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Abstract: Simulation techniques are powerful tools for determining the optimal conditions necessary
for microwave ablation to be efficient and safe for treating liver tumors. Owing to the complexity and
computational resource consumption, most of the existing numerical models are two-dimensional
axisymmetric models that emulate actual three-dimensional cancers and the surrounding tissue,
which is often far from reality. Different tumor shapes and sizes require different input powers
and ablation times to ensure the preservation of healthy tissues that can be determined only by
the full three-dimensional simulations. This study aimed to tailor microwave ablation therapeutic
conditions for complete tumor ablation with an adequate safety margin, while avoiding injury to
the surrounding healthy tissue. Three-dimensional simulations were performed for a multi-slot
microwave antenna immersed in two tumors obtained from the 3D-IRCADb-01 liver tumors database.
The temperature dependence of the dielectric and thermal properties of healthy and tumoral liver
tissues, blood perfusion, and water content are crucial for calculating the correct ablation time and,
thereby, the correct ablation process. The developed three-dimensional simulation model may help
practitioners in planning patient-individual procedures by determining the optimal input power and
duration of the ablation process for the actual shape of the tumor. With proper input power, necrotic
tissue is placed mainly in the tumor, and only a small amount of surrounding tissue is damaged.

Keywords: liver tumor; microwave ablation; ablation zone; necrotic tissue

1. Introduction

Liver cancer, also known as hepatic cancer, arises because of the abnormal growth
of cells inside the liver [1–5]. It may originate in the liver from hepatocytes, bile duct
epithelium, or mesenchymal tissue (primary) or spread to the liver from primary cancer
developed elsewhere in the body (secondary) [6–10]. The most prevalent type of liver
cancer is Hepatocellular carcinoma (HCC) or hepatoma with a median survival time of
fewer than six months if untreated, and a five-year survival rate of only 5–9% from the
time of diagnosis [11,12]. Since HCC is the sixth most common cancer and the second most
common cause of cancer mortality worldwide, establishing an efficient treatment for this
type of cancer has never been more urgent [13–18].

Treatments for liver cancer are strongly dictated by the tumor stage and the extent
of the underlying liver disease, in addition to the patient’s overall age and health [19–22].
Despite recent advances in therapeutic options for liver cancer, it remains one of the most
difficult cancers to treat [23]. Among the various applicable procedures, microwave ablation has
proven to be an effective minimally invasive procedure for curing liver malignancies [24–28].
HCC ablation is defined by the Barcelona Clinic Liver Cancer (BCLC) algorithm that should
be applied to each patient individually [29]. The success rate for eliminating small liver
tumors in patients treated with MWA is greater than 85% [30]. MWA is also used for the
treatment of liver metastases from colorectal cancer [31].
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MWA is a widely used thermal ablation modality for eradicating malignant cells with
minimal damage to the surrounding tissues [32–34]. It consists in focusing an energy
source in the target zone (the tumoral tissue) causing tumor destruction. Some benefits
of MWA include a large zone of treated tissue, short treatment duration, and less sus-
ceptibility to the heat sink effect generated by the cooling effect of blood flow. One of
the main problems with ablation therapy is tumor recurrence and the exact prediction
of tissue temperature requiring ablation zone monitoring. CT thermography allows the
measurement of temperature non-invasively during ablation and is crucial to achieving
a successful ablation with completely devitalized tumors [35]. MWA destroys tumors
using one or more antennae as the source of the microwave fields, which leads to the
frictional heating of water molecules in the soft tissues around the field source. A key
element in MWA treatments is the microwave antenna (MW), which delivers energy and
provides lethal temperature rise, resulting in cell death in the ablation zone [36]. Advanced
antenna designs are based on three different mechanisms: thermal, field, and wavelength
control [37]. Recently, a compact, multi-slot coaxial antenna was developed to achieve
the required ablation zone and suitable impedance matching to the target tumoral tissue
without damaging the surrounding healthy tissues [38].

Nowadays, thermal therapy has evolved into a very important topic in medicine,
and many studies on the application of heat transfer to living tissues have been carried
out in the last few decades, including cancer tumor treatment, drug delivery [39], or pain
relief [40]. Numerical studies may have a great impact on patient care by creating predictive
models from procedural planning to execution [41–43]. Moreover, the lack of experimenta-
tion in this field underlines mathematical models even more significantly. In this context,
understanding the physics behind thermal therapy has a key role in modeling heat trans-
fer in thermal therapies, to develop more and more accurate tissue and process models.
Every mathematical model for the simulation of MWA must contain three fundamental
components: the antenna probe, heat distribution in the tissue, and the effect of heat on
tumor cells and their destruction. All these components depend on a diversity of material
parameters, which, in turn, depend on the various states of the tissue characteristics of the
individual patient.

Recently, MWA has been analyzed using a more complex heat transfer model based
on the porosity concept that leads to two bioheat equations for tissue and blood temper-
atures [44]. The shape of the tumor is supposed to be spherical. Although it seems to be
more realistic, the problem is that such an approach introduces a new set of parameters,
whose values are very difficult to determine precisely. In an earlier reference [45], an effort
to include the effects of tissue deformation during MWA was made, but only for an in vitro
experiment with the liver (without tumor) under specific mechanical conditions, far from
realistic MWA procedures. Both references present 2D axisymmetric calculations only. Most
of the existing numerical models of MWA are mainly two-dimensional (2D) axis-symmetric,
assuming a homogeneous medium and reducing the problem from three-dimensional (3D)
to 2D [43,46,47].

