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Abstract: The equilibrium solubility of amygdalin in [ethanol (1) + water (2)] mixtures at 293.15 K to
328.15 K was reported. The thermodynamic properties (standard enthalpy ∆solnH◦, standard entropy
∆solnS◦, and standard Gibbs energy of solution ∆solnG◦) were computed using the generated
solubility data via van’t Hoff and Gibbs equations. The dissolution process of amygdalin is
endothermic and the driving mechanism in all mixtures is entropy. Maximal solubility was achieved
in 0.4 mole fraction of ethanol at 328.15 K and the minimal one in neat ethanol at 293.15 K.
Van’t Hoff, Jouyban–Acree–van’t Hoff, and Buchowski–Ksiazczak models were used to simulate
the obtained solubility data. The calculated solubilities deviate reasonably from experimental data.
Preferential solvation parameters of amygdalin in mixture solvents were analyzed using the inverse
Kirkwood–Buff integrals (IKBI) method. Amygdalin is preferentially solvated by water in ethanol-rich
mixtures, whereas in water-rich mixtures, there is no clear evidence that determines which of water
or ethanol solvents would be most likely to solvate the molecule.

Keywords: amygdalin; thermodynamics; van’t Hoff; Gibbs equation; solubility; Jouyban–Acree;
Buchowski–Ksiazczak; inverse Kirkwood–Buff integral
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1. Introduction

Amygdalin (Figure 1) is a naturally occurring cyanogenic diglycoside with a molecular formula
of C20H27NO11 and a molecular mass of 457.4 g mol−1. It is a major bioactive component present
mostly in kernels and seeds of “Rosaceae” plants such as peaches, apples, cherries, and more [1,2].
The use of amygdalin can lead to the release of toxic hydrogen cyanide (HCN) through the action
of emulsin enzyme from the human intestinal microflora [3]. The HCN selectively decomposes
cancer cells in the tumor site inside the body [4,5]. Several studies have demonstrated the
antitumor activities of amygdalin on prostate cancer, bladder cancer, lung cancer, rectal cancer,
and colon cancer [6]. Furthermore, highly purified amygdalin used in therapeutic dosage levels has
antioxidant, anti-fibrosis [7], anti-inflammatory, analgesic [8,9], anti-atherosclerosis [10–12], anti-cardiac
hypertrophy [13], anti-ulcer [14], anti-tussive, and anti-asthmatic effects [15].Pharmaceuticals 2020, 13, x FOR PEER REVIEW 3 of 17 

 

 
Figure 1. Molecular structure of amygdalin. 
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Table 1. Experimental solubility of amygdalin (3) expressed in molar fraction (103x3 a) in [ethanol (1) 
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x1 c,d 
Temperature/K e 

293.15 298.15 303.15 308.15 310.15 313.15 318.15 323.15 328.15 
0.00 2.54 3.25 4.19 5.49 6.07 7.04 7.91 9.73 11.0 
0.10 2.80 3.55 4.61 6.16 6.69 7.83 8.86 10.8 12.9 
0.20 3.07 3.99 5.21 7.12 7.42 8.84 10.4 12.2 14.6 
0.30 3.34 4.48 5.84 8.08 8.32 9.90 11.8 13.6 16.9 
0.40 3.56 5.06 6.60 8.39 9.32 11.0 13.3 15.3 18.3 
0.50 3.12 4.06 4.84 5.90 5.99 7.26 8.67 9.52 12.1 
0.60 2.20 2.58 3.17 3.94 4.14 4.81 5.55 6.30 7.89 
0.70 1.53 1.88 2.14 2.52 2.83 3.25 3.77 4.12 5.45 
0.80 1.00 1.21 1.36 1.70 1.76 2.02 2.44 2.62 2.93 
0.90 0.71 0.83 0.91 1.12 1.15 1.27 1.35 1.57 1.70 
1.00 0.51 0.56 0.61 0.65 0.69 0.77 0.91 0.94 1.03 

a Average relative uncertainty in mole fraction solubility is u(x3) = 0.025. b Standard uncertainty in 
pressure u(p) = 0.001 MPa. c x1 is the mole fraction of ethanol (1) in the {ethanol (1) + water (2)} 
mixtures free of amygdalin (3). d Average relative standard uncertainty in x1 is ur(x1) = 0.01. e T is the 
absolute temperature. Standard uncertainty in temperature is u(T) = 0.05 K. 

