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ABSTRACT
Complex interactions between genes determine the development and differentiation of cells. We establish a
landscape theory for cell differentiation with proliferation effect, in which the developmental process is
modeled as a stochastic dynamical system with a birth-death term. We find that two different energy
landscapes, denotedU and V, collectively contribute to the establishment of non-equilibrium steady
differentiation.The potentialU is known as the energy landscape leading to the steady distribution, whose
metastable states stand for cell types, while V indicates the differentiation direction from pluripotent to
differentiated cells.This interpretation of cell differentiation is different from the previous landscape theory
without the proliferation effect. We propose feasible numerical methods and a mean-field approximation
for constructing landscapesU and V. Successful applications to typical biological models demonstrate the
energy landscape decomposition’s validity and reveal biological insights into the considered processes.
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INTRODUCTION
Cell differentiation makes the biological world rich
and colorful. Modeling and understanding the dy-
namics of gene regulatory networks (GRNs) are es-
sential to explore the underlying mechanism of cell
differentiation [1]. Since Waddington proposed his
seminal metaphor of the epigenetic landscape [2,3],
differentiationhas been intuitively described as a ball
rolling down a surface, i.e. the energy landscape.

There aremainly two approaches to construct the
energy landscape for biosystems. One is the data-
based approach, which tries to identify cluster/cell
types, differentiation trajectories, pseudotime and
cell pluripotency from the experimental data, espe-
cially single-cell RNA sequencing (scRNA-seq) data
[4–8]. Various algorithms have been proposed from
the theoryof graph[9,10], entropy [6,11,12] anddy-
namical systems [13–16]. Among these data-based
methods, the population balance analysis (PBA)
[13–15] and landscape of differentiation dynam-
ics (LDD) [16] especially involve cell prolifera-
tion and death rates, which generalize the hypoth-
esis of cell differentiation from equilibrium to non-
equilibrium steady processes. The other approach
is the model-based approach, which tries to build

dynamic equations from the GRN, analyze the
dynamical behavior of the system and then con-
struct energy landscapes using numerical simula-
tions. Wang et al. proposed a practical framework
for constructing energy landscapes for biosystems
without cell birth and death effects [17–19]. They
defined the landscape as U (x) = −ε log Ps s (x),
where x is the gene expression vector, Ps s (x) is the
steadyprobability density function (PDF)of the sys-
tem and ε is related to the amplitude of small intrin-
sic noise. By changing parameter values to control
the biological process, the landscape pattern varies,
which gives an intuitive description of cell-type lo-
cations and transition probability between clusters.
This framework has been widely used in modeling
the budding yeast cell cycle [17], human stem cell
fate [19] and Caenorhabditis elegans ageing [20].
Without the cell proliferation effect, however, the di-
rection of differentiation is usually not intrinsic in
Wang’s landscapebut controlled bymanually setting
parameters. Beyond the topics above, there are also
many other interesting works related to the energy
landscape theory [21–27].

In this study, we follow the model-based ap-
proach but consider the birth and death rates
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(BDRs) of cells in differentiation, which is inspired
by the PBA and LDD. We show that there are
two important energy landscapes to describe differ-
entiation dynamics, which are denoted U (x) and
V (x) and are also computable using themodel.The
metastable states in U (x) represent cell types, and
the value of V (x) implicates pluripotency.The neg-
ative gradient of V (x) shows the direction of dif-
ferentiation. Taking BDRs into account is essential
for constructing the pluripotency landscape V (x).
Here, we explain our theory of the energy landscape
decomposition (ELD) in cell differentiation with
proliferation effect. Numerical algorithms for con-
structing energy landscapes and the mean-field ap-
proximation (MFA) in high-dimensional cases are
also proposed. We use three examples to show the
application of the ELD, where U (x) and V (x) in-
tuitively explain the processes of cell differentiation.

RESULTS
Modeling cell differentiation
at the population level
Motivated by Weinreb et al. [13] and Briggs
et al. [15], we modeled cell development through
a stochastic dynamical system with the birth-
death term. We denote gene expression levels
using x ∈ R

n . During cell differentiation, the cell
population is quantified using a PDF p(x , t),
whose evolution follows a generalized form of the
well-known Fokker-Planck equation (FPE), i.e.