Considering that each liver tumor is different, treatment options must be chosen on
an individualized basis, depending on the tumor size and shape. The primary goal of this
study was to demonstrate that 3D simulation is an ideal technique for MWA planning
adjusted for each patient. For this purpose, we used a full 3D model of the MWA developed
and tested using the COMSOL Multiphysics simulation platform [48–50]. Simulations
were performed for a compact 10-slot coaxial antenna operating at 2.45 GHz inserted
into realistic models of two tumors labeled as 1.07 and 1.03 in the 3D-IRCADb-01 liver
tumors database [51]. The optimal input power and duration of the ablation process were
individually determined for each tumor. based on the time evolution of the iso-contours,
temperature distribution, and degree of tissue destruction.



Biomedicines 2022, 10, 1569 3 of 14

2. Materials and Methods

For this study, calculations were performed for a compact 10-slot microwave antenna,
schematically shown in Figure 1 and described in detail in Ref. [48]. A compact 10-slot
microwave antenna with an impedance π-matching network was designed to create pre-
dictable, optimal heating patterns with shorter ablation times and lower input powers,
compared to previously developed antennae [52–54]. The required ablation shape was
achieved by adopting the distance between the adjacent slots and the number of the slots.
The finely tuned impedance π-matching network provides optimal ablation zones with
minimal damage to surrounding healthy tissues. The disadvantage of such an antenna
could be a relatively complicated construction, although it is compensated by its excellent
features—optimal heating pattern and low overheating of healthy tissue.

Figure 1. Schematic view of the 10-slot microwave antenna with an impedance π-matching network.
The conducting material, Teflon, air, and dielectric are represented by black, green, light blue, and light
brown, respectively. The width of the slot is 0.6 mm with a spacing of 0.8 mm between adjacent slots.

To demonstrate the importance of finding the optimal conditions for each patient in-
dividually, simulations were performed for two real tumors taken from the 3D-IRCADb-01
database [51]. This database includes several sets of CT scans of patients manually seg-
mented by clinical experts [55]. In this study, simulations were carried out for tumors
denoted by 1.07 (1.74 cm × 1.53 cm × 2.10 cm) and 1.03 (1.78 cm × 1.97 cm × 2.27 cm) in
the 3D-IRCADb-01 liver tumors database [51]. The sizes and shapes of both cancers are
shown in Figure 2.

Figure 2. Three-dimensional simulation models corresponding to two liver tumors (triangulated
surfaces) labeled as (a) 1.07 and (b) 1.03 in the 3D-IRCADb-01 database that contains several sets of
CT scans of the patients [51].
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The simulation model was composed of the coupled electromagnetic field and heat-
transfer equations solved by the 3D finite elements method (FEM), with all details of
multi-slot antenna design and properties of healthy and tumoral tissues. Our 3D model
was generated using the COMSOL Multiphysics FEM-based simulation platform [45]. Sinc
the developed 3D model was completely described in a previous paper [48], we shall
not attempt to repeat it here, except for the governing equations. The propagation of
microwaves in the tissue by an antenna is expressed as [48,56]:

∇2E− µrk2
0

(
εr −

jσ
ωε0

)
E = 0, (1)

where E is the vector of the electric field and ω is the angular frequency. The value
k0 = ω/c0 is the vacuum propagation constant, and ε0 is the vacuum dielectric constant.
The electrical conductivity, relative permittivity, and permeability of the tissue are denoted
by σ, εr, and µr, respectively. The electric field was calculated in the dielectric, healthy
tissue, and tumor regions, with appropriate boundary conditions. On conducting surfaces,
PEC conditions were imposed (the tangential component of the field was set to zero).
On the computational zone boundaries (outer cylinder surfaces) the first order absorbing
boundary conditions were used. The input power is connected to the antenna through the
coaxial port on its top.

The Pennes bioheat equation describes the heat transfer during MWA [57]:

ρceff
∂T
∂t

= ∇ · (k∇T) + ρbWbcb(Tb − T) + Qext + Qm, (2)

where t is the time, ρ and T are the density and temperature of the tissue, respectively.
Values ρb, cb, Tb, and Wb are the density, heat capacity, temperature, and perfusion rate of
the blood, respectively. Although the heat source from metabolism Qm was neglected in our
calculations, the external heat source Qext was related to coupling with the electromagnetic
field. The effect of internal water evaporation in the bioheat Equation (2) was included by
replacing specific heat c with an effective value, as described in ref. [48]:

ceff = c− α

ρ

∂W
∂T

(3)

where α is the water latent heat constant equal to 2260 (kJ/kg), whereas W(T) is the
water content. The temperature was calculated only in healthy and tumor regions. Initial
temperature was set to 37 ◦C. On the outer antenna surface and computational zone,
boundaries zero flux (thermal insulation) boundary conditions were used.

