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Abstract
The current study aimed to elucidate the molecular mechanisms and identify the potential key genes and pathways for metastatic
uveal melanoma (UM) using bioinformatics analysis.
Gene expression microarray data from GSE39717 included 39 primary UM tissue samples and 2 metastatic UM tissue samples.

Differentially expressed genes (DEGs) were generated using Gene Expression Omnibus 2R. Gene ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed using the online Database for
Annotation, Visualization and Integrated Discovery (DAVID) tool. The web-based STRING tool was adopted to construct a protein–
protein interaction (PPI) network. The MCODE tool in Cytoscape was used to generate significant modules of the PPI network.
A total of 213 DEGs were identified. GO and KEGG analyses revealed that the upregulated genes were mainly enriched in

extracellular matrix organization and blood coagulation cascades, while the downregulated DEGs were mainly related to protein
binding, negative regulation of ERK cascade, nucleus and chromatin modification, and lung and renal cell carcinoma. The most
significant module was extracted from the PPI network. GO and KEGG enrichment analyses of the module revealed that the genes
were mainly enriched in the extracellular region and space organization, blood coagulation process, and PI3K-Akt signaling pathway.
Hub genes, including FN1, APOB, F2, SERPINC1, SERPINA1, APOA1, FGG, PROC, ITIH2, VCAN, TFPI, CXCL8, CDH2, and HP,
were identified from DEGs. Survival analysis and hierarchical clustering results revealed that most of the hub genes were associated
with prognosis and clinical progression.
Results of this bioinformatics analysis may provide predictive biomarkers and potential candidate therapeutic targets for individuals

with metastatic UM.

Abbreviations: DEGs = differentially expressed genes, DFS = disease-free survival, GO = Gene Ontology, GEO = Gene
Expression Omnibus, KEGG = Kyoto Encyclopedia of Genes and Genomes, OS = overall survival, PPI = protein–protein interaction,
UM = uveal melanoma.
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1. Introduction

Melanoma is a life-threatening malignancy and the primary
intraocular form is known as uveal melanoma (UM). Among
primary intraocular tumors in the adult population, UM is the
most common. UM may originate from the choroid, iris, or
ciliary body, which are commonly known as the uvea. In
approximately 90% of UM cases, the choroid is involved.[1] The
biological features and clinical behavior of UM are distinct from
those of cutaneous melanoma. Currently, first-line treatment for
UM includes resection, radiation, and eye enucleation. These
therapy options are able to control the local disease but still did
not reduce the risk of distant metastases, which is a key obstacle
to improve the long-term survival of UM. Despite the emergence
of novel treatment modalities, such as immune checkpoint
blockade, gene-targeted therapy, and anti-angiogenic therapy,
the survival rates of patients with UM have not changed in the
past 40 years.[2]

Hematogenous metastases typically involve the liver in
approximately 90% of metastatic cases, the lung(s) is involved
in 24% of cases, and bone in 16%.[3,4] The median time from
initial diagnosis to metastasis is approximately 2 to 3 years; once
metastases occur, prognosis is typically poor, with a median
survival of 2 to 3 months.[5,6] To improve the prognosis of
metastatic UM, the mechanisms of how UMmetastasizes and the
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prognostic factors that can predict the risk for metastasis have
been extensively studied. Shields et al[7] reported that the
thickness of UM is positively associated with increasing risk for
metastasis. Schmittel et al[8] found that primary UMs with a
largest diameter > 14mm and ciliary body involvement have a
poor prognosis. In addition, due to the advances in molecular
biology, some researchers have found that noncoding RNAs,[9–
11] aberrant alterations in chromosomes 1, 3, 6, and 8,[12–14] and
loss-of-function mutations in the BAP1 gene[15] are involved in
metastasis. However, metastatic mechanisms in UM are
particularly complicated, and there are no clinically applicable
molecular biomarkers that can accurately predict metastatic risk.
In recent decades, advances in microarray technology and

