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Abstract: Measuring the predictability and complexity of time series using entropy is essential tool
designing and controlling a nonlinear system. However, the existing methods have some drawbacks
related to the strong dependence of entropy on the parameters of the methods. To overcome these
difficulties, this study proposes a new method for estimating the entropy of a time series using the
LogNNet neural network model. The LogNNet reservoir matrix is filled with time series elements
according to our algorithm. The accuracy of the classification of images from the MNIST-10 database
is considered as the entropy measure and denoted by NNetEn. The novelty of entropy calculation is
that the time series is involved in mixing the input information in the reservoir. Greater complexity
in the time series leads to a higher classification accuracy and higher NNetEn values. We introduce
a new time series characteristic called time series learning inertia that determines the learning rate
of the neural network. The robustness and efficiency of the method is verified on chaotic, periodic,
random, binary, and constant time series. The comparison of NNetEn with other methods of entropy
estimation demonstrates that our method is more robust and accurate and can be widely used
in practice.

Keywords: entropy; time series; neural network; classification; MNIST-10 database; LogNNet

1. Introduction

Measuring the regularity of dynamical systems is one of the hot topics in science and
engineering. For example, it is used to investigate the health state in medical science [1,2],
for real-time anomaly detection in dynamical networks [3], and for earthquake predic-
tion [4]. Different statistical and mathematical methods are introduced to measure the
degree of complexity in time series data, including the Kolmogorov complexity measure [5],
the C1/C2 complexity measure [5], and entropy [6].

Entropy is a thermodynamics concept that measures the molecular disorder in a closed
system. This concept is used in nonlinear dynamical systems to quantify the degree of
complexity. Entropy is an interesting tool for analyzing time series, as it does not consider
any constraints on the probability distribution [7]. Shannon entropy (ShEn) and conditional
entropy (ConEn) are the basic measures used for evaluating entropy. ShEn and ConEn
measure the amount of information and the rate of information generation, respectively [1].
Based on these measures, other entropy measures have been introduced for evaluating
the complexity of time series. For example, Letellier used recurrence plots to estimate
ShEn [8]. Permutation entropy (PerEn) is a popular entropy measure that investigates the
permutation pattern in time series [9]. Pincus introduced the approximate entropy (ApEn)
measure, which is commonly used in the literature [10]. Sample entropy (SaEn) is another
entropy measure that was introduced by Richman and Moorman [11]. The ApEn and SaEn
measures are based on ConEp. All these methods are based on probability distribution
and have shortcomings, such as sensitivity in short-length time series [12], equality in time
series [6], and a lack of information related to the sample differences in amplitude [9]. To
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overcome these difficulties, many researchers have attempted to modify their methods.
For example, Azami and Escudero introduced fluctuation-based dispersion entropy to
deal with the fluctuations of time series [1]. Letellier used recurrent plots to evaluate
Shannon entropy in time series with noise contamination. Watt and Politi investigated the
efficiency of the PE method and introduced modifications to speed up the convergence of
the method [13]. Molavipour et al. used neural networks to approximate the probabilities
in mutual information equations, which are based on ShEn [14]. Deng introduced Deng
entropy [15,16], which is a generalization of Shannon entropy. Martinez-Garcia et al.
applied deep recurrent neural networks to approximate the probability distribution of the
system outputs [17].

We propose a new method for evaluating the complexity of a time series which has a
completely different structure compared to the other methods. It computes entropy directly,
without considering or approximating probability distributions. The proposed method is
based on LogNNet, an artificial neural network model [18,19]. Velichko [18] showed a weak
correlation between the classification accuracy of LogNNet and the Lyapunov exponent
of the time series filling the reservoir. Subsequently, we found that the classification
efficiency is proportional to the entropy of the time series [20], and this finding led to the
development of the proposed method. LogNNet can be used for estimating the entropy
of time series, as the transformation of inputs is carried out by the time series, and this
affects the classification accuracy. A more complex transformation of the input information,
performed by the time series in the reservoir part, results in a higher classification accuracy
in LogNNet.

To determine entropy, the following main steps should be performed: the LogNNet
reservoir matrix should be filled with elements of the studied time series, and then the
network should be trained and tested using handwritten MNIST-10 digits in order to
determine the classification accuracy. Accuracy is considered to be the entropy measure
and denoted as NNetEn.

To validate the method, we used the well-known chaotic maps, including the logistic,
sine, Planck, and Henon maps, as well as random, binary, and constant time series.