Experimental results demonstrate that the solubility increases with temperature indicating 
endothermic dissolution (Figure 2A). The maximum solubility of amygdalin was observed in the 
cosolvent mixture x1 = 0.4 at 328.15 K (Figure 2B). The addition of ethanol (in water-rich mixtures) 
has a positive cosolvent effect, enhancing amygdalin solubility. Indeed, the presence of the 
non-polar phenyl group in the amygdalin chemical structure may cause the formation of a 
structured water layer around it. As the proportion of ethanol in the solvent mixture increases, the 
solvation water shell will be ruptured [30–32], therefore, increasing amygdalin’s solubility in the 
system. 

Figure 1. Molecular structure of amygdalin.

Besides the degradation of amygdalin caused by enzymes from the gut microflora, plant enzymes
(β-glucosidases and α-hydroxynitrile lyases) can lead to the production of cyanide when plant tissue
is damaged or seeds are crushed or macerated. Enzymatic degradation of amygdalin to gentibiose,
benzaldehyde, and HCN usually takes place in an alkaline solution [16].

In addition to enzymatic hydrolysis mentioned above, amygdalin degradation can also occur in
boiling water through the process of epimerization, particularly under mild basic conditions as well
as in a long extraction time [17–19]. In Bolarinwa et al.’s research [17], it was demonstrated that at
100 ◦C of boiling water, an extended extraction period can result in reduced extraction yield due to the
conversion of amygdalin into neoamygdalin (amygdalin epimer).

Extracting a high rate of amygdalin from food plants without causing degradation of the molecule
is challenging to achieve. Therefore, the selectivity of a solvent for this compound is a crucial parameter,
as this will have a paramount influence on the extraction process. Extraction rate and time can be
considerably affected by amygdalin solubility in solvents [17]. It is therefore of some interest to know
the solubility of amygdalin in different mixtures of solvents. On the other hand, the knowledge of the
solubility behavior in different solvent systems is of high importance in the pharmaceutical industry as
it influences the drug efficacy and its pharmacokinetics [20]. Solubility data are also useful for drug
purification, refining procedures, and method development [21–23].

For the above-mentioned reasons, the solubility and solution thermodynamics of amygdalin in
pure and solvent mixtures are quite essential and must be determined. The binary water and ethanol
mixtures are the most versatile and most used solvent systems for these previous purposes [24–27].

Thus, the goals of this study were (1) to extend the database on the solubility of amygdalin in
several ethanol (1) + water (2) mixtures over a temperature range of 298.105 to 328.15 K, (2) to study the
effect of solvent composition on the solubility and solution thermodynamics of amygdalin in aqueous
ethanol mixtures, (3) to calculate the apparent thermodynamic functions of solution in the investigated
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solvents using the van’t Hoff and Gibbs equations, and (4) to estimate the preferential solvation of
amygdalin in these solvents through the method of inverse Kirkwood–Buff integrals (IKBI), which
describes the local solvent proportions around the dissolved substance concerning to the composition
of the cosolvent mixtures [28,29]. Some models were used to predict the solubility of amygdalin in
ethanol–water mixtures at different temperatures.

2. Results and Discussion

2.1. Solubility of Amygdalin in [Ethanol (1) +Water (2)] Cosolvent Mixtures

Table 1 shows the experimental solubility of amygdalin (3) in {ethanol (1) + water (2)} cosolvent
mixtures including EtOH and water neat solvents at nine temperatures (293.15–328.15 K).

Table 1. Experimental solubility of amygdalin (3) expressed in molar fraction (103x3
a) in [ethanol (1) +

water (2)] mixtures at different temperatures. Experimental pressure p: 0.1 MPa b.