bioinformatics analysis have helped to identify key gene(s) and
functional pathways involved in the progression and metastasis
of cancers, which have offered new insights into the molecular
mechanism of metastasis in UM. Thus, in the present study,
messenger RNA (mRNA) microarray datasets from the Gene
Expression Omnibus (GEO) database were obtained and
analyzed to identify differentially expressed genes (DEGs)
between patient-derived primary UM tissues and metastatic
UM tissues, followed by Gene Ontology (GO), Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) pathway enrichment
analysis. Subsequently, a protein–protein interaction (PPI)
network was constructed to interpret the biological interaction
of DEGs.Module analysis of the DEGs was performed to identify
key genes and pathways related to metastatic UM. Finally, a total
of 213 DEGs and 14 hub genes were identified, which may be
potential prognostic markers and therapeutic targets for
metastatic UM.
2. Materials and methods

2.1. Microarray data

The gene expression dataset GSE397127[16] was downloaded
from the GEO database. The GEO (http://www.ncbi.nlm.nih.
gov/geo)[17] is a public database of high-throughput gene
expression data, chips, and microarrays. GSE397127 was based
on the GPL6098 platform (Affymetrix Illumina humanRef-8
version 1.0 expression beadchip), which contained 39 primary
UM tissue samples and 2 liver-metastatic UM samples. The
probes were converted into official gene symbols according to the
annotation information of the platform. The ethical approval
was not necessary for this study, as all datasets were retrieved
from a public database.

2.2. Identification of DEGs

GEO2R (https://www.ncbi.nlm.nih.gov/geo/geo2r/)[18] was used
to screen DEGs between primary and metastatic UM tissue
samples. GEO2R is an R-based application that enables users to
identify DEGs in one or more datasets. LogFC (foldchange) > 3
and adj. A list of upregulated and downregulated DEGs were
saved for subsequent analysis.

2.3. GO functional and KEGG pathway enrichment
analyses

GO functional enrichment is a widely used approach for
interpreting sets of genes.[19] The KEGG database is a collection
of pathway maps representing metabolism and various other
biological functions.[20] As a free online bioinformatics resource,
2

the database for annotation, visualization, and integrated
discovery (DAVID, https://david.ncifcrf.gov/) provides function-
al annotation and visualization of large-scale lists of genes.[21] In
this study, DAVID was used for the enrichment of GO functions
and KEGG pathways for the systematic analysis of DEGs.
Differences with P< .05 were considered to be statistically
significant.
2.4. PPI network of DEGs

Theweb-based STRING tool (https://string-db.org/) was adopted
to obtain PPI relationships for the DEGs followed by visualiza-
tion using Cytoscape. PPIs with a combined score > 0.4 were
selected. Cytoscape is an open source software for integrating
biomolecular interaction networks with high-throughput expres-
sion data into a unified conceptual framework.[22] The plug-in
tool Molecular Complex Detection (MCODE) (version 1.5.1) of
Cytoscape was adopted to detect strongly connected regions from
the PPI network with the following parameters: degree cutoff=2,
k-core=2, node score cutoff=0.2, maximum depth=100.
MCODE is an application designed to find densely connected
regions in a specific PPI network based on topology.[23]

2.5. Hub gene selection and analysis

Hub gene selection was performed using cytoHubba (version
0.1), a plug-in application of Cytoscape. CytoHubba computes
11 methods to identify important nodes in PPI networks.[24]

Genes appearing at least twice in the top 10 results of each
computationmethodwere consideredHub genes. The analyses of
clinical prognosis including overall survival (OS) and disease-free
survival (DFS) of hub genes were performed using Kaplan–Meier
curve analysis and analyzed using GEPIA online platform[25]

(http://gepia.cancer-pku.cn/), and coexpression analysis of the
hub genes were performed in both cBioPortal[26] and Oncomine
databases (https://www.oncomine.org/).[27] Hierarchical cluster-
ing of hub genes was performed using the University of California
Santa Cruz (UCSC) Xena platform (https://xenabrowser.net/).[28]
2.6. Statistical analysis