This model has advantages compared with the existing entropy-based methods, in-
cluding the availability of one control parameter (the number of network learning epochs),
the fact that scaling the time series by amplitude does not affect the value of entropy, and
the fact that it can be used for a series of any length. The method has a simple software
implementation, and it is available for download to users in the form of an “NNetEn
calculator 1.0.0.0” application.

The scientific novelty of the presented method is a new approach to estimating the
entropy of time series using neural networks.

The rest of the paper is organized as follows. Section 2 describes the structure of
LogNNet and the methodology used for calculating entropy. In addition, a new time series
characteristic, called time series learning inertia, is described. The numerical examples and
results are presented in Section 3. Section 4 summarizes the study with a discussion and
outlines future research ideas.

2. Methods

This study applies the LogNNet 784:25:10 model [18] to calculate the entropy value.
The LogNNet 784:25:10 model was designed to recognize images of handwritten digits in
the range of 0–9 taken from the MNIST-10 dataset. The database contains a training set of
60,000 images and a test set of 10,000 images. Each image has a size of 28 × 28 = 784 pixels
and is presented in grayscale color.

2.1. LogNNet 784:25:10 Model for Entropy Calculation

The model consists of two parts (see Figure 1). The first part is the model reservoir,
which uses the matrix W1 to transform the input vector Y into another vector Sh (P = 25).
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The second part of the model contains a single layer feedforward neural network that
transforms vector Sh into digits 0–9 at the output layer Sout.
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Figure 1. The LogNNet model structure.

The algorithm has the following steps.
Step 1. Loading time series xn.
Step 2. Loading the MNIST-10 database and the T-pattern-3 pattern [18] for transform-

ing input images into the vectors array Y.
Step 3. Initializing the initial values of weights and neurons. The initial weights W2

are set to 0.5. The constant initial weights ensure repeatable entropy results.
Step 4. The reservoir matrix W1 is constructed using the given time series (Section 2.2.).
Step 5. Calculating the coefficients for normalization.
Step 6. The number of training epochs is set.
Step 7. The training process of the LogNNet 784:25:10 network is performed on a

training set. The weights of the matrix W2 are trained. The learning rate of the back
propagation method is set to 0.2.

Step 8. The testing process of the LogNNet 784:25:10 network is performed on a test
set and classification accuracy is calculated.

Step 9. The value of NNetEn entropy is defined as follows:

NNetEn =
Classification accuracy

100%
(1)

Therefore, classification accuracy is considered to be the new entropy measure and is
denoted as NNetEn (see Equation (1)).

Classification accuracy is distributed in the range from 0 to 100%, and NNetEn has
values between 0 and 1.

2.2. Matrix Filling Methods

Matrix W1 contains 25 rows and 785 columns and therefore requires 19,625 elements.
However, in real-world problems, the length of the given time series can be either more or
less than 19,625 elements.

Let us suppose that we have a time series with N elements xn = (x1, x2, x3, . . . , xN).
If N ≥ 19,625, it is necessary to ignore N-19,625 elements of time series and fill the

matrix with the remained 19,625 elements, filling the matrix column by column. We suggest
ignoring the first elements, as this may be the transient period of a dynamic process. Many
mathematical and physical systems have a transient period before the dynamics stabilize.
This also holds for discrete chaotic maps (Section 3).

If N < 19,625, we propose a special method. This method implies the column-by-
column filling of the matrix W1. We set zero values for the remaining elements in a matrix
row if the values are missing and a row cannot be filled with the elements of the given
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time series. A schematic description of the method is given in Figure 2a. As an example, a
reduced matrix W1 is filled with the series xn = (1, 2, 3, 4, 5, 6, 7, 8, 9) (Figure 2b).
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2.3. Program Code for Calculating NNetEn

For practical method application, the “NNetEn calculator 1.0.0.0” software was de-
signed for the Windows operating system. It calculates the NNetEn time series recorded in
a text file. The software interface is demonstrated in Figure 3. The code is implemented in
the Delphi 7 programming language, and contains nine steps described in Section 2.1. The
calculation of one time series with 100 epochs takes about 620 s using one Intel™ Co™TM)
m3-7Y30 CPU @ 1.00 GHz processor thread. Further description can be found in the
Supplementary Materials of this paper.
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3. Results

To show the efficiency and robustness of the proposed method, we apply the method
to chaotic, random, periodic, binary, and constant time series xn with different lengths.

