.g., the mass center, the density, and 
the size) in regard to the nodule and then used principal curvature analysis and visibility 
test with convex constraint for nodule segmentation. As the preprocessing step of the 
computerized segmentation procedure, these methods repeat the segmentation multiple 
times using different multiple seeds that are proved to have low inter-observer variabil-
ity and few operator interactions [17]. However, all pulmonary nodules detected on CT 
scans are classified into three groups [20]: solid nodule (homogenous soft-tissue attenu-
ation), nonsolid nodule (hazy increased attenuation in the lung that does not obliterate 
the bronchial and vascular margins), and part-solid (consisting of both ground-glass 
and solid soft-tissue attenuation components). Therefore, modelling the intensity distri-
butions of the nodule without taking local or global context information into account 
restricts the discriminating power of the computerized schemes.

Segmentation models of lung CT images with context information

As discussed in the above algorithmic description, each step in the preceding algorithm 
is defined heuristically with many parameters. Translating these steps as variational for-
mulations is therefore useful in reducing the number of parameters [25]. Previous study 
successfully applied level set method to medical imaging problems to unify supplementary 
terms with the energy function [26]. When segmenting the nodules from noise, inhomo-
geneities, and complex structures, it is useful to exploit the context information of targets 
in order to discriminate the boundaries of the nodule “head” [26]. To appropriately utilize 
low-level cues (e.g., intensity, texture, and contours), researchers have developed a strat-
egy that integrates these information with prior knowledge [26, 27]. Farag et al. [26] pro-
posed a method in which the image intensity statistical information is fused with the lung 
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nodule shape model in a variational segmentation framework for lung nodule segmenta-
tion in CT images. For volumetric measurement, the shape-based level set method was 
performed slice-by-slice and the overall narrow band region was computed in 3D space. In 
addition, Tan et al. [27] integrated the marker-controlled watershed algorithm, geometric 
active contours, and Markov random field (MRF) to segment lung lesions on CT scans. In 
their method, the user only selects the region of interest around the nodule on one slice 
and then obtains information about nodule type (solid, part-solid, or nonsolid). The initial 
segmentation is generated using the marker-controlled watershed algorithm. According 
to the nodule type and initial nodule area, geometric active contours are then applied to 
refine the segmentation of solid nodules and MRF for GGO portions of part-solid nodules. 
However, variational methods have their limitations in terms of initial condition and gen-
eralized shape prior.

Graph‑based approaches for pulmonary nodule segmentation

The graph partitioning approaches in medical image analysis predominantly seek the best 
solution by minimizing an objective function defined over an undirected graph represent-
ing pairwise relationships between data elements (pixels, voxels, regions, or features) [28–
30]. Wu et al. [29] proposed a voxel-based approach for parsing multi-class lung anatomies 
that uses a single feature set and classifier. The proposed approach uses a CRF model that 
incorporates texture features, gray-level, shape, and edge cues to improve the resulting 
segmentation. To further separate the contextual pulmonary structures of lung nodules, 
Wu et al. [29] presented a probability co-occurrence map that accurately detects whether 
a lung nodule is attached to any of the major lung anatomies. Conversely, Song et al. [30] 
introduced an additional interaction term in the energy function defined by the graph cut 
[31] and graph search [32] methods to tackle the problem when target surfaces or regions 
lack a clear edge with similar intensity distribution.

Methods
The proposed APHS algorithm consists of two major steps: construction of hierarchical 
tree structures with pool segments, and anatomy packing. In the process of generating the 
pool of segments with similar texture, SRM [21] is used with the definition of the smallest 
region aggregation among pixels and a parameter setting for controlling the coarseness of 
the objects. The HST is then represented by an UCM [33]. In the second step, modelling 
and inference are performed in the CRF model based on the UCM [33]. The hierarchical 
CRF model can then be optimized by applying graph cut optimization [34]. Figure 2 gives 
a flowchart that outlines the steps comprising APHS. The details of each step are discussed 
in the ensuing sections.