For identification of DEGs, the Student t test was adopted and
Benjamini and Hochberg method was used to adjust the P
value.[29] For KEGG and GO analyses, the Fisher exact test was
performed to determine whether differences were significant. For
the above statistical methodologies, P value less than .05 was
considered statistically significant.
3. Results

3.1. Identification of DEGs

The microarray dataset GSE39717, deposited by Harbour
et al,[16] was downloaded from the GEO database. A total of
24,358 genes from 39 primary UM and 2 metastatic UM patient-
derived tumor tissues were obtained. A total of 213 DEGs were
identified between the primary and metastatic samples, including
70 (32.9%) upregulated and 143 (67.1%) downregulated genes.
3.2. GO and KEGG enrichment analyses of DEGs

On the basis of the enrichment analysis of DEGs using DAVID, a
total of 115 GO terms of upregulated genes and 34 GO terms of
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Table 1

Top 5 GO functional enrichment analyses of upregulated and downregulated DEGs.

Category Functional annotation ID Description Count P

Upregulated
CC GO:0005576 extracellular region 41 1.61E-25
CC GO:0005615 extracellular space 34 3.58E-20
CC GO:0031012 extracellular matrix 19 1.62E-17
CC GO:0072562 blood microparticle 13 2.95E-13
BP GO:0030198 extracellular matrix organization 13 1.07E-11

Downregulated
MF GO:0005515 protein binding 87 .001522
CC GO:0005634 nucleus 58 .002373
BP GO:0070373 negative regulation of ERK1 and ERK2 cascade 4 .010049
BP GO:0016569 covalent chromatin modification 5 .011246
MF GO:0003682 chromatin binding 9 .0118
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downregulated genes were obtained. GO analysis revealed that
changes in upregulated DEGs were significantly associated with
extracellular region, matrix organization, space, and blood
microparticles, while the downregulated DEGs were mainly
related to protein binding, nucleus, negative regulation of ERK1
and ERK2 cascade, and covalent chromatin modification
chromatin binding (Table 1). As shown in the KEGG pathway
enrichment analysis (Table 2), upregulated DEGs were mainly
involved in complement and coagulation cascades, extracellular
matrix (ECM)-receptor interaction, amebiasis, focal adhesion,
and protein digestion and absorption. The pathways enriched in
the downregulated DEGs were mainly nonsmall cell lung cancer
and renal cell carcinoma.
3.3. PPI network construction and module analysis

The PPI network of DEGs was constructed using Cytoscape
(Fig. 1) and the most significant module was obtained using the
MCODE application. As shown in Figure 2, the most significant
module (MCODE Score=12.5) contained 25 nodes and 120
edges. GO and KEGG enrichment analyses of genes involved in
this module were conducted using DAVID. GO term enrichment
analysis revealed that the genes in the above module were mainly
involved in extracellular region, extracellular space, endoplasmic
reticulum lumen, ECM organization, blood microparticle, ECM
structural constituents, platelet degranulation, collagen catabolic
processes, and extracellular exosome (Table 3). The results of
KEGG pathway enrichment revealed that the genes were mainly
related to ECM-receptor interaction, focal adhesion, protein
digestion and absorption, amebiasis, PI3K-Akt signaling path-
way, complement and coagulation cascades, platelet activation,
Table 2

Top enriched KEGG pathways of upregulated and downregulated DE

Category Functional annotation ID

Upregulated
KEGG hsa04610 Complem
KEGG hsa04512 ECM-rec
KEGG hsa05146 Amoebia
KEGG hsa04510 Focal ad
KEGG hsa04974 Protein d

Downregulated
KEGG hsa05223 Non-sma
KEGG hsa05211 Renal ce

3

small cell lung cancer, vitamin digestion and absorption, and
proteoglycans in cancer (Table 4).