x1
c,d Temperature/K e

293.15 298.15 303.15 308.15 310.15 313.15 318.15 323.15 328.15

0.00 2.54 3.25 4.19 5.49 6.07 7.04 7.91 9.73 11.0

0.10 2.80 3.55 4.61 6.16 6.69 7.83 8.86 10.8 12.9

0.20 3.07 3.99 5.21 7.12 7.42 8.84 10.4 12.2 14.6

0.30 3.34 4.48 5.84 8.08 8.32 9.90 11.8 13.6 16.9

0.40 3.56 5.06 6.60 8.39 9.32 11.0 13.3 15.3 18.3

0.50 3.12 4.06 4.84 5.90 5.99 7.26 8.67 9.52 12.1

0.60 2.20 2.58 3.17 3.94 4.14 4.81 5.55 6.30 7.89

0.70 1.53 1.88 2.14 2.52 2.83 3.25 3.77 4.12 5.45

0.80 1.00 1.21 1.36 1.70 1.76 2.02 2.44 2.62 2.93

0.90 0.71 0.83 0.91 1.12 1.15 1.27 1.35 1.57 1.70

1.00 0.51 0.56 0.61 0.65 0.69 0.77 0.91 0.94 1.03
a Average relative uncertainty in mole fraction solubility is u(x3) = 0.025. b Standard uncertainty in pressure
u(p) = 0.001 MPa. c x1 is the mole fraction of ethanol (1) in the {ethanol (1) + water (2)} mixtures free of amygdalin (3).
d Average relative standard uncertainty in x1 is ur(x1) = 0.01. e T is the absolute temperature. Standard uncertainty
in temperature is u(T) = 0.05 K.

Experimental results demonstrate that the solubility increases with temperature indicating
endothermic dissolution (Figure 2A). The maximum solubility of amygdalin was observed in the
cosolvent mixture x1 = 0.4 at 328.15 K (Figure 2B). The addition of ethanol (in water-rich mixtures)
has a positive cosolvent effect, enhancing amygdalin solubility. Indeed, the presence of the non-polar
phenyl group in the amygdalin chemical structure may cause the formation of a structured water layer
around it. As the proportion of ethanol in the solvent mixture increases, the solvation water shell will
be ruptured [30–32], therefore, increasing amygdalin’s solubility in the system.

The solubility profiles of amygdalin in {ethanol (1) + water (2)} binary mixtures at different
temperatures were plotted as a function of the Hildebrand solubility parameter δ1 + 2 of the mixtures
(Figure 2C).
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Figure 2. Experimental solubility of amygdalin (3) in mole fraction (103x3) as a function of temperature
(A); as a function of composition of solvent mixtures (B); and as a function of Hildebrand solubility
parameter δ1 + 2 of the [ethanol (1) + water (2)] mixtures (C). For A, #: EtOH; ♦: x1 = 0.8; �: x1 = 0.6;
N: water; �: x1 = 0.2; and •: x1 = 0.4, and for B and C, x: 293.15 K; �: 298.15 K; �: 303.15; ∆: 308.15;
N: 310.15 K; �: 313.15 K; ♦: 318.15 K; •: 323.15 K; and #: 328.15 K.
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For binary mixtures, δ1 + 2 is calculated as [33]:

δ1 + 2 = f1δ1 + (1− f1)δ2 (1)

where δ1 and δ2 are the Hildebrand solubility parameters of the pure solvents (δ1 = 26.5 MPa1/2 for
ethanol (1) [34] and δ2 = 47.8 MPa1/2 for water (2) [34]; f is the solute-free volume fraction which is
calculated assuming additive volumes as:

f = V1/(V1 + V2) (2)

where V1 and V2 are the volumes of cosolvent and water, respectively.
Considering the entire polarity region, the solubility increases from pure water (δ = 47.8 MPa1/2)

up to the mixture with x1 = 0.40 (δmix = 33.2 MPa1/2), where the curve shows a maximum solubility
peak; from this mixture up to pure ethanol, the solubility decreases in all cases (Figure 2C).

This behavior is commonly observed in compounds whose polarity coincides with the polarity of
a mixture of solvents (δ1 > δ3 > δ2 or δ2 > δ3 > δ1) [35,36].

According to the literature, solutes reach their maximum solubility in solvents with the
same solubility parameter [36] and thus, the δ3 value of amygdalin (3) would be 33.2 MPa1/2.
However, the solubility parameter of amygdalin (3), estimated in accordance with the group contribution
methods proposed by Fedors and van Krevelen, is δ3 = 29.9 MPa1/2 (Table 2), which is lower than the
experimental value obtained in this work at the solubility maximum (δ3 = 33.2 MPa1/2).

Table 2. Estimation of the solubility parameter of amygdalin by Fedor’s method [34].

Group or Atom Quantity ∆V (cm3 mol−1) ∆U (kJ mol−1)

–CH2 2 16.1 4.94

–CH< 11 13.5 4.31

–OH 7 10 29.8

–O– 4 3.8 3.35

–C≡N 1 24 25.5

Phenyl 1 71.4 31.9

Ring closure 1 16 1.05

Total 377.3 337.74

δ3 = (337,740/377.3)1/2 = 29.9 MPa1/2

It is important to note that the group contribution methods only provide a rough estimation of δ3;
however, this calculation is relevant to identify the most suitable solvent or solvent mixture to dissolve
the drug, which is useful information in experimental and industrial designs.