Hierarchical segments: tree structure

It is worth noting that pulmonary nodules can vary in terms of physical density of tissues, 
implying different appearances as a mixture of GGO and the solid part [20]. The effect of 
tissue inhomogeneity is therefore inevitable and has to be considered in the framework. 
According to Gestalt theory [35], perceptual grouping refers to the ability of human per-
ception to transfer the collection of pixels of an image into a visually meaningful structure 
of regions and objects. For example, an observer delineates the nodule and its surrounding 
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tissues by identifying physical objects and highlighting their boundaries with a certain level 
of detail. It postulates that if different observers perceive the same objects in a single CT 
image, the intersection of their drawing boundaries represents the finest level of details.

Perceptual grouping with region merging

The basic idea underlying SRM [21] is the formulation of image segmentation as an infer-
ence problem by seeking the optimized transformation of the collection of pixels into 
prominent structures. Under these conditions, the SRM [21] is applied with different 
scales to decompose the image in a structurally coherent manner. Based on a family of 
nested segmentations, the HST is generated by accumulating the local contour cues along 
the region boundaries. An HST is generated in two steps: perceptual grouping with region 
merging and UCM creation. The first step, perceptual grouping, is based on SRM [21] and 
combines regions or pixels, which are treated as elementary elements.

Let Si be the set of couples of adjacent pixels and f(p, p′) =  |Ip −  Ip′| that is to pick 
directly the pixel channel values (Ip and Ip′) where pixel p and p′ belonging to image I. 
According to similarities between elementary elements, the couples of Si are sorted in 
increasing order of f and this order is traversed only once. The merging predicate is then 
performed on measuring the couples of regions (R, R′). A family of nested segmenta-
tions of a synthetic grayscale image is demonstrated in Figure 3.

Creating an ultrametric contour map

In the second step, given the composite segmentations, the geometric structure of the 
image can be represented by a tree of regions, ordered by inclusion. Each node of the tree  

ROI from a lung CT 

image

Segmentation Solutions 

Anatomy Packing: 

HierarchyCRF

HierarchyCRF - 

Inference

HierarchyCRF - 

Modelling

Hierarchical Segments: 

Tree Structure

Ultrametric 

Contour Maps

Perceptual 
grouping with 
region merging

Multi-label Structures

Figure 2  Steps in the proposed APHS algorithm. The left column outlines the major steps in the proposed 
algorithm. The upper right, middle right, and bottom right diagrams depict the HST, hierarchical CRF, and seg‑
mentation solutions processes, respectively.
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corresponds to an object at a certain scale of segmentation. Note that the entire scene is 
located at the root of the tree and the leaves are the finest details. The HST is therefore rep-
resented in terms of contours as an UCM [33, 36] that is an indexed hierarchy of regions 
as a soft boundary image. Let Ω ⊂ R2 be an image, K0 an initial contour from the initial 
partition of Ω and λ ∈ R a scale parameter. Based on multiple segmentation contours, the 
following characterizations of an HSO that assigns segmentation Kλ to the couple (K0, λ) 
are satisfied:

Relations (1) and (2) indicate that all inner contours vanish at finite scale. The princi-
ple of strong causality imposed by relation (3) ensures that localization of contours at 
different scales is preserved. Let γ be the ultrametric distance defined by a HSO. The 
ultrametric distances is defined by integrating local contour cues along the regions 
boundaries and combining this information with region attributes. The UCM generated 
by HSO is a single real-valued image and the application C(γ): K0 → [0, λ1] is given by

The salience of contour ∂ is based on the number C(γ)(∂). A simple example of UCM, 
with a family of nested segmentations of a synthetic grayscale image, is presented in 
Figure 4.

APHS for pulmonary nodule segmentation

Let Q = (q1, . . ., qn, . . ., qN ) be a pool of segments that are all from the segmentation tree, 
and a vector Y = (y1, . . ., yn, . . ., yN ) gives the label at each segment. The parameter θ can 
be represented by constructing histograms of gray values: θ = h(Q;Y ). Parameters Q and 
θ are used as observation functions to define the relationship between label Y  and observa-
tion features.

(1)K� = K0, ∀� ≤ 0.

(2)K� = ∂Ω , ∀� ≥ �1.

(3)� ≤ �
′ ⇒ K� ⊇ K�′ .