The water content of liver tissue is approximately 78% water by mass; therefore, the
thermal properties of the tissue are similar to those of water [58,59]. For temperatures
above 100 ◦C, the water content of the tissue may decrease by mass owing to evaporation,
causing substantial changes in tissue dielectric parameters and considerable penetration
of microwaves [58]. The decrease in the dielectric properties of the tissue with increas-
ing temperature due to evaporation was incorporated into our model according to the
description in [48,60].

Tissue damage processes are regularly modeled via Arrhenius formalism defining an
arbitrary function of tissue injury Ω as [61,62]:

Ω(t) =
t∫

0

A exp
(
−∆E

RT

)
dt, (4)

where A is the frequency factor, ∆E is the activation energy for the irreversible damage
reaction, T is the temperature determined at each point in the model region, and R is the
gas constant.
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The proper choice of the input power and treatment time required to achieve the
optimal ablation zones strongly depends on the size and the shape of the tumor. In this study,
we performed realistic modeling of the effect of MWA operating at 2.45 GHz on two liver tumors
of different sizes and shapes, denoted by 1.03 and 1.07 in the 3D-IRCADb-01 database [46].
The optimal input power and duration of the ablation process were individually estimated
for each tumor. The simulation conditions included the density, dielectric properties,
thermal conductivity, and heat capacity of the liver tissues (healthy and tumoral), as well
as the density, thermal conductivity, and heat capacity of the blood listed in Table 1. The
temperature dependence of the dielectric and thermal properties of both healthy and
malignant liver tissues, blood perfusion, and water content were implemented in the
simulation model [48,56].

Table 1. The parameters that characterize the liver tissue (healthy and tumoral) and the blood
collected from the literature [48,56] and used in the numerical simulations.

Parameter Value

Healthy tissue

Density 1079 kg/m3

Relative permittivity 44.3

Electric conductivity 1.8 S/m

Thermal conductivity 0.52 W/m ◦C

Specific heat 3540 J/kg ◦C

Tumoral tissue

Density 1040 kg/m3

Relative permittivity 54.8

Electric conductivity 2 S/m

Thermal conductivity 0.57 W/m ◦C

Specific heat 3960 J/kg ◦C

Blood

Density 1060 kg/m3

Thermal conductivity 0.5 W/m ◦C

Specific heat 3600 J/kg ◦C

Temperature 37 ◦C

3. Results and Discussions

For both tumors, the optimal value of the input power was chosen such that a very
small area of healthy tissue around the tumor was damaged, based on the iso-contours
shown in Figure 3. Since tumors do not have regular shapes on both sides, the front (left)
and back (right) of tumors are displayed. For tumor 1.07 [51] (see Figure 3a), if 9 W was
applied, tumoral tissue (backside) was not entirely removed. When the input power was
11 W, the ablation zone enclosed the entire tumor as well as a large amount of healthy
tissue. The iso-contour that best fit the necrotic tissue was obtained for an input power of
10 W, leading to a treated tumor with minimal damage to the healthy surrounding tissue.
However, the application of 11 W in the case of tumor 1.03 [51] (see Figure 3b) did not
ensure complete malignancy (both sides). Although the entire tumor was eliminated using
an input power of 13 W, the healthy tissue was significantly damaged. Therefore, the
best choice of input power, for tumor 1.03 [51] was 12 W, because the whole tumor was
destroyed while healthy tissue was preserved.
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Figure 3. Iso-contours representing the ablated regions (solid light brown surface) after 600 s of MWA
at 2.45 GHz around tumors (triangulated surface) (a) 1.07 [51] (for input powers of 9 W, 10 W, and
11 W) and (b) 1.03 [51] (for input powers of 11 W, 12 W, and 13 W).

The importance of proper determination of the input power and ablation time is
illustrated in Figure 4. If a power of 15 W or 17 W was applied for MWA of the tumor
1.07 [51] (Figure 4a), the ablation time should be shortened from 600 s to 340 s or 300 s,
respectively. If tumor 1.03 [46] (Figure 4b) was treated with an input power of 15 W or
17 W, the ablation time required for complete removal of tumoral tissue should be 440 s
or 380 s, respectively. Damages to healthy surrounding tissue by applying 15 W or 17 W
during a shorter ablation time were similar to those obtained for 10 W (for tumor 1.07 [51])
and 12 W (for tumor 1.07 [51]) after 600 s. However, this did not necessarily mean that
higher input power and shorter ablation time corresponded to the most efficient and safe
MWA procedure. As can be observed from Figure 5, higher input power increased damage
to surrounding healthy tissue, due to undesirable shapes of ablation zones, even if the
ablation time was shorter. For powers of 20 W (for tumor 1.07 [51]) and 25 W (for tumor
1.03 [46]) the ablation zones formed were neither spherical nor predictable. They appeared
to be elongated, with a greater length along the shaft of the antenna than the transverse
diameter. Elongated shapes were undesirable ablation patterns that caused unavoidable
damage to normal tissues, even if the ablation time was shorter.