2.2. Computational Validation

The use of calculation models to predict the solubility of chemicals in mixed solvents is one of the
lines of research that have evolved the most in recent years. Some of the most widely implemented
models are those of, van’t Hoff, Jouyban–Acree–van’t Hoff and Buchowski–Ksiazczak λh.

Thus, the van’t Hoff equation (Equation (3)) presents a relationship between solubility (expressedin
mole fraction) and temperature.

x3 = e(A + B
T ) (3)

A and B are parameters, which can be related to thermodynamic parameters such as dissolution
enthalpy and dissolution entropy [37].
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Jouyban and Acree developed a specific model for the prediction of the solubility of drugs in
{ethanol (1) + water (2)} cosolvent mixtures at a specific temperature (Equation (4)) [38–40]:

ln x3,1+2 = x1 ln x3,1 + x2 ln x3,2 + x1x2
[
724.21T−1 + 485.17(x1 − x2)T−1 + 194.41(x1 − x2)

2T−1
]

(4)

Introducing the van’t Hoff model, the Jouyban–Acree would be left, with the advantage of being
able to calculate solubility at various temperatures [41].

ln x3,1+2 = x1
(
A1 + B1T−1

)
+ x2

(
A2 + B2T−1

)
+

x1x2
[
724.21T−1 + 485.17(x1 − x2)T−1 + 194.41(x1 − x2)

2T−1
] (5)

For this investigation, when calculating A and B coefficients by linear regression, the following
equation is obtained:

ln x3,1+2 = x1
(
−0.69± 0.22− 2048T−1

)
+ x2

(
8.06± 0.28− 4101± 87T−1

)
+x1x2

[
724.21T−1 + 485.17(x1 − x2)T−1 + 194.41(x1 − x2)

2T−1
] (6)

The Buchowski–Ksiazczak λh equation, (Equation (8)), is another way to describe the
solubility behavior:

x3 =
λeλhT−1

f

λe
λhT−1

f − e
λhT−1

f + eλhT−1
(7)

where λ and h are the two parameters of the Buchowski–Ksiazczak model, and Tf represents the
melting point of drug [42–44].

The mean percentage deviation (MPD) was calculated from Equation (8) [45,46]:

MPD =
100
N

∑ ∣∣∣∣xcal
3,1+2 − xExp

3,1+2

∣∣∣∣
xExp

3,1+2

(8)

where N is the number of experimental data points, and xcal
3,1+2 and xExp

3,1+2 are the calculated and
experimental solubility values.

Thus, amygdalin solubility was estimated employing Equations (3), (6), and (7) and then, the MPD
values were calculated using Equation (8).

The MDP values show that the model that best predicts the experimental data is the van’t Hoff

model (3.3%), followed by the Buchowski–Ksiazczak model (4.3%), and finally, the Jouyban–Acree–van’t
Hoff mode presents a MDP of 22.8%.

Figure 3 shows the calculated solubility versus observed solubility data of amygdalin in
{ethanol (1) + water (2)} cosolvent mixtures, using the van’t Hoff, Jouyban–Acree–van’t Hoff and
Buchowski–Ksiazczak models. A relatively low determination coefficient was observed (R2 = 0.76)
indicating a poor prediction accuracy for the Jouyban–Acree–van’t Hoff model; however, the van’t
Hoff and Buchowski–Ksiazczak models present correlation coefficients close to one, indicating a good
correlation of the data calculated with these models and the experimental data.

Therefore, in general terms, the Jouyban–Acree–van’t Hoff model does not predict the solubility
of amygdalin in {ethanol (1) + water (2)} cosolvent mixtures adequately; however, the van’t Hoff and
Buchowski–Ksiazczak models show very good precision, as demonstrated with the MDP values.
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2.3. Thermodynamic Functions of Dissolution

From the experimental solubility data (Table 1), the thermodynamic functions of dissolution
(Table 3) were calculated using the van’t Hoff and Gibbs equations, under Krug modifications [47,48]:

∆solnHo = −R
(
∂ ln x3/∂

(
T−1
− T−1

hm

))
(9)

∆solnGo = −R× Thm × intercept (10)

∆solnSo = (∆solnHo
− ∆solnGo)T−1

hm (11)

where ∆solnHo represents the solution standard enthalpy, ∆solnSo represents the solution standard
entropy, ∆solnGo represents the solution standard Gibbs energy, R represents the constant of gases,
and Thm represents the mean harmonic temperature defined as: Thm = n/Σ(1/T), where n is the number
of studied temperatures (the harmonic mean temperature for this investigation is 310.22 K).