(4)C(γ )(∂) = inf{� ∈ [0, �1] | ∂ �⊂ K�}, ∀∂ ∈ K0.

(a) (b) (c) (d)

Figure 3  Segmentations of SRM on a synthetic grayscale image for various values of Q. a Q = 4, b Q = 16,  
c Q = 64, and d Q = 256. Q is a parameter that controls the statistical complexity of the image structures [21]. 
The regions found are yellow-bordered.
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Anatomy packing: modelling and inference

The energy function, E, commonly used in the MRF model, is defined as a sum of unary 
and pairwise terms:

The unary term, U, represents the cost of assigning the label yi > 0 to a segment qi, given 
the histogram model θ, and can be written as:

Further, the pairwise term, as sum of boundary cost over the sets of adjacent pixel pairs 
(i, j), depends on the difference in pixel intensity:

where [.] represents the indicator function and C is the set of pairs of neighboring pixels. 
Note that pixels i and j belong to different segments that are assigned different nonzero 
semantic labels.

Given the HST from image I, these segments have to satisfy two constraints: the com-
pleteness constraint and the non-overlap constraint. First of all, the completeness con-
straint indicates that the label of each leaf segment is nonzero:

Moreover, overlapping segments cannot take nonzero labels, according to the non-over-
lapping constraint that at most one of overlapping segments can be assigned 1 at the 
same time:

(5)E(Y , θ ,Q) = U(Y , θ ,Q)+ V (Y ,Q).

(6)U(Y , θ ,Q) =
∑

n

− log h(qn; yn).

(7)
V (Y ,Q) = γ

∑

(i,j)∈C

[yi �= yj] exp−β(qi − qj)
2.

(8)∀p ∈ I , ∃i : qi � p, yi > 0.

(9)∀i �= j : qi ∩ qj �= ∅ ⇒ yi · yj = 0.

(b)(a)

Figure 4  An illustration of the creation of a UCM. a A synthetic grayscale image. b The UCM.



Page 9 of 17Tsou et al. BioMed Eng OnLine  (2015) 14:42 

Putting this all together, the segmentation can be estimated as

According to Lempitsky et al. [34], in the case of a tree-based pool and K = 2, energy 
model (10) can be globally minimized subject to constraints (8) and (9) by graph cut [37, 
38]. For the multi-class case, the alpha-expansion [38] can be used by performing a series 
of 2-class inferences for α sweeping the range 1 … K multiple times until convergence.

Segmentation by using anatomy packing

This section discusses the details of the proposed APHS algorithm. The problem of delin-
eating the pulmonary nodule is formulated as a multi-label graph partitioning. The HST 
is transformed into a corresponding graphical model by taking each segment as a graph 
node. The graph edges are then established to accumulate along the boundary between 
pool segments. The APHS algorithm can be summarized as follows: (1) Given a lung CT 
image with lung extraction, the region of interest (ROI) is defined by the user. (2) A family 
of nested segmentations of ROI is generated to set parameter Q ranging from one to 256 
in powers of two. (3) The HST is then represented by using the UCM [33, 36]. (4) A set of 
K semantic labels, i.e., lung anatomies (e.g., parenchyma, lung wall, vessel, and nodule) is 
marked as the prior information. (5) A semantic segmentation framework modelling the 
weighting distribution of different lung tissues can be optimized by graph cut [37] or the 
alpha-expansion [38] algorithm for multi-label segmentation. An illustration of the pro-
posed APHS algorithm is given in Figure 5.

Image data and evaluation methods

Informed consent was waived for our retrospective study, which was approved by the local 
ethics committee. Ninety-two histopathologically confirmed lung nodules, receiving CT-
guided lung biopsy or CT-guided localization for video-assisted thoracoscopic surgery 
(VATS) in our department, were used to evaluate the performance of the proposed algo-
rithm. According to nodule consistency, there were 50 (50/92, 54.3%) and 42 (42/92, 45.7%) 
nodules with solid and non-solid or part-solid components, respectively. All CT studies 
were performed in full inspiration using either a 16-row multi-detector CT (MDCT) or a 
64-row MDCT scanner (GE LightSpeed VCT; GE Healthcare, Milwaukee, WI, USA; Bril-
liance iCT; Philips Healthcare, Cleveland, OH, USA) with the following parameters: slice 
thickness 1.25 mm, standard reconstruction algorithm, 120 kVp.