3.4. Hub gene selection and analysis

A total of 14 genes were identified as hub genes from 33 candidate
genes using the cytoHubba tool in Cytoscape (Supplemental
Digital Content [Table S1, http://links.lww.com/MD/F114]). The
gene symbol, full name, and brief introduction of the functions
for these hub genes are listed in Table 5. As illustrated in Figure 3,
the survival analysis of the hub genes was performed using
Kaplan–Meier curve analysis. In the OS analysis, the UMpatients
with high mRNA levels of FN1, VCAN, APOA1, and PROC
genes demonstrated aworse prognosis (Fig. 3A).Meanwhile, UM
patients with highmRNA levels of FN1, VCAN, SERPINC1, and
ITIH2 demonstrated worse DFS (Fig. 3B). According to the
results of cytoHubba analysis, FN1, APOB, F2, SERPINC1, and
FGGwere ranked highest, which suggested their potential role in
UM metastasis. The prognosis analysis results indicated that the
alteration of FN1 and VCAN mRNA levels was associated with
worse OS and DFS. Nevertheless, APOPA1 and PROC worsen
the OS while SERPINC1 and ITIH2 reduced DFS, although no
statistical significance of the reduction was observed in OS
affected by APOA1 and the reduction of DFS affected by FN1,
SERPINC1, and ITIH2. Furthermore, hierarchical clustering
analysis the UCSC Xena platform revealed that the mRNA levels
of FN1, SERPINC1, SERPINA1, VCAN, PROC, and CDH2
were basically consistent with clinical grade (Fig. 4). Coex-
pression analysis using cBioPortal revealed that FN1 genes were
highly coexpressed with VCAN in the UM tissue (Pearson
correlation, 0.70; Spearman correlation, 0.85) (Fig. 5A). The
Gs.

Description Count P

ent and coagulation cascades 9 6.09E-09
eptor interaction 9 3.93E-08
sis 9 1.86E-07
hesion 11 2.97E-07
igestion and absorption 6 1.79E-04

ll cell lung cancer 3 .057856
ll carcinoma 3 .077159
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Figure 1. PPI network of DEGs was constructed using STRING and visualized in Cytoscape. Upregulated genes are marked in red; downregulated genes are
marked in blue.
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Laurent Melanoma data in Oncomine revealed that the
expression of VCAN was positively related to FN1 in 3 subtypes
of UM (correlation index, 0.603) (Fig. 5B).

4. Discussion

UM is one of themost common intraocularmalignancies in adults;
62% of UM patients have confirmed melanoma metastasis at the
time of death and92%ofmetastatic sites are the liver.[4] Currently,
the management of liver metastasis from UM includes surgery,
local chemotherapy, radiotherapy, and immune-embolization.
Nevertheless, treatment of metastatic UM remains a daunting
challenge in clinical practice due to the very poor prognosis of these
patients.[30] Benefitting from updated prognostication techniques,
primary UM can be classified into distinct subgroups with various
levels of metastatic risk based on gene expression profile.[31] In
2004, Onken et al[32] proposed that mRNA levels of PHLDA1,
FZD6, and ENPP2 could be used as molecular signatures to
predict prognosis. However, the oncogenic and metastatic
mechanisms of UM remain controversial, and advances in the
4

treatment of UM are not promising because survival of patients
with UM has remained unchanged over the past 4 decades, from
1973 to 2013.[33] Hence, identification of key genes and pathways
of the metastatic mechanism of UM could contribute to the
diagnosis and treatment of UM.
In the present study, gene expression profiles of 39 primary

UM samples and 2 metastatic UM samples were obtained from
the GEO39717 dataset. A total of 213 DEGs were identified,
including 70 upregulated and 143 downregulated genes. To
further understand the interactions of the DEGs, GO function
and KEGG pathway analyses were performed using DAVID. The
upregulated genes were mainly enriched in extracellular region,
matrix organization, space and blood microparticle, complement
and coagulation cascades, ECM-receptor interaction, amebiasis,
focal adhesion and protein digestion and absorption, while the
downregulated DEGs were mainly related to protein binding,
nucleus, negative regulation of ERK1 and ERK2 cascade,
covalent chromatin modification chromatin binding, nonsmall
cell lung cancer, and renal cell carcinoma. In the most significant
module generated by MCODE, DEGs were mainly enriched in