Table 3. Thermodynamic functions of dissolution processes of amygdalin in {ethanol (1) + water (2)}
cosolvent mixtures at Thm = 310.22 K.

x1
a ∆solnGo/

kJ mol−1
∆solnHo/
kJ mol−1

∆solnSo/
J mol−1 K−1

T∆solnSo/
kJ mol−1 ζH

b ζTS
b

0.00 13.31 34.10 67.03 20.79 0.621 0.379

0.10 13.02 35.34 71.93 22.31 0.613 0.387

0.20 12.71 35.86 74.62 23.15 0.608 0.392

0.30 12.41 36.77 78.52 24.36 0.601 0.399

0.40 12.15 37.04 80.21 24.88 0.598 0.402

0.50 13.07 29.92 54.31 16.85 0.640 0.360

0.60 14.13 29.10 48.26 14.97 0.660 0.340

0.70 15.12 28.14 41.95 13.01 0.684 0.316

0.80 16.32 25.36 29.14 9.04 0.737 0.263
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Table 3. Cont.

x1
a ∆solnGo/

kJ mol−1
∆solnHo/
kJ mol−1

∆solnSo/
J mol−1 K−1

T∆solnSo/
kJ mol−1 ζH

b ζTS
b

0.90 17.48 20.26 8.96 2.78 0.879 0.121

1.00 18.66 17.03 −5.25 −1.63 0.913 0.087
a x1 is the mole fraction of ethanol (1) in the {ethanol (1) + water (2)} mixtures free of amygdalin (3). Standard
uncertainty in T is u(T) = 0.10 K. Average relative standard uncertainties in apparent thermodynamic quantities of
real dissolution processes are ur(∆solnGo) = 0.02, ur(∆solnHo) = 0.02, ur(∆solnSo) = 0.03, and ur(T∆solnSo) = 0.03. b ζH
and ζTS are the relative contributions by enthalpy and entropy toward apparent Gibbs energy of dissolution.

Upon graphing ln x3 vs. (T−1
− Thm

−1), the slope (∂ln x3/∂ (T−1
− Thm

−1)) and intercept used in
Equations (10) and (11) are obtained.

Table 3 shows the data for the apparent thermodynamic functions of solution for amygdalin,
∆solnHo, ∆solnGo, and ∆solnSo. The values of the slope and intercept with their respective standard
deviations were calculated using the TableCurve 2D program. The resulting graphs are linear for each
of the EtOH + W cosolvent mixtures, obtaining correlation coefficients very close to 1 for first order
linear regressions (y = a + bx) (Figure 4).
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The standard Gibbs energy ∆solnGo (Table 3) is positive over the whole composition range and
decreases from neat water to the cosolvent mixture x1 = 0.4. From this solvent composition to
pure EtOH, ∆solnGo increases. The ∆solnHo is positive in every case indicating that the process of
dissolution of amygdalin powder in solvents is endothermic [49,50]. The enthalpic values increase
nonlinearly from neat water up to 40% in volume of EtOH, presumably because, by increasing ethanol
content, the interaction of this solvent with the solute promotes the breaking of the structured water
molecules (hydrogen bonds) around the non-polar group of amygdalin [33,51]. As for the standard
entropy of solution (∆solnSo), it is negative for pure ethanol, while it is positive for water-rich mixtures,
suggesting an overall entropy-driven process for the latter mixtures. The relative contributions by
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enthalpy (ζH) and by entropy (ζTS) toward standard Gibbs free energy of solution are given by
Equations (12) and (13), respectively:

ζH =
∣∣∣∆solnHo

∣∣∣(∣∣∣∆solnHo
∣∣∣+ ∣∣∣Thm∆solnSo

∣∣∣)−1
(12)

ζTS =
∣∣∣Thm∆solnSo

∣∣∣(∣∣∣∆solnHo
∣∣∣+ ∣∣∣Thm∆solnSo

∣∣∣)−1
(13)

It may be seen from Table 4 that, in all cases, the main contributor to the (positive) standard Gibbs
energy of dissolution is the (positive) enthalpy term (ζH > 0.59).