I. Discrete chaotic maps:

Because of the transient period, the first 1000 elements are ignored. The NNetEn
measure is calculated for xn, where n > 0.
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(a) Logistic map:

xn+1 = r · xn · (1 − xn), 1 ≤ r ≤ 4, x−999 = 0.1, (2)

(b) Sine map:
xn+1 = r · sin(π · xn), 0.7 ≤ r ≤ 2, x−999 = 0.1, (3)

(c) Planck map:

xn+1 =
r · x3

n
1 + exp(xn)

, 3 ≤ r ≤ 7, x−999 = 4 (4)

(d) Henon map:{
xn+1 = 1 − r · x2

n + yn
yn+1 = r1 · xn , 0 ≤ r ≤ 1.4, r1 = 0.3, x−999 = 0.1, y−999 = 0.1

(5)

II. Random discrete map:
xn = random − 0.5 (6)

III. Periodic discrete map:

xn = A · sin(
n · 20π

19, 625
) (7)

IV. Binary discrete map:

xn = n mod 2
xn = (1, 0, 1, 0, 1, 0, 1, 0, 1, . . . . . .)

(8)

V. Constant discrete map:
xn = A . (9)

3.1. Calculation of NNetEn Entropy Measure

In this subsection, we consider time series with N = 19,625 elements. To train the
matrix W2, we used the number of epochs to be equal to 100.

The dependence of NNetEn on the control parameter r in the chaotic time series
(Equations (2)–(5)) is presented in Figures 4–7.
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Figure 8. The dependence of NNetEn on the parameter A for the periodic time series (Equation (7))
(a); the dependence of NNetEn on the parameter A for constant time series (Equation (9)) (b).

For the binary series described by Equation (8), the NNetEn equals 0.2196.
The NNetEn values for constant time series are depicted in Figure 8b. Entropy has

the same value NNetEn = 0.22 for | A | > 0 and NNetEn = 0.1028 for A = 0. Therefore, the
lowest possible NNetEn value is about 0.1.

A comparison of the NNetEn values for chaotic, random, periodic, and constant time
series demonstrates that the NNetEn increases when the complexity of the time series
increases. Therefore, there is a direct relation between the degree of complexity and the
NNetEn of time series. This confirms that NNetEn can be used for comparing the degree
of complexity of a given time series. Another advantage of this method is that NNetEn is
independent of signal amplitude A. The entropy of the signal should not depend on the
multiplication of the entire time series by a constant.
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3.2. The Influence of the Number of Training Epochs on the NNetEn Value

The influence of the number of epochs on the value of NNetEn was studied using a
time series with N = 19,625 elements, generated by logistic mapping (Equation (2)). The
results are presented in Figure 9a.
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Figure 9. The relation between NNetEn and the number of epochs for the time series on logistic map (Equation (2)) (a); the
dependence of NNetEn value on the parameter r using 20, 100, and 400 epochs (b); a magnification of subfigure (b) for r
between 3.72 and 3.82 (c).

NNetEn gradually increases with an increasing number of epochs until a plateau is
reached (Figure 9a). The speed of reaching the plateau depends on the type of signal. For
example, the velocity of reaching the plateau at r = 3.59167 is slower than that at r = 3.8
and r = 3.505. Figure 9b shows the dependence of NNetEn on the parameter r for different
numbers of epochs. The trends are similar, although there are differences in the details.
The behaviors of NNetEn with 100 epochs and 400 epochs are more similar than NNetEn
with 20 epochs and 400 epochs (Figure 9c). This example demonstrates that a significant
number of epochs are required for reaching the plateau in NNetEn, especially in chaotic
time series. Therefore, it is necessary to indicate the number of epochs as a parameter of
the model.
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3.3. Learning Inertia as a New Characteristic of Time Series

To identify the speed of the NNetEn convergence to the plateau with respect to the
number of epochs, the parameter δEp1/Ep2 is proposed:

δEp1/Ep2 =
NNetEn(Ep2 epoch)− NNetEn(Ep1 epoch)

NNetEn(Ep2 epoch)
, (10)

where Ep1 and Ep2 (Ep1 < Ep2) are the numbers of epochs used in calculating the entropy.
The parameter reflects the rate of change in NNetEn values when the number of

epochs is decreased from Ep2 to Ep1. Figure 10 demonstrates the dependence of δ100/400
on the parameter r in the logistic map (Equation (2)). The maximum δ100/400 occurs at
r = 3.59167. This means that the neural network has the lowest learning rate at r = 3.59167.
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Figure 10. The parameter δ100/400 (learning inertia) in relation to the parameter r.