Figure 2. The most significant module of DEGs. The most significant module
containing 25 nodes and 120 edges was extracted from PPI network using
MCODE. Seed node was marked in yellow.
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extracellular region and space organization, blood coagulation
process and the PI3K-Akt signaling pathway. According to
previous studies, the extracellular environment is the key driver
for both cancer development and progression.[34] Blood
coagulation pathways play a role in tumor progression and
metastasis,[35–37] phosphor-AKT protein levels are positively
associated with a higher risk for metastasis in patients with
UM,[26] and ERK pathway promotes carcinogenesis and
maintenance of UM.[38] Thus, results of all of these studies
support those of the current investigation.
Table 3

Top 10 GO functional enrichment analyses in the most significant DE

Category Functional annotation ID

CC GO:0005576 extracellular
CC GO:0005615 extracellular
CC GO:0005788 endoplasmi
CC GO:0031012 extracellular
BP GO:0030198 extracellular
CC GO:0072562 blood micro
MF GO:0005201 extracellular
BP GO:0002576 platelet deg
BP GO:0030574 collagen ca
CC GO:0070062 extracellular

5

Hub genes, namely FN1, APOB, F2, SERPINC1, SERPINA1,
APOA1, FGG, PROC, ITIH2, VCAN, TFPI, CXCL8, CDH2,
andHP, were identified from the PPI network of DEGs using the
cytoHubba tool, indicating these genes may be vital in the
metastatic process of UM. FN1 is involved in cell adhesion, cell
motility, wound healing, and maintenance of cell shape. FN1 has
been shown to promote metastasis in various types of tumors.[39–
41] Recently, Li et al[42] reported that FN1 promotes cutaneous
melanoma proliferation and metastasis by inhibiting apoptosis
and regulating epithelial-to-mesenchymal transition, which is
consistent with our results. APOA1 is the main protein
constituent of high-density lipoprotein, which shuttles excess
cholesterol from organs to the liver for excretion. APOA1 has
been described to exert anti-apoptotic, anti-inflammatory, and
antioxidant activities, which are involved in tumorigenesis.[43] In
a murine model of malignant melanoma, APOA1 also demon-
strated anti-tumor effects.[44] However, in the present study, we
determined that APOA1 significantly increased in liver metastatic
UM samples, indicating a stimulating role of APOA1 in UM
metastasis. However, we cannot exclude the possibility that the
increased APOA1 mRNA in liver metastatic UM was due to the
fact that APOA1 mRNA levels are higher in the liver than any
other tissue in the human body.[45] APOB is a major protein
constituent of chylomicrons, low-density lipoprotein and very-
low density lipoprotein, lung cancer and colorectal cancer risk
were increased with high APOB levels,[46] whereas the role of
APOB in UM remains unclear. SERPINA1 and SERPINC1 are
members of the serpin family, SERPINA1 was found to improve
nonsmall cell lung cancer cell migration, colony formation, and
resistance to apoptosis,[47] while knockdown of SERPINC1 was
reported to inhibit neural progenitor cell proliferation via
suppression of the PI3K/Akt/mTOR signaling pathway.[48]

ITIH2, also known as serum-derived HA-associated protein
(SHAP), forms complexes with hyaluronan (HA) to regulate the
localization, synthesis, and degradation of HA in serum. Elevated
serum levels of the SHAP-HA complex indicate poor prognosis in
endometrial and ovarian cancers.[49,50] VCAN plays a role in
intercellular signaling and in connecting cells with the ECM. It
was reported that VCAN significantly increased in superficial
spreading melanoma tissue and metastatic melanoma cell
lines.[51,52] Notably, another interesting finding of hub genes
was that VCAN is highly relevant to FN1. Soikkeli et al[53]

reported that in melanoma lymph nodes, upregulation of
POSTN, FN1, COL-I, and VCAN genes was confirmed in
metastatic outgrowth, and all of these genes were inducible by
transforming growth factor-beta, which indicated the activation
G module.