Table 4. Coefficients of the Equation (22) to Gibbs energy of transfer of amygdalin (3) at
several temperatures.

Coefficient 293.15 K 298.15 K 303.15 K 308.15 K 313.15 K

a −0.0022 0.0356 0.0446 0.0879 0.0706

b −0.3574 −1.2782 1.8586 −5.1881 −3.8227

c −20.48 −19.625 −18.477 −1.9751 −8.7567

d 53.775 55.874 57.349 32.26 43.505

e −29.053 −30.735 32.277 −19.838 −25.332

R2 0.998 0.994 0.995 0.993 0.994

2.4. Enthalpy–Entropy Compensation

The study of enthalpy–entropy compensation effects for solute dissolution has been used to
identify the main mechanism involved in the cosolvent behavior on dissolution processes [52,53].
Plots of ∆solnHo as a function of ∆solnGo or T∆solnSo at the harmonic temperature are employed for
this purpose.

Thus, when plotting ∆solnHo vs. ∆solnGo, a positive slope will indicate an enthalpy-driven
dissolution process, while a negative one will indicate an entropy-driven dissolution process [39].

Similarly, when plotting ∆solnHo vs. T∆solnSo, a slope greater than one will indicate an
enthalpy-driven dissolution processes while a slope of less than one indicates entropy-driven dissolution
processes [7,52–56].

Figure 5 shows that amygdalin in {ethanol (1) + water (2)} mixture solvents exhibits two trends,
both with a negative slope, suggesting that the whole dissolution process is driven by entropy.

Figure 5. Enthalpy–entropy compensation graph of ∆solnHo vs. ∆solnGo at Thm = 310.22 K.
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When plotting ∆solnHo vs. T∆solnSo (Figure 6), a linear trend is observed, described by the following
equation: ∆SolnHo = 0.758 ± 0.014T∆SolnSo + 18.15 ± 0.25. The slope is inferior to 1, which corroborates
the previous results.

Figure 6. Enthalpy–entropy compensation graph of ∆solnHo vs. T∆solnSo at Thm = 310.22 K.

2.5. Preferential Solvation

The preferential solvation model suggested by Ben Naim, called the inverse Kirkwood–Buff

Integral (IKBI), allows determining, at the molecular level, the arrangement of the solvent molecules
that make up the cosolvent mixture around a dissolved solute molecule [57–59].

This model allows to obtain the preferential solvation parameter of amygdalin (3) by ethanol
molecules (δx1,3) according to [60–62]:

δx1,3 = [x1(1− x1)(G1,3 −G2,3)][x1G1,3 + (1− x1)G2,3 + Vcor]
−1 (14)

where x1 is the molar fraction of ethanol-free amygdalin, G1,3 and G2,3 are the Kirkwood–Buff integrals
(cm3 mol−1), and Vcor is the correlation volume (cm3 mol−1).

Thus, G1,3 and G2,3 are calculated as [63,64]:

G1,3 = RTκT −V3 + (1− x1)V2DQ−1 (15)

G2,3 = RTκT −V3 + x1V1DQ−1 (16)

where κT is the isothermal compressibility of ethanol + water mixtures (GPa−1), V1 and V2 are the
molar volumes of ethanol and water, respectively, in the mixtures (cm3 mol−1), and V3 is the molar
volume of amygdalin in the mixed solvent (cm3 mol−1)

Vcor is defined as [65,66]:

Vcor = 2522.5
[
r3 + 0.1363 3

√
xL

1,3V1 + xL
2,3V2 − 0.085

]3
(17)

where x1,3
L is the local molar fraction of ethanol (1) in the surrounding area of amygdalin (3) and r3 is

the amygdalin molecular radius (nm).
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Vcor is calculated by iteration using Equations (15) and (18) [67]:

δx1,3 = xL
1,3 − x1 (18)

The functions D and Q (kJ mol−1) are calculated using the following equations:

Q = RT + x1x2

∂2GE
1,2

∂x2
2


T,P

(19)

D =
(
∂∆trGo

3,2→1+2/∂x1
)
T,P

(20)

∆trGo
3,2→1 + 2 is the standard molar Gibbs energy of transfer of the solute from pure water to each

{ethanol (1) + water (2)} mixture and GE
1,2 is the excess molar Gibbs energy of mixing of the two

solvents free of amygdalin.
Figure 7 shows the behavior of the Gibbs energy of transfer of amygdalin (3) from pure water

(2) to {ethanol (1) + water (2)} mixtures at several temperatures. The numerical values were computed
from the experimental solubility data (Table 1), by using the following equation:

∆trGo
3,2→1+2 = RT ln

(
x3,2x−1

3,1+2

)
(21)

∆trGo
3,2→1+2 = a + bx1 + cx1

2 + dx1
3 + ex1

4 (22)
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Table 4 records the numerical values of the coefficients of Equation (22) at 293.15, 298.15, 303.15,
308.15, and 313.15 K.