Figure 4. Iso-contours consisting of totally ablated regions (solid light brown surface) and tumors
(triangulated surface) (a) 1.07 [51] and (b) 1.03 [51] exposed to a frequency of 2.45 GHz, an input
power of 15 W and 17 W for various ablation times.
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Figure 5. Iso-contours that include the ablated regions (solid light brown surface) around the liver
tumor (triangulated surface) (a) 1.07 [51] and (b) 1.03 [51] when an input power of 20 W or 25 W is
applied during various ablation times.

The ablation times as a function of the input power for tumors 1.03 [51] and 1.07 [51]
are plotted in Figure 6a. Although the ablation time decreased with increasing power for
both tumors, the ablation time of tumor 1.03 [51] was systematically higher, owing to its
larger size. The difference between ablation times of tumors 1.03 [51] and 1.07 [51] was
approximately 25% for the power of 12 W and approximately 8% for 25 W. Controlling
the power/time values allowed for changes in ablation sizes. The optimal choice of the
input power and the ablation time should be made by the surgeon since it depends on
medical factors. The time dependence of the temperature on the input power calculated at
the point in the center of the heating zone is shown in Figure 6b. The antenna immersed in
the tissue radiated energy that was absorbed and converted into thermal energy, causing
an increase in the tissue temperature. Despite the input power, the temperature first
rapidly increased with increasing time, and then steeply rose and reached saturation
when the diffusion and heat conduction, due to blood perfusion, became significant. The
obtained simulation results had similar trends as the results of measurements for liver
tissue provided in Ref. [63].
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Figure 6. (a) Dependence of the ablation time on the input power for tumor 1.03 [51] (blue squares)
and tumor 1.07 [51] (red circles). (b) Temperature as a function of the ablation time for various input
power values calculated in the center of the heating zone.
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Figure 7 displays iso-contours of the temperature distribution in the tissue at t = 600 s
for the optimal input power of 10 W and 12 W for tumors (a) 1.07 [51] and (b) 1.03 [51],
respectively, chosen to affect a very small area of surrounding healthy tissue. For both
tumors, iso-contours had similar near-spherical shapes. The temperature was the highest
in the vicinity of the antenna slot, while it noticeably dropped as the distance from the
antenna increased. The maximum values of the temperature were achieved inside the
tumor regions where cancer cells were destroyed. It was reported that temperatures above
60 ◦C instantly destroyed all cancer cells [62], so the 60 ◦C isothermal contour was related
to the lesion size and shape of the ablated tissue. According to previous studies [48,56], a
multi-slot antenna structure enabled more localized and optimal heating distributions.

Figure 7. Iso-contours associated with various temperatures (solid colored surface) around tumors
(triangulated surface) (a) 1.07 [51] (for an input power of 10 W) and (b) 1.03 [51] (for an input power
of 12 W).

The absorbed energy was converted into thermal energy, resulting in an increase in
tissue temperature. Temperature changes in tissues during MWA for tumors (a) 1.07 [51]
and (b) 1.03 [51] are shown in Figure 8. The black line represents the boundary of the
tumoral tissue. The temperature value was the highest close to the antenna and decreased
with distance from the antenna, where the heat source became weaker. Blood perfusion
restricted the extent of the heated area. The temperature increased with the ablation time
and after 600 s reached a value of approximately 92 ◦C for tumor 1.07 [51] and 98 ◦C for
tumor 1.03 [51]. When the temperature approached 100 ◦C, a boiling effect could occur in
the tissues [64].

The thermal damage fraction and the time required for complete necrosis of tumors (a)
1.07 [51] and (b) 1.03 [51] are presented in Figure 9. The upper figures are obtained in the
cut plane (x = 0), where the black line shows the boundary of the tumoral tissue. Regardless
of the time, ablation zones were concentrated around the tip and slots of the antenna with
small backward heating. The active ablation zone closest to the antenna encompassed the
volume of tissue that was subjected to sufficiently high energy absorption to ensure thermal
tissue. In contrast, the passive ablation zone surrounded the active zone involving the
volume of tissue, which experienced a lower intensity of energy absorption [43,48]. How-
ever, the ablation zones shown in the upper figures (in the cut plane) may not accurately
reflect the ablated tissue. Based on the upper figures, for example, one might conclude that
the entire tumoral tissue was removed after 400 s, which was far from reality. As can be
seen from the lower figures, the front and back sides of both tumors were not completely
ablated after 400 s. The lower figures indicated the entire tumors would not be removed
before 600 s, implying the importance of performing full 3D simulations for each tumor
individually, due to tumor geometric complexity. Figure 9 indicates that correct ablation
time can be determined only if calculations are performed for actual shapes of tumors.



Biomedicines 2022, 10, 1569 9 of 14

Figure 8. Time evolution of the temperature distribution (in ◦C) for tumors (a) 1.07 [51]) and
(b) 1.03 [51] treated by MWA at a frequency of 2.45 GHz. The boundary of the tumor tissue is marked
by a black line.
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Figure 9. The time evolution of the necrotic tissue of tumors (a) 1.07 [51] and (b) 1.03 [51], after 200 s,
400 s, and 600 s MWA at a frequency of 2.45GHz. The upper figures show the necrotic tissue in the cut
plane (x = 0). The lower figures show the front and back sides of the tumors (triangulated surfaces).