Description Count P

region 24 1.10E-23
space 18 1.12E-14

c reticulum lumen 11 2.30E-14
matrix 12 3.57E-14
matrix organization 11 6.34E-14
particle 9 1.28E-11
matrix structural constituent 7 3.96E-10
ranulation 7 5.66E-09
tabolic process 6 2.76E-08
exosome 16 2.09E-07

http://www.md-journal.com


Table 4

Top 10 KEGG pathway enrichment analyses in the most significant DEG module.

Category Functional annotation ID Description Count P

KEGG hsa04512 ECM-receptor interaction 8 1.15E-09
KEGG hsa04510 Focal adhesion 8 4.69E-07
KEGG hsa04974 Protein digestion and absorption 6 2.30E-06
KEGG hsa05146 Amoebiasis 6 5.77E-06
KEGG hsa04151 PI3K-Akt signaling pathway 8 1.48E-05
KEGG hsa04610 Complement and coagulation cascades 5 2.55E-05
KEGG hsa04611 Platelet activation 4 .004372
KEGG hsa05222 Small cell lung cancer 3 .020307
KEGG hsa04977 Vitamin digestion and absorption 2 .056095
KEGG hsa05205 Proteoglycans in cancer 3 .094918
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of the transforming growth factor-beta signaling pathway.
Although FN1 and VCAN have been found to be positively
associated with UM metastasis, the downstream protein and
concrete mechanism of VCAN, as well as the interaction of FN1
and VCAN, remains unclear. TFPI encodes a serine protease
inhibitor that regulates the tissue factor dependent pathway of
blood coagulation. TPFI contributes to the development of
multiple drug resistance in breast cancer cells.[54,55] CXCL8, also
known as interleukin-8, is a member of the CXC chemokine
family and is a mediator of the inflammatory response by
regulating cancer stem cell proliferation and self-renewal, the
CXCL8-CXCR1/2 axis may play an important role in tumor
progression and metastasis.[56] In melanoma, NFAT1 regulates
CXCL-8/MMP3 and promotes tumor growth and lung metasta-
sis.[57] CDH2, also known as N-cadherin, belongs to the cadherin
superfamily, and mediates calcium-dependent cell-cell adhesion.
Elevated CDH2 is a well-known protein marker for the onset of
epithelial-mesenchymal transition, which results in enhanced
migratory capacity, invasiveness, and increased resistance to
apoptosis in many types of cancers.[58] In melanoma cells,
increased N-cadherin expression contributes to proliferation and
invasive potential by activating PI3/AKT, mTOR, and ERK
kinase.[59] The HP gene encodes haptoglobin, which combines
Table 5

Full name and functional roles of 14 hub genes.

No. Gene symbol Full name

1 FN1 Fibronectin 1 Fibronectins bind cell surfa
2 APOB Apolipoprotein B APOB is a major protein c
3 F2 Coagulation factor II, Thrombin F2 is cleaved to form thro

the stemming of blood
4 SERPINC1 Serpin Family C Member 1 SERPINC1 is a plasma pro
5 FGG Fibrinogen Gamma Chain FGG polymerizes to form a
6 SERPINA1 Serpin Family A Member 1 SERPINA1 is an inhibitor o
7 APOA1 Apolipoprotein A1 APOA1 is the major protei
8 PROC Protein C, Inactivator of