(10)Ŷ = arg min
Y

E(Y , θ ,Q).

(a) (b) (c) 

Figure 5  An illustration of the proposed APHS algorithm. a ROI of part-solid nodule in CT image. b A hier‑
archical edge map. c Resulting segmentation of the APHS algorithm (green parenchyma, blue wall, red solid 
nodule, and yellow GGO area and vessel).
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The experiments was designed to assess the accuracy of the resulting segmentation, 
which was evaluated by comparing the computer-generated contours to four sets of 
manual delineations. The four sets of manual delineations were drawn by four graduate 
students majoring in biomedical engineering and trained to identify pulmonary nodules 
in CT images. The boundaries delineated by these four graduate students were further 
confirmed as acceptable by a thoracic radiologist (Y.C.C., with more than 20  years of 
experience). Further, the four sets of manual delineations were independently prepared 
by the four graduate students without any mutual interaction. Four metrics [39, 40], 
the modified Williams index, the percentage statistic, and the overlapping and differ-
ence ratios, were computed to provide quantitative comparisons between the four sets 
of manual delineations and computer-generated boundaries. Note that the four metrics 
were used to evaluate whether the computer-generated boundaries are comparable with 
manual delineation.

Modified Williams index

The first index was the modified Williams index [39], denoted by WI_Ci, which is defined 
for each computer-generated boundary Ci, 1 ≤ k ≤ 4:

where Oj denotes the jth set of manual delineations, n is the number of manual delinea-
tions for each nodule, and ADS,T is the average distance between the corresponding pair 
of boundaries in sets S and T. The distance between two compared boundaries X ∈ S 
and Y ∈ T  can be defined as

where xi and yj are the ith and jth points on boundaries X and Y , respectively. NX and NY  
are the number of points on boundaries X and Y , respectively. d(xi,Y ) = minj

∥

∥yj − xi
∥

∥ 
and d(yi,X) = mini

∥

∥xj − yi
∥

∥. The numerator of the modified Williams index (11) rep-
resents the agreement between a set of computer-generated boundaries and the four 
sets of manual delineations. Under this definition, a large value for the numerator in (11) 
indicates a high degree of agreement between the set of computer-generated bounda-
ries and manual delineations. On the other hand, the denominator in (11) quantifies the 
average degree of agreements between the manual delineations from different experts. 
The variation between the four sets of manual delineations is considerable when the 
denominator in (11) is small. Accordingly, if WI_Ci is greater than or equal to one, it sug-
gests that the average distance between the computer-generated boundary Ci and man-
ual delineations is comparable to that between the manual delineations.

Percentage statistic

The second index was the percentage statistic P_Ci for each computer-generated bound-
ary Ci, which is defined as the percentage by which the computer-to-observer distances 
are less than or equal to the corresponding maximum inter-observer distances. For each 

(11)WI_Ci =

1
n

∑n
j=1 1

/

ADCi ,Oj

2
n(n−2)

∑n
k=1

∑n
j=1(j �=k) 1

/

ADOk ,Oj

.

(12)AD(X ,Y ) =
1

2

{

1

NX

∑NX

i=1
d(xi,Y )+

1

NY

∑NY

j=1
d(yj ,X)

}

.
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computer-generated boundary in Ci, n computer-to-observer distances are computed 
between the computer-generated boundary and the n manual delineations of the same 
nodule, respectively. One of the manual delineations of the same nodule serves as a ref-
erence boundary for each computer-to-observer distance. In addition, the maximum dis-
tance between the reference boundary and the remaining (n −  1) manual delineations 
indicates its corresponding maximum inter-observer distance.

Overlapping and difference ratios

In order to quantify the degree of matching between the areas of a computer-generated 
boundary and those of the corresponding average manual delineations of the same nod-
ules, the third index, overlapping ratio, OR_Ci and the fourth index, difference ratio, DR_Ci 
for each Ci were used. The overlapped region is the common area of the computer-gener-
ated boundary and the corresponding average manually delineated boundary, whereas the 
difference region is the area enclosed by either of these two boundaries, but not both. The 
overlapping ratio OR_Ci and the difference ratio DR_Ci are the mean ratios of the areas of 
the overlapped region and the difference region to the area of the corresponding average 
manually delineated boundary, respectively.