4. Conclusions

This study aimed to determine the most influential parameters (input power and abla-
tion time) for successful tumor ablation with an adequate safety margin, while avoiding
injury to the surrounding healthy tissue. To achieve this goal, full three-dimensional simu-
lations developed within the COMSOL simulation package were used. Calculations were
performed for a 10-slots antenna operating at 2.45 GHz immersed in liver tumors labeled
as 1.07 and 1.03 in the database 3D-ICRADb-01 [51]. The density, thermal conductivity, and
heat capacity of the liver tissues (healthy and tumoral) and blood were collected from the
literature [48,56]. The temperature dependence of the dielectric and thermal properties of
both healthy and malignant liver tissues, blood perfusion, and water content were included
because of the importance of establishing a correct ablation process.

The size of the ablative zone was determined by the amount of energy delivered from
the microwave generator to the antenna. Higher input power than the optimal value led to
significant damage to surrounding healthy tissue, due to undesirable shapes of ablation
zones. The optimal values of the input power for tumors 1.07 [51] and 1.03 [51] were 10 W
and 12 W, respectively, enabling optimal ablation zones concentrated around the tip and
slots of the antenna, resulting in successful ablation of the tumors with minimal damage
to healthy tissues. As expected, a higher power would increase temperatures and reduce
the overall time to necrose tumoral tissue. For tumor 1.07 [51], the ablation times for 25 W
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and 10 W differed by approximately 60%. For tumor 1.03 [51], the application of 25 W
would reduce the ablation time by approximately 57%, compared to that for 12 W. However,
higher values of input power and shorter ablation time sometimes led to the formation of
elongated ablation zones, causing significant damage to healthy tissue around the tumor.
In addition, it was reported that delivery of high-power, short-duration ablation is not
commonly used because of the increased risk of steam pop and thrombus formation [65].
The temperature increased with the ablation time, reaching the maximum value near the
microwave antenna slots. The maximal temperature for 25 W differed by approximately
21%, 15%, 9%, and 8.5% from those calculated for 12 W, 15 W, 17 W, and 20 W, respectively.
It was also demonstrated that axisymmetric calculations are not sufficient to estimate the
optimal input power and ablation time. Thus, full 3D simulations, that take into account
details of the tumor geometry, are needed [48,66].

The obtained results can be used to determine the optimal conditions for microwave
ablation to be as effective as possible for treating liver tumors with minimal invasive-
ness and collateral damage. The developed three-dimensional predictive model of the
microwave ablation procedure with all details of the tissue antenna design is a prerequisite,
not only for further ablation studies but also for planning the MWA procedure for each
patient individually. Regarding the limitations of the simulation model, it has to be pointed
out that macroscale models of biological tissues are either based on the mixture theory of
continuum mechanics or on the porous-media theory [67]. Simply put, Pennes’ bioheat
equation belongs to the first group, reducing the complete tissue model to a single heat
transport equation with an additional term describing heat removal by blood perfusion.
Models based on porous-media theory [67–69] are more complex, usually containing at
least two equations: one for tissue and one for blood temperature. Of course, more sub-
tle aspects can be included (thermo-mechanical, microscopic, etc.), but in this paper, we
concentrated on problems connected with full 3D modeling of antennae used in MWA
procedures and realistic tumor shapes of actual patients. Finally, it has to be pointed out
that before any applications, experimental validation is mandatory to verify the reliability
of predictive models.

Author Contributions: Conceptualization, M.R.-R. and B.R.; methodology, M.R.-R., B.R., N.B. and
M.S.; software, B.R., M.R.-R. and N.B.; investigation and data interpretation, M.R.-R., B.R., N.B.
and M.S.; original draft preparation, M.R.-R. and B.R.; writing—review, and editing, all of the
authors; supervision, B.R. and M.R.-R. All authors have read and agreed to the published version of
the manuscript.

Funding: Authors M.R.-R., N.B. and B.R. acknowledge that this research was supported by the
Science Fund of the Republic of Serbia, The Program IDEAS, GRANT No. 7739583, SimSurgery.
M.S. acknowledges support of the Operational Programme Integrated Infrastructure for the projects:
International Center of Excellence for Research on Intelligent and Secure Information and Commu-
nication Technologies and Systems (ITMS code: 313021W404) and Research in the SANET network
and possibilities of its further use and development (ITMS code: 313011W988), co-funded by the
European Regional Development Fund (ERDF).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yamashita, T.; Wang, X.W. Cancer stem cells in the development of liver cancer. J. Clin. Investig. 2013, 123, 1911–1918. [CrossRef]

[PubMed]
2. Sia, D.; Villanueva, A.; Friedman, S.L.; Llovet, J.M. Liver Cancer Cell of Origin, Molecular Class, and Effects on Patient Prognosis.