∂p(x , t)
∂t

= −∇ · (b(x)p(x , t)) + ε�p(x , t)

+ R(x)p(x , t), (1)

with an initial PDF p(x , t = 0) at t = 0, where
b(x) represents the biological interactions between
genes, ε is a parameter standing for the noise ampli-
tude and R(x) stands for the net BDR of cells at x .
In a practical application, b(x) is usually modeled
using either activated or inhibited Hill functions, ac-
cording to the considered GRN. Here R(x) > 0
indicates the proliferation of cells, while R(x) < 0
indicates the death of cells. When R(x) ≡ 0, (1)
reduces to the standard FPE without any cell prolif-
eration effect. To ensure a non-explosive and non-
degenerative steady PDF ps s (x) for (1), we require
the following condition as a constraint for R(x):

∫
R(x)ps s (x) dx = 0. (2)

It is necessary to have a non-trivial R(x) to char-
acterize the population balance of the cell birth and
death in the steady state.

Modeling cell differentiation
at the single-cell level
The population-level dynamics in (1) can also be
viewed as the probabilistic interpretation at the
single-cell level. We consider a cell ω with gene ex-
pression X t(ω) starting from Y 0 at t = 0 and pro-
pose a weighted stochastic dynamics in the Itô sense
as

dX t(ω) = b(X t(ω)) dt + √
2ε dW t(ω), (3a)

X t |t=0 = Y 0(ω), (3b)

dρt(ω) = R(X t(ω))ρt(ω) dt, (3c)

ρt |t=0 = 1, (3d)

where Y 0 is distributed according to p0(x),W t is a
standard Brownian motion with independent com-
ponents and ρ t(ω) stands for a time-varying weight
for cell ω. The connection between (1) and (3) is
represented as

p(x , t) = E{ρt(ω)δ(x − X t(ω))}, (4)

where δ is the Dirac delta function and the expec-
tation is taken over all the possible trajectories ω

(see the online supplementary material for details).
The weight ρ t(ω) increases at t when R(X t(ω)) >

0, which corresponds to cell proliferation, while it
decreases at t when R(X t(ω)) < 0, which corre-
sponds to cell death. If R(x) ≡ 0, the weight ρ t(ω)
is a constant for every cell and the system reduces
to the case without any cell proliferation, which is
discussed byWang et al. [17,18].

Energy landscape decomposition
Based on the above dynamical modeling of cell
development, we focus on the construction of the
landscapes using the model-based approach, i.e. we
assume that b(x), ε, and R(x) are known a priori.

We denote by PU (x) the steady PDF with
the known BDR R(x) and by P0(x) the steady
PDF with R(x) ≡ 0, for (1). Note that the no-
tation P0(x) is different from the initial distribu-
tion p(x , t = 0). Then, two energy landscapes are
constructed as

U (x) = −ε log PU (x), (5)
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Figure 1. An illustration of the ELD framework. (a) The GRN, which reins cell differentiation dynamics. Dynamical flow b(x ) can be modeled using the
GRN, and its vector field is drawn in an illustrative space (X, Y). (b) Cells can proliferate or die at a natural birth and death rate R (x ). Proliferation
with R (x ) > 0 is shown in red, while cell death with R (x ) < 0 is in blue (jet colormap). (c) The ELD theory in this study. The dynamics (b(x ), R (x ))
can be characterized using two potential terms (energy landscapes) U (x ) and V (x ), and a curl part term f (x ). We define U (x ) and V (x ) using two
steady PDFs, denoted PU (x ) and P 0(x ). (d) The combination of dynamical flow b(x ) (arrows) and birth and death rate R (x ) (jet colored background).
(e–g) Illustrations for the cell-type landscape U (x ), the pluripotency landscape V (x ) and the curl part term f (x ), respectively. Metastable states of
U (x ) shown in (e) stand for different cell types. The values of V (x ) shown in (f) indicate the pluripotency, with its negative gradient depicting the
differentiation direction. The color bar in (f) is calculated using the mean value of V along the X axis, which displays an intuitive global differentiation
direction. In (g), landscape U (x ) + V (x ) is plotted as the background, while the curl part term f (x ) is indicated by the vectors.

which drives the system or cells to the steady distri-
bution, and

V (x) = −ε log P0(x) − (−ε log PU (x))