On the other hand, Q is calculated according to Equation (19), where G1.2
E is calculated as [64]:

GE
1,2 = x1x2

[
2907− 777(1− 2x1) + 494(1− 2x2)

2
]

(23)

Once D and Q are calculated together with the isothermal compressibility (κT) for water
(0.457 GPa−1) [68] and ethanol (1.248 GPa−1), in addition to the molar volumes of amygdalin and
the solvents in the binary mixture reported by Jiménez et al. [69], the Kirkwood–Buff integrals are
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calculated, and from these, the preferential solvation parameters δx1,3 of amygdalin in the binary
solvent mixtures at the studied temperatures are calculated [70].

According to the literature, positive values of δx1,3 indicate preferential solvation of amygdalin by
ethanol. Conversely, negative values of δx1,3 indicate preferential solvation of amygdalin by water.

The values of δx1,3 are presented in Table 5 and the behavior of δx1,3 is illustrated in Figure 8.
Thus, from neat water to x1 = 0.45, the absolute value of δx1,3 is inferior to 0.01, indicating insignificant
preferential solvation, probably because the values are within the error of the measurement [60].
From this composition to pure ethanol, the values of δx1,3 are negative and greater than 0.01.
The maximum negative δx1,3 value is reached in the mixture x1 = 0.75 (Figure 8). These results indicate
the preferential solvation of amygdalin by water. Because of the availability of two sugar moieties in
the molecular structure of amygdalin, this molecule can form hydrogen bonds with proton-acceptor
solvents. At the same time, amygdalin can act as a proton-acceptor (base group) molecule due to
the free electron pair of the oxygen atom in the OH group or nitrogen atom of the C≡N group.
Thus, the tendency of amygdalin for water in ethanol-rich mixtures could be explained in the matter of
the greater acidic character of water (1.17 for water and 0.86 for ethanol, as stated in the acid scale of
Taft and Kamlet [71]) interacting with proton-acceptor groups of amygdalin.

Table 5. The δx1.3 values of amygdalin in {ethanol (1) + water (2)} mixtures at some temperatures.

x1
a δx1,3

293.15 298.15 303.15 308.15 313.15

0.000 0.000 0.000 0.000 0.000 0.000

0.050 −0.001 −0.001 −0.001 −0.002 −0.001

0.100 −0.001 −0.002 −0.002 −0.002 −0.002

0.150 −0.001 −0.002 −0.002 −0.002 −0.002

0.200 −0.001 −0.001 −0.001 −0.001 −0.001

0.250 0.000 0.000 0.000 0.000 0.000

0.300 0.001 0.001 0.000 0.000 0.000

0.350 0.000 0.000 −0.001 −0.002 −0.002

0.400 −0.002 −0.003 −0.004 −0.005 −0.005

0.450 −0.007 −0.008 −0.009 −0.010 −0.010

0.500 −0.014 −0.015 −0.017 −0.017 −0.017

0.550 −0.023 −0.024 −0.026 −0.026 −0.026

0.600 −0.033 −0.035 −0.037 −0.036 −0.036

0.650 −0.043 −0.046 −0.048 −0.046 −0.047

0.700 −0.051 −0.054 −0.056 −0.054 −0.056

0.750 −0.052 −0.055 −0.058 −0.057 −0.059

0.800 −0.044 −0.047 −0.050 −0.051 −0.054

0.850 −0.030 −0.033 −0.035 −0.037 −0.039

0.900 −0.016 −0.017 −0.018 −0.021 −0.022

0.950 −0.005 −0.005 −0.006 −0.008 −0.008

1.000 0.000 0.000 0.000 0.000 0.000
a x1 is the mole fraction of ethanol (1) in the {ethanol (1) + water (2)} mixtures free of amygdalin (3).
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3. Experimental procedures

3.1. Reagents

Amygdalin (purity 98%) and HPLC-grade ethanol (purity 99.9%) were acquired from
Sigma-Aldrich (San Luis, WA, USA).