The parameter δEp1/Ep2 can be considered a new characteristic of the input time series
and is named “learning inertia”.

3.4. Calculation of NNetEn Entropy with Variation in the Length of the Time Series N

Data obtained from financial markets [21], physical experiments [12,22], and biological
or medical data [11,23] may have N < 19,625 elements. To investigate the efficiency and
stability of the matrix filling method (see Section 2.2.), the method was applied to different
types of time series with different N. The epoch number is set to 100 in this subsection.

The NNetEn values for time series based on the logistic map with r = 3.8 and various
numbers of elements (N) are presented in Figure 11. The dashed red line indicates the
reference level corresponding to NNetEn with N = 19,625. A decrease in N below 19,625
should not lead to a significant change in entropy relative to the reference level. The
method of entropy measurement is most stable for N ≥ 11,000, when the NNetEn values
almost coincide with the reference level. For N < 11,000, the dependence of NNetEn on N
is observed, and it is reflected in the appearance of fluctuations in NNetEn relative to the
reference level.

The NNetEn values for the sine periodic map (Equation (7)) and binary map (Equation (8))
with various number of elements N are presented in Figures 12 and 13, respectively.

It can be concluded that for all types of signals considered, the most stable result is
obtained for N > 11,000.
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Figure 11. The effect of time series length on NNetEn values for time series based on a logistic map
(Equation (2)).
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Figure 12. The effect of time series length on NNetEn values for sine periodic time series
(Equation (7)).
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Figure 13. The effect of time series length on NNetEn for binary time series (Equation (8)).

3.5. A Comparison between the NNetEn Measure and Other Entropy Methods

A comparison between NNetEn (number of epochs is 100) and the ApEn entropy
values for the logistic map time series at N = 19,625 is depicted in Figure 14. Variables rr
and m are the main parameters of ApEn [10]. The dependencies of NNetEn and ApEn on r
almost repeat each other, except for some features. To describe these features, the following
labels have been introduced: r1 = 3.60666667, r2 = 3.68833333, r3 = 3.835, and r4 = 3.94833333.
The value of entropy has a local minimum for NNetEn and ApEn (rr = 0.025, m = 2) at r = r1,
while ApEn (rr = 0.1, m = 2) reaches a local maximum at this point. This demonstrates
that ApEn is very sensitive in its parameters (rr and m). The proposed method resolves
this problem, and the position of the minimum does not depend on the parameters of
the method. In addition, the proposed method is compared with other entropy measures
(Table 1). All entropies have an increasing r trend, and the entropy at r = r1 is less than the
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entropy at r = r4. All entropies have a minimum of r = r1 and a maximum of r =r4. Therefore,
the NNetEn entropy measure gives similar results to other methods for calculating entropy,
while having the advantage of a small number of parameters and a high computational
stability, independent of the signal amplitude and the length of the time series.
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Figure 14. A comparison between NNetEn and ApEn for the logistic mapping. NnetEn (number of
epochs is 100) (a); ApEn (rr = 0.025, m = 2) (b); ApEn (rr = 0.1, m = 2) (c).

Table 1. Comparison between NnetEn and other entropy measures.

r1 = 3.60666667 r2 = 3.68833333 r3 = 3.835 r4 = 3.94833333

NNetEn
Entropy 0.2208 0.6193 0.2222 0.6928

ApEn [10], rr = 0.025, m = 2 0 0.374 0 0.588

ApEn [10],
rr = 0.1, m = 2 0.210 0.341 0 0.552

Topological entropy [24] 1.16 1.21 0.61 1.21

SampEn [1] 0.067 0.287 0 0.49

PerEn [1] 0.45 0.53 0.347 0.71

DispEn [1] 0.45 0.649 0.308 0.683

Shannon entropy
from recurrence plots [8] 0.85 1.79 0.1 2.29

Shannon entropy from symbolic dynamics [8] 2.45 4.81 1.15 6.97

4. Discussion

Investigating the complexity of non-linear time series has become a hot topic in
recent years, as it has many practical applications. Various entropy measures have been
introduced to calculate the complexity of a given time series. However, almost all existing
methods are based on Shannon entropy or conditional probability, which suffers from a
sensitivity to the length of the time series and its initial parameters. We propose the NNetEn
entropy measure to overcome these difficulties. NNetEn is an estimation method based
on MNIST-10 classification using the LogNNet 784:25:10 neural network. Its calculation
algorithm is different from that of other existing methods. The NNetEn algorithm needs a
reservoir matrix with 19,625 elements filled with time series. As many practical applications
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use a time series with N < 19,625 elements, we propose a method for filling the matrix with
N < 19,625. The chosen method provides the most stable results for calculating NNetEn in
comparison to similar methods of filling the matrix by rows or by stretching a row.