Results
In this section, we discuss the application to multi-label segmentation of nodules with a 
solid portion and surrounding tissues and pulmonary nodule segmentation. Some qualita-
tive and quantitative results from the experiments are also presented. In the semantic seg-
mentation figures, different tissues are represented with specific colors, defined as green 
(parenchyma), blue (wall), red (solid part), and yellow (GGO components and vessel).

Hierarchy example

Figure  6 depicts a family of nested segmentations of the pulmonary nodule in the CT 
image. In this perceptual grouping with the region merging process, at Q = 1, the bound-
ary of the pleural wall is completely extracted. Further, both ground-glass and solid soft-
tissue attenuation components are grouped into a single region. At Q =  32, the entire 
subregion with homogeneous soft-tissue attenuation is segmented while subregions, with 
hazy increased attenuation in the lung that does not obliterate the bronchial and vascular 

Figure 6  Segmentations of SRM on lung CT image, for various values of Q. Regions found are yellow-bor-
dered.
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margins, are partly identified. At a finer level (Q =  128), the perceptual grouping with 
region merging process is able to capture the subregions of the ground-glass and solid soft-
tissue. As Q increases, the statistical estimation task increases in accuracy. Note that tun-
ing of parameter Q is carried out to control the coarseness of segmentation, which results 
in a level of perceptual details at each scale. In this paper, the optimal Q value was selected 
empirically for each individual case.

Practical benefits of hierarchical CRF with pool segments

Figure 7 was demonstrated the feasibility of multi-label segmentation in APHS to identify 
different tissues. It can be observed in Figure 7 that GGO subregions with hazy increased 
attenuation are directly connected to other tissues and subregions with homogeneous soft-
tissue attenuation. Figure 7 compares the resulting segmentation of the APHS with ran-
dom walks with restart (RWR) [41], and nonparametric higher-order learning technique 
(NPHL) [42]. In Figure 7b, RWR [41] suffers over-segmentation in which the solid region 
includes GGO subregions and part of parenchyma. The steady-state probability of RWR 
[41] is defined as the relationship between the pixel and the seeds with the same label; thus, 
it is affected by the location of the seeds. In contrast to RWR [41], which defines the likeli-
hood of a pixel as the average of all the steady-state probabilities, NPHL [42] considers not 
only the pairwise relationship between the pixels but also their corresponding regions in a 
multi-layer graph. Consequently, in this manner, local grouping cues were able to propa-
gate into the whole image, it was less sensitive to user inputs, and gave the segmentation 
result with more detailed boundaries, as shown in Figure 7c. Figure 7d shows that the pro-
posed algorithm can detect and localize the GGO subregions and its surrounding tissues.

Quantitative results

To quantitatively evaluate the resulting segmentation of the proposed APHS algorithm, 
a comparative study with NPHL [42] and GrowCut [28] was conducted with the same 
user-specified seeds. NPHL [42] operates by recursively estimating from the likelihoods 
of pixels included in each region, generated by the unsupervised image segmentation algo-
rithm. This motivated us to select NPHL [42] as a referential for comparison; furthermore, 
the source code of the implementation can be downloaded [42]. GrowCut [28] is based 

(a) (b)  (c)  (d)  

Figure 7  Comparison of various graph-based algorithms. a ROI of lung CT images with manual delinea‑
tions. Demonstrations of the resulting segmentation: b random walks with restart [41], c nonparametric 
higher-order learning technique [42], and d the proposed algorithm. APHS appears to outperform the 
other approaches in terms of the quality of results. Note that marking roughly with semantic labels, i.e., lung 
anatomies (e.g., green parenchyma, blue lung wall, yellow vessel or GGO area, red nodule with solid part, white 
segment boundaries) is as the same prior information for each algorithm.
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in cellular automation, which can treat pixel labelling process as growth and struggle for 
domination of the user-specified seed pixels. According to [28], GrowCut with the follow-
ing advantages (multi-label segmentation, N-dimensional images processing, speed high 
enough for interactive segmentation) is capable of solving moderately hard segmentation 
problems and hence is referential for comparison.