Gastroenterology 2017, 152, 745–761. [CrossRef] [PubMed]
3. Willacy, H. Primary Liver Cancer. 2018. Available online: https://patient.info/cancer/primary-liver-cancer-leaflet (accessed on

8 February 2022).

http://doi.org/10.1172/JCI66024
http://www.ncbi.nlm.nih.gov/pubmed/23635789
http://doi.org/10.1053/j.gastro.2016.11.048
http://www.ncbi.nlm.nih.gov/pubmed/28043904
https://patient.info/cancer/primary-liver-cancer-leaflet


Biomedicines 2022, 10, 1569 12 of 14

4. Pichard, G. Understanding Liver Cancer—The Basics. 2019. Available online: https://www.webmd.com/cancer/understanding-
liver-cancer-basic-information (accessed on 10 February 2022).

5. Crespo, M.; Leiva, M.; Sabio, G. Circadian Clock and Liver Cancer. Cancers 2021, 13, 3631. [CrossRef] [PubMed]
6. Liu, H.; Zhang, W.; Jia, Y.; Yu, Q.; Grau, G.E.; Peng, L.; Ran, Y.; Yang, Z.; Deng, H.; Lou, J. Single-cell clones of liver cancer stem

cells have the potential of differentiating into different types of tumor cells. Cell Death Dis. 2013, 4, e857. [CrossRef] [PubMed]
7. Gaba, R.C.; Zivin, S.P.; Dikopf, M.S.; Parvinian, A.; Casadaban, L.C.; Lu, Y.; Bui, J.T. Characteristics of Primary and Secondary

Hepatic Malignancies Associated with Hepatopulmonary Shunting. Radiology 2014, 271, 602–612. [CrossRef] [PubMed]
8. Watson, J.; Hydon, K.; Lodge, P. Primary and secondary liver tumours. InnovAiT 2016, 9, 477–482. [CrossRef]
9. Heinrich, S.; Lang, H. Hepatic resection for primary and secondary liver malignancies. Innov. Surg. Sci. 2017, 2, 1–8. [CrossRef]
10. Markman, M. Liver Cancer Types. 2021. Available online: https://www.cancercenter.com/cancer-types/liver-cancer/types

(accessed on 13 February 2022).
11. Vogl, T.J.; Nour-Eldin, N.A.A.; Hammerstingl, R.M.; Panahi, B.; Naguib, N.N.N. Microwave Ablation (MWA): Basics, Technique

and Results in Primary and Metastatic Liver Neoplasms—Review Article. Fortschr. Röntgenstr. 2017, 189, 1055–1066. [CrossRef]
12. Llovet, J.M.; Kelley, R.K.; Villanueva, A.; Singal, A.G.; Pikarsky, E.; Roayaie, S.; Lencioni, R.; Koike, K.; Zucman-Rossi, J.; Finn, R.S.

Hepatocellular carcinoma. Nat. Rev. Dis. Prim. 2021, 7, 6. [CrossRef]
13. Hui, T.C.; Kwan, J.; Pua, U. Advanced Techniques in the Percutaneous Ablation of Liver Tumours. Diagnostics 2021, 11, 585.

[CrossRef]
14. Shira, K.; Ebata, T.; Oda, K.; Nishio, X.; Nagasaka, T.; Nimura, Y.; Nagino, M. Perineural Invasion Is a Prognostic Factor in

Intrahepatic Cholangiocarcinoma. World J. Surg. 2008, 32, 2395–2402. [CrossRef] [PubMed]
15. Chen, J.G.; Chen, H.Z.; Zhu, J.; Yang, Y.L.; Zhang, Y.H.; Huang, P.X.; Chen, Y.S.; Zhu, C.Y.; Yang, L.P.; Shen, K.; et al. Cancer

survival in patients from a hospital-based cancer registry, China. J. Cancer. 2018, 9, 851–860. [CrossRef] [PubMed]
16. Chen, J.; Zhu, J.; Zhang, Y.; Chen, Y.; Lu, J.; Zhu, Y.; Chen, H.; Shen, A.; Wang, G.; Groopman, J.D.; et al. Liver cancer mortality

over six decades in an epidemic area: What we have learned. PeerJ 2021, 9, e10600. [CrossRef] [PubMed]
17. Linn, Y.L.; Chee, M.Y.; Koh, Y.X.; Teo, J.T.; Cheow, P.C.; Chow, P.K.H.; Chan, C.Y.; Chung, A.Y.F.; Ooi, L.L.P.; Jgoh, B.K.P. Actual

10-year survivors and 10-year recurrence free survivors after primary liver resection for hepatocellular carcinoma in the 21st
century: A single institution contemporary experience. J. Surg. Oncol. 2021, 123, 214–221. [CrossRef]

18. Chen, J.G.; Zhu, J.; Zhang, Y.H.; Chen, Y.S.; Ding, L.L.; Chen, H.Z.; Shen, A.G.; Wang, G.R. Liver Cancer Survival: A Real World
Observation of 45 Years with 32,556 Cases. J. Hepatocell. Carcinoma 2021, 8, 1023–1034. [CrossRef]

19. Chen, J.G.; Zhang, Y.H.; Zhu, J.; Lu, J.H.; Wang, J.B.; Sun, Y.; Xue, X.F.; Lu, L.L.; Chen, Y.S.; Wu, Y.; et al. Early diagnosis and
early treatment for liver cancer in Qidong: Survival of patients and effectiveness of screening. Chin. J. Oncol. 2017, 39, 946–951.
[CrossRef]