In future studies, it would be possible to investigate other network configurations
with a different number of neurons, and it could lead to a change in the number of elements
in the reservoir matrix. Nevertheless, the presented method for the use of LogNNet
784:25:10 has promising opportunities for practical application and may be of interest to
the scientific community.

Figures 11–13 demonstrate that there are entropy modulations due to changes in time
series length in the matrix filling method. This is caused by shifts in the time series relative
to the rows in the W1 matrix.

This method is most stable at N ≥ 11,000, when the NNetEn values almost coincide
with the reference level. In practice, when comparing time series, we recommend using
time series of the same length and, if possible, N ≥ 11,000.

The proposed method is applied on constant, binary, periodic, and various chaotic
time series. The results demonstrate that the NNetEn value lies between 0.1 and 1. The
lower limit of NNetEn is 0.1, as the minimum classification accuracy is 10%. This is
achieved when images of digits are recognized from 10 random options.

The NNetEn value converges on a plateau with an increase in the number of epochs.
The number of epochs is considered the input parameter of the method. The behavior of
NNetEn values is roughly similar for the logistic map when the number of epochs is 100
and when the number of epochs is 400. Therefore, we use 100 epochs in LogNNet and
suggest using at least 100 epochs in other examples.

In Section 3.3, the parameter δEp1/Ep2 is introduced to compare the effect of the number
of epochs on NNetEn values. This parameter can be considered a new characteristic of
the input time series. We call it the learning inertia of the time series. This parameter
characterizes the speed of training of a network for the given time series. Small values
of δEp1/Ep2 correspond to the rapid achievement of a plateau by NNetEn values with
an increasing the number of epochs. The parameter δEp1/Ep2 may depend on the initial
distribution of the matrix W2 elements or on the learning rate of the back propagation
method. Figure 10 shows the bursts at the border of the order-chaos regions. Further study
of the learning inertia of time series for various signals and the study of transitions from
order to chaos may become topics for further research.

The proposed model has the following advantages compared to the existing entropy
measurement methods:

• It is simple to use.
• It has one control parameter—the number of epochs—when training the network.
• Scaling the time series by amplitude does not affect the value of entropy.
• It can be used for a series of any length. The most repeatable results are observed

when N varies in the range N = 11,000–19,626.
• It outperforms the existing methods.
• A new characteristic of the time series is introduced—learning inertia. This can be

used to identify additional patterns in the dynamics of the time series.

For example, the study [1] introduced a method of entropy estimation depending on
the embedded dimension m, time delay d, and constant value c. Any changes in these
parameters lead to different results. In contrast, the proposed method depends only on the
number of epochs, and the position of the minima and maxima does not depend on the
number of epochs.

Extending the current study to multivariable time series can be considered as another
direction for future work. In addition, it would be beneficial to apply the method of
calculating NNetEn in practice to process data from medical, physical, biological, and
geophysical experiments. The use of neural networks for calculating entropy and other
characteristics of time series could become a promising direction for further research.
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5. Conclusions

This study proposes a new entropy measure called NNetEn for evaluating the com-
plexity of the given time series. NNetEn is the first entropy measure that is based on
artificial intelligence methods. The method modifies the structure of the LogNNet classifi-
cation model so that the classification accuracy of the MNIST-10 digits dataset indicates the
degree of complexity of a given time series. The calculation results of the proposed model
are similar to those of existing methods, while the model structure is completely different
and provides considerable advantages. For example, it overcomes such difficulties as the
method’s sensitivity to the length and amplitude of the time series. The method has only
one input parameter and is easier to use, which is important in practical applications. In
addition to the method for measuring entropy, an equation for calculating a new character-
istic of a time series, learning inertia, is given. The study results can be widely applied in
practice and should be of interest to the scientific community.
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