To assess NPHL [42] and GrowCut [28], the aforementioned four assessment met-
rics were applied to evaluate the accuracy of its resulting segmentation with four sets 
of manual delineations. Table 1 compares the results obtained by NPHL [42] and Grow-
Cut [28] to those obtained by the proposed APHS algorithm for the four metrics. The 
comparison between manual delineations and computer-generated boundaries (APHS, 
NPHL [42], and GrowCut [28]) shows a good agreement for the solid nodule data sets. 
However, the experiments with nonsolid nodules show inconsistent agreement, with the 
modified Williams indices (APHS 0.964, NPHL 0.859, GrowCut 0.976), the percentage 
statistics (APHS 72.8%, NPHL 55.9%, GrowCut 68.1%), the overlapping ratios (APHS 
0.75, NPHL 0.64, GrowCut 0.7), and the difference ratios (APHS 0.25, NPHL 0.36, Grow-
Cut 0.3). In general, it can be seen that the APHS-generated boundary sets are compara-
tively more stable and comparable to manual delineations than those of the NPHL [42] 
and GrowCut [28] algorithms.

To assess the stability of the APHS algorithm as a function of parameter Q, for each 
image, three different parameter Q ranges are used, the ranges of which are set to 1–32, 
1–128, and 1–512, to generate different hierarchical segmentation trees at different 
scales. These three ranges are chosen because a Q less than 32 might remove desirable 
weak edges mistakenly and a Q larger than 512 tends to yield too many regions. The 
aforementioned assessment metrics (percentage statistics) was applied to evaluate the 
accuracy of the APHS algorithm with three different parameter ranges with four sets 
of manual delineations. Table 2 summarizes the means and standard deviations of the 
percentage statistics with respect to four observers for nodule boundaries derived by the 
APHS algorithm when Q = 1–32, 1–128, and 1–512.

Table 1  Performance evaluation

Comparison of APHS, NPHL [42] and Growcut [28] in evaluating the quality of the computer-generated boundaries with 
respect to the manually delineated boundaries using four metrics: the modified Williams index, percentage statistic, over-
lapping ratio and difference ratio.

Algorithms Modified  
Williams index

Percentage  
statistic (%)

Overlapping  
ratio

Difference  
ratio

APHS

 Solid 1.015 97.50 ± 1.67 0.858 ± 0.06 0.142 ± 0.06

 Nonsolid 0.964 72.87 ± 4.72 0.747 ± 0.13 0.253 ± 0.13

 All 1.013 86.81 ± 2.75 0.802 ± 0.09 0.198 ± 0.075

NPHL [42]

 Solid 1.038 93.34 ± 6.7 0.807 ± 0.16 0.193 ± 0.172

 Nonsolid 0.859 55.85 ± 12.2 0.641 ± 0.11 0.359 ± 0.12

 All 0.981 75.62 ± 4.16 0.723 ± 0.16 0.277 ± 011

Growcut [28]

 Solid 1.091 96.50 ± 1.88 0.841 ± 0.1 0.159 ± 0.09

 Nonsolid 0.976 68.09 ± 7.96 0.696 ± 0.08 0.304 ± 0.11

 All 1.081 80.52 ± 4.86 0.754 ± 0.12 0.246 ± 0.11
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Among Q =  1–32, 1–128, and 1–512, the performances for Q =  1–32 were worse 
than those for the other two in terms of the percentage statistics. This phenomenon may 
be imputed to the fact that, in the construction of the hierarchical segmentation tree, 
the desirable weak edges are more likely to be eliminated mistakenly by using Q = 1–32 
than by using the other two, which leads to a larger deviation from the desired bound-
ary. The percentage statistics validates that the nodule boundaries derived by the APHS 
algorithm are comparable to the manually delineated boundaries when Q = 1–512. In 
practical implementation, a small Q (e.g., Q = 1–32) is suggested to be used first if no 
apparent weak edges exist in the nodule boundary (e.g., solid nodule), which tends to 
result in a smaller number of regions per nodule. However, a more conservative choice 
of Q would be Q = 1–512, which with a higher probability to get more details compat-
ible with the perceptual organization of the image.