Coagulation Factors Va and VIIIa
PROC is a vitamin K-depe

9 ITIH2 Inter-Alpha-Trypsin Inhibitor
Heavy Chain 2

ITIH2 may act as a carrier
and other matrix protein

10 VCAN Versican VCAN may play a role in i
11 TFPI Tissue factor pathway inhibitor TFPI encodes a Kunitz-type

of blood coagulation
12 CXCL8 C-X-C Motif Chemokine Ligand 8 CXCL8 is a member of the
13 CDH2 Cadherin 2 CDH2 preferentially mediat
14 HP Haptoglobin HP combines with free pla

6

with free plasma hemoglobin, thus enabling heme iron to be
recycled in hepatocytes. Previous research found that cellular
levels of HP are strongly associated with the recurrence rate of
human head and neck cancers.[60] A positive correlation between
elevated serum haptoglobin level and the incidence of colorectal
cancer was also observed.[61]

In addition, we performed hierarchical clustering and
prognosis analysis for hub genes. The hierarchical clustering
results illustrated that, as the clinical stage of UM increased, most
of the hub gene mRNA levels also increased, indicating the
consistency between hub gene expression and UM tumor
progression. In addition, OS and DFS analysis of the hub genes
demonstrated that high expression of FN1 and VCAN was
related to worse OS and DFS, increased APOA1 and PROC
reduced OS, while SERPINC1 and ITIH2 reduced DFS. Analysis
of hub genes demonstrated that these genes may play an
important role(s) in the progression, invasion, and metastasis of
UM, and may be potential candidates for prognosis prediction
and diagnostic biomarkers.
Finally, there were several limitations to the current study.

First, all of the data were obtained from the GEO database rather
than directly from UM patient tissues. Second, all conclusions
were based on bioinformatics analysis; hence, caution must be
Function

ces and various compounds, including collagen, fibrin, and DNA
onstituent of chylomicrons, LDL, and VLDL
mbin in the first step of the coagulation cascade, which results in
loss
tease inhibitor and a member of the serpin superfamily
n insoluble fibrin matrix together with FGA and FGB
f serine proteases whose primary target is elastase
n component of HDL in plasma
ndent serine protease that regulates blood coagulation

of hyaluronan in serum or as a binding protein between hyaluronan

ntercellular signaling and in connecting cells with the extracellular matrix
serine protease inhibitor that regulates the tissue factor (TF)-dependent pathway

CXC chemokine family and is a major mediator of the inflammatory response
es homotypic cell-cell adhesion by dimerization with a CDH2 chain from another cell
sma hemoglobin to allow hepatic recycling of hemeiron and to prevent kidney damage



Figure 3. (A) Overall survival and (B) disease-free survival analyses of hub genes were performed using GEPIA platform.
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exercised in interpreting the results, being aware that experimen-
tal verification is a better approach to confirm findings. Third, the
GSE 39717 dataset consisted of 39 primary tumor samples and 2
metastatic samples, the imbalance between groups may have
unintentionally introduced biases. In summary, larger-scale tissue
samples derived from a primary and metastatic UM patient
cohort with confirmatory experiments need to be performed to
verify our conclusions.
Figure 4. Hierarchical clustering of hub genes was performed using UCSC Xena
marked in blue.

7

5. Conclusion

The present bioinformatic analysis identified key genes and
molecular pathways possibly involved in the metastatic process
of UM. A total of 213 DEGs and 14 hub genes were identified to
play crucial roles in the progression, invasion, and metastasis
of UM, and could be potential candidates as diagnostic
biomarkers.
platform. Upregulation of gene is marked in red, downregulation of genes is

http://www.md-journal.com


Figure 5. FN1 and VCAN expression directly correlates in human uveal melanoma cancers. (A) Coexpression analysis of FN1 and VCAN via cBioPortal platform. (B)
FN1 gene coexpressed with FN1 in Laurent Melanoma data in Oncomine database, which consists of three subtypes: 1. Epitheliod Cell Uveal Melanoma 2. Mixed
Cell Uveal Melanoma 3. Uveal Melanoma. The reporters indicate probes used in the analysis. Upregulation of expression is marked in red and downregulation is
blue, passing by white, with fluctuating color intensity.
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