= −ε log(P0(x)/PU (x)), (6)

which quantifies the change of the potential caused
by R(x), i.e. the influence induced by cell prolifer-
ation and death. The metastable basins in landscape
U (x) indicate cell types, and the depth of each basin
characterizes its stability. The values of V depict the
pluripotency and its negative gradient field describes
the differentiation direction. From a stem cell state
to a differentiated cell state, V decreases gradually.
ThepotentialU is the cell-type landscape andV is the
pluripotency landscape. Besides the two potential
functions, the remaining term f (x) is defined as

f (x) = b(x) + ∇U (x) + ∇V (x), (7)

which is the curl part that describes the non-
gradientness of the considered dynamics.The f (x)
term satisfies

∇ · ( f (x)P0(x)) = 0, (8)

which corresponds to the divergence-free condition
of the curl flux J(x) = f (x)P0(x) defined in
[17,18].

In summary, we propose an energy decomposi-
tion for the differentiation dynamics characterized
by the pair (b(x), R(x)) in our ELD framework as

b(x) = −∇U (x) − ∇V (x) + f (x). (9)

ThepotentialsU andV, togetherwith the curl part f ,
help us have a deep understanding of cell differentia-
tion and cell subtypes along the differentiation path-
way. Figure 1 presents an illustration of the whole
ELD procedure.

Theconnectionbetween theELDframeworkand
the existing landscape theory is as follows. In the case
of no birth and death of cells, i.e. R(x) ≡ 0, (9) re-
duces to Wang’s landscape decomposition [17–19]
with PU (x) ≡ P0(x) and V (x) ≡ 0; if the system
is of gradient type with b(x) = −∇F (x), (9) re-
duces to the landscape decomposition discussed in
PBA and LDD [13,16] with f (x) ≡ 0.
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In a case that only ps s (x) is known, PBA and
LDDdefine the energy landscapeV for gradient sys-
tems by solving the equation

∇ log ps s (x) · ∇V (x) + �V (x) = −R(x).
(10)

with proper boundary conditions. However, for a
non-gradient system, we show that (10) is not al-
ways valid, unless the curl part f satisfies f (x) ⊥
∇V (x) almost everywhere (see the online supple-
mentary material for details). In this sense, we pro-
vide a more general definition of V using (6). More
detailed discussion about the ELD can be found in
the online supplementary material.

Numerical construction of energy
landscapes
According to the definitions of potentials U (x) in
(5) and V (x) in (6), we can compute the energy
landscapes once the steady distributions PU (x) and
P0(x) are obtained. Next we discuss the numerical
methods for the low-dimensional case and the high-
dimensional case separately.

Solving FPE for the low-dimensional case
For the low-dimensional case (usually in less than
three dimensions), we used the finite difference or
finite element method to solve (1) numerically un-
til the steady state. For a small parameter ε, the
spatial scale h of the grids in traditional methods
is needed to be set as h 	 ε to resolve the dy-
namical behavior of such a convection-dominated
equation, which would be impractical. We uti-
lized the streamline diffusion method [28] that can
avoid the numerical oscillations even when h >

ε. The detailed procedure of the streamline diffu-
sion method is described in the online supplemen-
tary material in a two-dimensional case. It is also
applied in our numerical examples in the Results
section.

Mean-field approximation in the
high-dimensional case
For the high-dimensional case, it is not feasible to di-
rectly solve (1). Thus, we start from the single-cell
dynamics (3) and propose an MFA approach to re-
duce the computational complexity from exponen-
tial to polynomial time. Overall, the potentials PU
and P0 are approximated by the Gaussian mixtures
in theMFA, i.e.

p(x) =
K∑

k=1

ρ(k) p(k)(x ;μ(k),�(k)), (11)

where K is the number of components obtained by
the counts of stable states in the deterministic dy-
namics dx t/ dt = b(x t), p(k)(x ;μ(k),�(k)) is the
kthGaussian componentwithmeanμ(k) and covari-
ance ε�(k), and ρ(k) is the mixture weight. These
approximations are obtained through asymptotics of
(3) with respect to the small parameter ε.
Short time asymptotics.We denote by �k the kth at-
tractive basin for the X t dynamics in (3). In the
O(1) timescale (or the transition timescale in �k),
there is no state hopping and we derive the ap-
proximation X t ≈ μ

(k)
t + √

εZ (k)
t , where Z (k)

t ∼
N(0,�(k)

t )when the initialY 0 ∈ �k .Themeanand
covariance satisfy the equations

dμ(k)
t

dt
= L1

(
μ
(k)
t ,�

(k)
t , ε

)
, (12a)

d�(k)
t

dt
= L2

(
μ
(k)
t ,�

(k)
t , ε

)
, (12b)

where L1 and L2 are functions derived from the Tay-
lor expansion of b(x) aroundμ

(k)
t untilO(ε) terms.