20. Hassanipour, S.; Mohammadzadeh, M.; Mansour-Ghanaei, F.; Fathalipour, M.; Joukar, F.; Salehiniya, H.; Abdzadeh, E.; Samadani,
A.A.; Nikbakht, H.A.; Arab-Zozani, M. The Incidence of Hepatocellular Carcinoma in Iran from 1996 to 2016: A Systematic
Review and Meta-analysis. J. Gastrointest. Cancer 2019, 50, 193–200. [CrossRef]

21. Chen, J.G.; Zhang, Y.H.; Lu, L.L.; Chen, H.Z.; Shen, A.G.; Zhu, Y.R. Liver cancer screening in China: Practices and its extended
questions. Hepatoma. Res. 2019, 5, 2. [CrossRef]

22. Chong, C.C.N.; Lee, K.F.; Chu, C.M.; Chan, A.W.H.; Wong, J.; Chan, S.L.; Lok, H.T.; Fung, A.K.Y.; Fong, A.K.Y.; Cheung, Y.S.; et al.
Microwave ablation provides better survival than liver resection for hepatocellular carcinoma in patients with borderline liver
function: Application of ALBI score to patient selection. HPB 2018, 20, 546–554. [CrossRef]

23. Liu, C.Y.; Chen, K.F.; Chen, P.J. Treatment of Liver Cancer. Cold Spring Harb. Perspect. Med. 2015, 5, a021535. [CrossRef]
24. Ong, S.L.; Gravante, G.; Metcalfe, M.S.; Strickland, A.D.; Dennison, A.R.; Lloyd, D.M. Efficacy and safety of microwave ablation

for primary and secondary liver malignancies: A systematic review. Eur. J. Gastroenterol. Hepatol. 2009, 21, 599–605. [CrossRef]
[PubMed]

25. Facciorusso, A.; Di Maso, M.; Muscatiello, N. Microwave ablation versus radiofrequency ablation for the treatment of hepatocel-
lular carcinoma: A systematic review and meta-analysis. Int. J. Hyperth. 2016, 32, 339–344. [CrossRef] [PubMed]

26. Glassberg, M.B.; Ghosh, S.; Clymer, J.W.; Wright, G.W.J.; Ferko, N.; Amaral, J.F. Microwave ablation compared with hepatic
resection for the treatment of hepatocellular carcinoma and liver metastases: A systematic review and meta-analysis. World J.
Surg. Oncol. 2019, 17, 98. [CrossRef] [PubMed]

27. Suresh, D.; Srinivas, A.N.; Kumar, D.P. Etiology of Hepatocellular Carcinoma: Special Focus on Fatty Liver Disease. Front. Oncol.
2020, 10, 601710. [CrossRef]

28. Koulouris, A.; Tsagkaris, C.; Spyrou, V.; Pappa, E.; Troullinou, A.; Nikolaou, M. Hepatocellular Carcinoma: An Overview of the
Changing Landscape of Treatment Options. J. Hepatocell. Carcinoma 2021, 8, 387–401. [CrossRef]

29. Reig, M.; Forner, A.; Rimola, J.; Ferrer-Fàbrega, J.; Burre, M.; Garcia-Criado, A.; Kelley, R.K.; Galle, P.R.; Mazzaferro, V.; Salem,
R.; et al. BCLC strategy for prognosis prediction and treatment recommendation: The 2022 update. J. Hepatol. 2022, 76, 681–693.
[CrossRef]

30. Radiofrequency Ablation (RFA)/Microwave Ablation (MWA) of Liver Tumors. 2021. Available online: https://www.
radiologyinfo.org/en/info/rfaliver (accessed on 14 February 2022).

https://www.webmd.com/cancer/understanding-liver-cancer-basic-information
https://www.webmd.com/cancer/understanding-liver-cancer-basic-information
http://doi.org/10.3390/cancers13143631
http://www.ncbi.nlm.nih.gov/pubmed/34298842
http://doi.org/10.1038/cddis.2013.340
http://www.ncbi.nlm.nih.gov/pubmed/24136221
http://doi.org/10.1148/radiol.14131969
http://www.ncbi.nlm.nih.gov/pubmed/24533871
http://doi.org/10.1177/1755738016653419
http://doi.org/10.1515/iss-2017-0009
https://www.cancercenter.com/cancer-types/liver-cancer/types
http://doi.org/10.1055/s-0043-117410
http://doi.org/10.1038/s41572-020-00240-3
http://doi.org/10.3390/diagnostics11040585
http://doi.org/10.1007/s00268-008-9726-2
http://www.ncbi.nlm.nih.gov/pubmed/18795245
http://doi.org/10.7150/jca.23039
http://www.ncbi.nlm.nih.gov/pubmed/29581763
http://doi.org/10.7717/peerj.10600
http://www.ncbi.nlm.nih.gov/pubmed/33604165
http://doi.org/10.1002/jso.26259
http://doi.org/10.2147/JHC.S321346
http://doi.org/10.3760/cma.j.issn.0253-3766.2017.12.013
http://doi.org/10.1007/s12029-019-00207-y
http://doi.org/10.20517/2394-5079.2019.03
http://doi.org/10.1016/j.hpb.2017.12.001
http://doi.org/10.1101/cshperspect.a021535
http://doi.org/10.1097/MEG.0b013e328318ed04
http://www.ncbi.nlm.nih.gov/pubmed/19282763
http://doi.org/10.3109/02656736.2015.1127434
http://www.ncbi.nlm.nih.gov/pubmed/26794414
http://doi.org/10.1186/s12957-019-1632-6
http://www.ncbi.nlm.nih.gov/pubmed/31182102
http://doi.org/10.3389/fonc.2020.601710
http://doi.org/10.2147/JHC.S300182
http://doi.org/10.1016/j.jhep.2021.11.018
https://www.radiologyinfo.org/en/info/rfaliver
https://www.radiologyinfo.org/en/info/rfaliver