Discussion
In this section, we compare our approach to that of the multi-label image segmentation 
algorithm on the clinical dataset and investigate some of the trade-offs of our approach.

Approaches based on the concept of decision forests [43] can be used to tackle com-
mon learning tasks such as classification, regression, density estimation, manifold 
learning, semi-supervised learning, and active learning. In these hierarchical tree frame-
works, the tests associated with each split node and the decision-making predictors 
associated with each leaf are two key components that enable a decision tree to function 
properly, such that the input data are presented as high-dimensional image represen-
tations. Konukoglu et al. [44] extracted the high-dimensional representation of images 
based on appearance features without any prior assumptions on their individual rele-
vancy or their compactness. Their neighborhood approximation forests algorithm can 
handle neighborhood structures induced by the application-specific distance; there-
fore, the prediction procedure focuses on the co-occurrences of the test image and all 
database images that reach the same leaves of the trees. Criminisi et  al. [45] achieved 
anatomy detection and localization in CT scans by maximizing the confidence of the 
predictions over the position of all organs of interest based on regression forests. In con-
trast to these methods, our HST is constructed based on a UCM by using region attrib-
utes and local contour cues along the region boundaries for each single case. As shown 
by Socher et al. [46], this facilitates the understanding and classifying of scene images. 
Here, we detect and localize individual objects by applying a hierarchical CRF on the 
HST; thereby achieving simultaneous GGO estimation and its surrounding tissues iden-
tification as shown in Figure 7.

Table 2  The means and standard deviations of the percentage statistic with respect to 
four observers for the nodule boundaries derived by the APHS algorithm when Q = 1–32, 
1–128, and 1–512

Q = 1–32 (%) Q = 1–128 (%) Q = 1–512 (%)

Percentage statistic

 Solid 83.34 ± 11.22 97.50 ± 1.67 99.12 ± 1.67

 Nonsolid 12.23 ± 5.6 38.09 ± 7.27 53.62 ± 5.59

 All 39.93 ± 6.74 51.96 ± 9.18 72.74 ± 6.99
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In clinical practice, the region-based scheme [40] has been shown to be more effective 
in medical imaging. The advantage of tessellating medical images into regions is twofold. 
Firstly, the regional structure can provide sufficient informative features extracted from 
the pixels within the regions. Secondly, the search space spanned by regions is far less 
than that spanned by pixels. Consequently, finding the optimal segmentation solution 
by regions is more efficient than doing so by pixels. Compared to pixel-based approach 
[41], the prominent region structure offers less negative influences by surrounding tis-
sues. In addition, the computational search space contains considerably fewer promi-
nent data structures in regions, and hence performs more efficiently. Our algorithm is 
less sensitive to user inputs and yet gives high-quality segmentation results.

Conclusions
In this paper, we proposed a region-based graph cut algorithm, called the APHS algorithm, 
to tackle a major challenge in quantitative measurements for diagnosis: estimating the pro-
portion of GGO and identifying its surrounding tissues simultaneously. We formulated the 
problem of pulmonary nodule segmentation as a multi-label function, with the following 
results: (1) an anatomy packing process that can be optimized by utilizing a generic opti-
mization algorithm, specifically, graph cut, which is frequently used in the computer vision 
community and (2) a relationship between GGO and the solid part that can be detected 
and localized according to gradient information.

A clinical database of nodules that underwent VATS was used to evaluate the perfor-
mance of the proposed APHS algorithm and its accuracy and efficiency evaluated using 
four assessment metrics: “modified Williams index”, “percentage statistics”, “overlap-
ping ratio”, and “difference ratio”. Further, its performance was compared with two con-
ventional multi-label approaches and was shown to be superior in dealing with highly 
heterogeneous tissue content. The boundaries generated by the APHS algorithm can 
potentially serve as the components of CADx or other related clinical applications. 
For future considerations, robust higher-order potentials will be investigated in order 
to enforce label consistency in pool segments [47]. Other important tasks that will also 
be considered are automation of the initialization process and expansion to 3D volume 
measurements with further performance evaluations.
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