The details are shown in the online supplementary
material. The parameters (μ(k),�(k)) are steady
states of (12). Especially, L1(μ,�, ε) = b(μ) in
theO(1) approximation (i.e. ε = 0) and we recover
the classical MFA [17,29].
Long time asymptotics.Thedetermination of themix-
ture weights {ρ(k)} is designed to take into account
the basin transitions in a longer time scale like log (t)
�O(1/ε). In this regime, the diffusion dynamics of
X t is upscaled to a continuous-time Markov chain,
in which the Arrhenius-type transition rates depend
on the energy barriers between the corresponding
attraction basins [30,31]. We assume that the up-
scaled transition rate matrix is Q and define Rk =∫
R(x)p(k)(x ,μ(k), 	(k)) dx as the average BDR.

The evolution of weights ρ with/without a birth-
death term R(x) shows the asymptotics

dρU

dt
= QTρU + RρU ,

dρ0

dt
= QTρ0,

(13)
where R = diag(Rk), ρU = (ρ(k)

U ) is the mixture
weights for PU (x) and ρ0 = (ρ(k)

0 ) is the mixture
weights for P0(x). As accurate Q is difficult to ob-
tain, we perform a Monte Carlo approximation to
steady ρ0 by utilizing the equation

ρ
(k)
0 ≈ lim

t→+∞ E[δ(X t(ω) ∈ �k)], (14)

where the trajectories are simulated with a uniform
initial distribution on a finite domain at t= 0 until a
suitable finite ending time t = T. Such a choice ac-
tually gives the same MFA as proposed in [17,18]
without the R(x) term. With ergodic assumption,
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the steady mixture weights ρ
(k)
U for PU (x) are

derived as

ρ
(k)
U ≈ lim

t→+∞ E[ρt(X t(ω))δ(X t(ω) ∈ �k)]

= ρ
(k)
0 qk

qk − Rk
, (15)

whereqk =−Qkk is the exit rate for state k.Under the
constraint equation, (2), and an additional assump-
tion that 1/qk ∝ ρ

(k)
0 , an approximation for qk and

thusρ(k)
U is also obtained (see the online supplemen-

tary material for details).
With the mean-field approximations P0(x) and

PU (x), we obtain the estimations for the landscapes
U (x) and V (x) using (5) and (6), respectively.

Several detailed remarks need to be made.
(i) There is also an MFA to (1), but, for multi-
potential systems, the MFA to (1) can have differ-
ent numbers of components with different parame-
ters when approximating P0(x) and PU (x), respec-
tively. That can lead to an odd V (x). Thus, one of
the advantages of the MFA to (3) is that the num-
bers of componentsK and p(k)(x ,μ(k), 	(k)) com-
puted using (12) are independent of the BDR R(x ),
and onlymixtureweights estimated in (14) and (15)
are different. (ii) The MFA to (3) is not suitable for
monostable systems, as the mixture weight for tra-
jectories in the only attractive basin is supposed to
be the same. For the system with a uni-component,
we use the MFA to (3), which is also described in
detail in the online supplementary material. For real
problems,most systems aremulti-stablewith several
different components. (iii) In (12), the MFA is ex-
panded to O(ε) in functions L1 and L2. In Wang’s
framework [17,18] where R(x) ≡ 0, it is only ex-
panded toO(1) to estimate energy landscapeU (x).
In the online supplementary material, we state that
it is necessary to have the MFA to O(ε) to obtain a
proper approximation of V (x). Two analytic exam-
ples are also used to validate the necessity.

Numerical examples
In this section, we utilize three examples to show
how we applied the ELD framework to describe cell
differentiation.