Biomedicines 2022, 10, 1569 13 of 14

31. Ausania, F.; Borin, A.; Melendez, R.; del Rio, P.S.; Iglesias, A.; Bodenlle, P.; Paniagua, M.; Arias, M. Microwave ablation of
colorectal liver metastases: Impact of a 10-mm safety margin on local recurrence in a tertiary care hospital. Ann. Hepatobiliary
Pancreat. Surg. 2021, 25, 366–370. [CrossRef]

32. Inchingolo, R.; Posa, A.; Mariappan, M.; Spiliopoulos, S. Locoregional treatments for hepatocellular carcinoma: Current evidence
and future directions. World J. Gastroenterol. 2019, 25, 4614–4628. [CrossRef]

33. Yau, T.; Kang, Y.K.; Kim, T.Y.; El-Khoueiry, A.B.; Santoro, A.; Sangro, B.; Melero, I.; Kudo, M.; Hou, M.M.; Matilla, A.; et al.
Nivolumab (NIVO) + ipilimumab (IPI) combination therapy in patients (pts) with advanced hepatocellular carcinoma (aHCC):
Results from CheckMate 040. J. Clin. Oncol. 2019, 37, 4012. [CrossRef]

34. Crocetti, L.; Scalise, P.; Bozzi, E.; Campani, D.; Rossi, P.; Cervelli, R.; Bargellini, I.; Ghinolfi, D.; De Simone, P.; Cioni, R. Microwave
Ablation of Very-Early- and Early-Stage HCC: Efficacy Evaluation by Correlation with Histology after Liver Transplantation.
Cancers 2021, 13, 3420. [CrossRef]

35. Primavesi, F.; Swierczynski, S.; Klieser, E.; Kiesslich, T.; Jäger, T.; Urbas, R.; Hutter, J.; Neureiter, D.; Öfner, D.; Stättner, S.
Thermographic real-time-monitoring of surgical radiofrequency and microwave ablation in a perfused porcine liver model. Oncol.
Lett. 2018, 15, 2913–2920. [CrossRef] [PubMed]

36. Huang, H.; Zhang, L.; Moser, M.A.J.; Zhang, W.; Zhang, B. A review of antenna designs for percutaneous microwave ablation.
Phys. Med. 2021, 84, 254–264. [CrossRef] [PubMed]

37. Kuroda, H.; Nagasawa, T.; Fujiwara, Y.; Sato, H.; Abe, T.; Kooka, Y.; Endo, K.; Oikawa, T.; Sawara, K.; Takikawa, Y. Comparing the
Safety and Efficacy of Microwave Ablation Using Thermosphere™ Technology versus Radiofrequency Ablation for Hepatocellular
Carcinoma: A Propensity Score-Matched Analysis. Cancers 2021, 13, 1295. [CrossRef] [PubMed]

38. Ge, M.; Jiang, H.; Huang, X.; Zhou, Y.; Zhi, D.; Zhao, G.; Chen, Y.; Wang, L.; Qiu, B. A multi-slot coaxial microwave antenna for
liver tumor ablation. Phys. Med. Biol. 2018, 6, 175011. [CrossRef]

39. Andreozzi, A.; Iasiello, M.; Netti, P.A. A thermoporoelastic model for fluid transport in tumour tissues. J. R. Soc. Interface 2019,
16, 20190030. [CrossRef]

40. Singh, S.; Melnik, R. Domain heterogeneity in radiofrequency therapies for pain relief: A computational study with coupled
models. Bioengineering 2020, 7, 35. [CrossRef]

41. Rubio, M.F.; López, G.D.; Perezgasga, F.V.; García, F.F.; Hernández, A.V.; Salas, L.L. Computer Modeling for Microwave Ablation
in Breast Cancer Using a Coaxial Slot Antenna. Int. J. Thermophys. 2015, 36, 2687–2704. [CrossRef]

42. Reinhardt, M.; Brandmaier, P.; Seider, D.; Kolesnik, M.; Jenniskens, S.; Sequeiros, R.B.; Eibisberger, M.; Voglreiterg, P.; Ronan
Flanagan, R.; Mariappan, P.; et al. A prospective development study of software-guided radio-frequency ablation of primary and
secondary liver tumors: Clinical intervention modelling, planning and proof for ablation cancer treatment (ClinicIMPPACT).
Contemp. Clin. Trials Commun. 2017, 8, 25–32. [CrossRef]
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