Example 1: two-dimensional drift-diffusion
process
For thefirst example,weuse a two-dimensional drift-
diffusion process as a basic example for simulating
cell differentiation [13,16]. In this example, we take
b(x) = −∇F (x) to be a gradient field with

F (x) =
(
x21
2

+ x2
2

)2

+ (x22 − 1)2

2
, (16)
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Figure 2. The landscapes for the two-dimensional drift-
diffusion process. (a) The landscape U. Three metastable
states represent three cell types. (b) The landscape V. The
cells differentiate from the state at a high value of V to a
lower value.

and set the rate function R(x) = 0.3[(x21 − 1)2 +
(x2 + 1)2 − 1], where x = (x1, x2)T . The noise
parameter is ε = 0.01. There exist three sta-
ble equilibrium points of the potential F (x), i.e.
x A = (0,

√
3/2)T , x B = (−1,−1)T and xC =

(1,−1)T , which correspond to three cell types. Ac-
cording to R(x), most cells proliferate around x A ,
and die around x B and xC .Thus, cell type A around
x A stands for stem cells with high pluripotency,
while cell typesB around x B andC around xC repre-
sent differentiated states. Using the streamline diffu-
sionmethod to solve (1)with andwithout R(x), we
obtain the distributionsPU andP0, respectively. Fur-
thermore, the energy landscapes U and V are con-
structed as shown in Fig. 2.Three cell types are easily
identified inU (x).The effect of the birth and death
rate R(x) determines the differentiation direction
of the process, and the values of V (x) characterize
the stemness from high to low. Figure S1 within on-
line supplementary material also shows the original
potential F (x), together with the two-dimensional
projections ofU and V.

Example 2: the two-gene fate decision system
The second example models a binary cell fate deci-
sioncontrolledby the interactionbetween twogenes
[18,32,33]. Figure 3a shows the regulatory relation-
ships between the two genes. It is modeled using a
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Figure 3. (a) The interaction between two genes X1 and X2 in the fate decision system. Self-activation and inter-inhibition are observed. (b) The
landscape U when the amplitude of the birth and death rate is set as r = 0. (c) The landscape U changes when r decreases from 30 to 3. (d) The
landscape V changes when r decreases from 30 to 3.

non-gradient Hill dynamics as

b(x) =
[ α1xn1

Sn+xn1
+ β1Sn

Sn+xn2
− k1x1

α2xn2
Sn+xn2

+ β2Sn
Sn+xn1

− k2x2

]
, (17)

where the parameters are set as α1 = α2 = 0.3,
β1 = β2 = 0.5, n = 4, k1 = k2 = 1 and S = 0.5.
Through self-activation and inter-inhibition, the two
genes X1 and X2 (such as GATA1 and PU.1) are
coexpressed in the pluripotent stem cell, and one
gene gradually dominates over the other when the
system is committed to two different lineages. In
Wang’s framework, α1, α2, β1 and β2 vary to con-
trol the differentiation [18]. However, in the cur-
rent viewpoint of cell differentiation, ELD theory
claims that, even if these parameters are fixed, the
cell fate decision can be adjusted according to the
change in BDR R(x). To construct the landscapes
U and V, we set the noise amplitude ε = 0.01, and
the birth and death rate R(x) = −r [(x1 − 1)2 +
(x2 − 1)2 − 0.5]. The rate amplitude r is changed
from 30 to 0. Figure 3c and d demonstrate how the
landscapes change when r decreases, and Fig. 3b

shows the landscape ofUwhen r= 0 (the landscape
V ≡ 0). We obtain the following results through
our computations: (i) when the BDR is high (r =
30), there is only one cell type characterized by U,
where X1 and X2 are coexpressed; (ii) this single
state splits into two as the amplitude of BDR de-
creases, i.e. differentiation; (iii) in the two separated
cell types when r = 0, one gene dominates over the
other; (iv) the value of V characterizes the pluripo-
tency of cells, and−∇V indicates the differentiation
direction. Overall, instead of changing the interac-
tion strength between genes, the BDR term R(x)
might also be responsible for explaining cell differ-
entiation, which controls the cell fate decision.

Example 3: T-cell differentiation
The third example is used to describe the T-cell dif-
ferentiation in high-dimensional space [34]. Four
genes x1 (TCF-1), x2 (PU.1), x3 (GATA3) and x4
(BLC11B) interact with each other through acti-
vation or inhibition (see Fig. 4a). The dynamical
term b(x) is modeled using Hill functions and the
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Figure 4. (a) The gene regulatory network in the T-cell differentiation process. The four genes X1, X2, X3 and X4 are TCF-1,
PU.1, GATA3 and BLC11B, respectively. (b) The landscape U and (c) the landscape V. Metastable states represent the T-cell
stages, i.e. ETP/DN1, DN2a, DN2b and DN3. The potential V indicates the pluripotency and differentiation direction.

parameters are listed in the online supplementary
material. We set the BDR as R(x) = 30[4.2 −
x21 − (x2 − 4)2]. Using the MFA equation, (11),
the landscapes are constructed as shown in Fig. 4b
and c. The potential U corresponds to the steady-
state landscape with birth-death term R. The four
metastable states stand for the four stages of devel-
opment of T cells (ETP/DN1, DN2a, DN2b and
DN3).The potential V in Fig. 4c shows the pluripo-
tency of cells with its value and differentiation di-
rection with its negative gradient field. As applied to
MFA, the BDR is also averaged for each Gaussian
component, so the variation of V (x) within each
metastable state/cell type is much smaller than that
shown by U. Accordingly, there exists a sharp varia-
tion of V between two adjacent cell types, as shown
in Fig. 4c.

Besides the four-dimensional example for T-cell
differentiation, we also conducted ELD on a high-
dimensional example with 10 variables shown in
Sec. IV(D) and Figure S2 of the online supplemen-
tary material. These results support the fact that
the ELD and MFA are practical in studying the
metastable states by energy landscape U and the
pluripotency by energy landscape V.

CONCLUSIONS AND DISCUSSIONS
In this paper, we have proposed the ELD framework
to describe cell differentiation with proliferation ef-
fect. Two energy landscapes, U (x) and V (x), can
explain the dynamical behavior of the system during
differentiation. The potential U depicts the attrac-
tors standing for cell types, whileV characterizes the
pluripotency and differentiation direction. The con-
sideration of BDR is important to construct V. With
an additionalV, ELD theory is a generalizationof tra-
ditional energy landscape theory, and it is a natural
realization for Waddington’s epigenetic landscape
with birth-death terms. The numerical construction
of ELD, especially its mean-field approximation in

high-dimensional cases, is introduced. Simulated ex-
amples demonstrate the applicability of ELD. How-
ever, there are still several issues that need to be fur-
ther discussed and studied.

First, the ELD framework is different from other
models for constructing landscapes for cell differen-
tiation. PBA and LDD are data driven, which are
based on the scRNA-seq data and difficult to han-
dle the non-gradient system. Wang’s landscape does
not consider the birth and death of cells during the
differentiation. ELD is model based and analyzes a
landscapeV caused by cell proliferation and death to
display the differentiation direction.

Second, the BDR R(x) in our model is known a
priori. For practical cases, R can be estimated from
experiments (as in PBA, [13]) or approximated for
each cell type (as in LDD, [16]). If only R for cell
types matters, which means that R is a constant
for each metastable state, the corresponding V will
change little within one state while varying sharply
between two adjacent states.

Third, the estimated mixture weights ρ
(k)
0 in

(14) are only rough approximations according to
the size of attractive basins (percentages of trajec-
tories falling into one meta-stable state). A more
rational approach is to get the transition rate ma-
trix Q between different states [31,35–37]. How-
ever, it is difficult to catch rare transitions within the
limited time of the simulation. A quick and accu-
rate way to estimate mixture weights is still an open
question.

Fourth, constructing landscapes for systems
with limit cycles is also possible once a proper BDR
is given. According to the approximation in [17],
p(k)(x) = lims→+∞(1/T)

∫ s+T
s p(x ,μt , 	t) dt

can be used as the kth component in (11), where T
is the period for the limit cycle and p(x ;μt , 	t) is
the Gaussian mean-field approximation of the PDF
at t by simulating (12). Constructing landscapes for
real systems with limit-cycle behavior will be our
future work.
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Finally, in this paper we used FPE with a BDR
term to study the dynamical behavior of the differen-
tiation process in normal cells. For cancer cells that
developed from normal cells, the pluripotency and
proliferation rates may be restored by external fac-
tors. We leave the study of the energy landscape for
cancer or tumor cells to future work.

Overall, the energy landscape is a universal con-
cept to characterize the dynamical behavior of a sys-
tem, and the proposed ELD in this study can help
understand systemswith proliferation anddeath, be-
yond pure reactions. This work can also be applied
to model-based and data-based dynamical analyses
of various biological systems [38–42].

MATERIALS AND METHODS
Detailed methods are available in the online
supplementary material.

SUPPLEMENTARY DATA
Supplementary data are available atNSR online.
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