Doubly distilled and deionized water were used in all experiments. All chemicals were used
without further purification.

3.2. Solubility Determination

The employed techniques to prepare ethanol–water binary solvent mixtures and to measure
the solubility of amygdalin in these solvents were used as reported in different studies [72–74].
The solubility of amygdalin in pure and mixed solvents was investigated at different temperatures in
the range of 298.15–328.15 K. The gravimetric method was used to measure the composition of the
saturated solutions.

The solvent mixtures were prepared by mass using a Sartorius balance (CP225D) with an accuracy
of ±0.01 mg. An excess of amygdalin powder was added to the liquid phase, and the saturated
solutions were brought into a twofold jacketed reactor (Polystat Huber CC2) at T ± 0.1 K. The solutions
are magnetically stirred at the desired temperature for at least 72 h to ensure the saturation equilibrium.
Thereafter, they were allowed to settle for 2 h before sampling.

The supernatant solutions were withdrawn, filtered through a 0.45-µm syringe filter, and then
dried in a vacuum oven at 328.15 K. The mass of the dried samples was periodically measured
using an analytical balance until stability. All determinations were performed three times to check
reproducibility, and then an average value was taken to determine the amygdalin solubility in all
systems at each condition. The solubility of amygdalin was calculated by molar fraction (xA) in pure
and different binary ethanol–water mixtures using the Equations (1) and (2), respectively.

4. Conclusions

The solubilities of amygdalin in {ethanol (1) + water (2)} mixtures were determined at different
temperatures. The maximum solubility was obtained in 0.4-mole fraction of ethanol at 328.15 K
and the lowest one in pure ethanol at 293.15 K. The amygdalin solubility was calculated using the
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van’t Hoff, Jouyban–Acree-van’t Hoff, and Buchowski—Ksiazczak models, the data obtained using
the Jouyban–Acree–van’t Hoff model showing important deviations with respect to experimental
solubility; however, the van’t Hoff and Buchowski–Ksiazczak models showed a good correlation with
the experimental data. As for solution thermodynamics, an endothermic process was observed, with a
pronounced enthalpic contribution, but with entropic conduction.

The IKBI approach demonstrated that amygdalin is preferentially solvated by water in ethanol-rich
mixtures, which is consistent with the decrease in amygdalin solubility by the addition of ethanol.
Whereas, in water-rich mixtures (0 < x1 < 0.45), the solvent that will solvate the amygdalin molecule
was not well defined.

In general terms, the data presented in this research expand the physicochemical information of
amygdalin in binary aqueous-cosolvent mixtures, which are very useful, both for the pharmaceutical
industry and for research processes related to this drug.
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25. Pobudkowska, A.; Domańska, U.; Jurkowska, B.A.; Dymczuk, K. Solubility of pharmaceuticals in water and
alcohols. Fluid Phase Equilibria 2015, 392, 56–64. [CrossRef]

26. Allen, L.; Ansel, H.C. Ansel’s Pharmaceutical Dosage Forms and Drug Delivery Systems; Lippincott Williams &
Wilkins: Philadelphia, PA, USA, 2013.

27. Wijesekera, R.O.B. The Medicinal Plant Industry; Routledge: Abingdon-on-Thames, UK, 2017.
28. Marcus, Y. Preferential solvation in mixed solvents. In Fluctuation Theory of Solutions: Applications in Chemistry,

Chemical Engineering, and Biophysics; CRC Press: Boca Raton, FL, USA, 2013; pp. 65–92.
29. Marcus, Y. Preferential solvation of drugs in binary solvent mixtures. Pharm. Anal. Acta 2017, 8, 537. [CrossRef]
30. Yalkowsky, S.H. Solubility and Solubilization in Aqueous Media; American Chemical Society: New York, USA, 1999.
31. Williams, R.O., III; Watts, A.B.; Miller, D.A. Formulating Poorly Water Soluble Drugs; American Association of

Pharmaceutical Scientists: Austin, TX, USA, 2016.
32. Delgado, D.R.; Rodríguez, G.A.; Martínez, F. Thermodynamic study of the solubility of sulfapyridine in

some ethanol + water mixtures. J. Mol. Liq. 2013, 177, 156–161. [CrossRef]
33. Muñoz, M.d.; Delgado, D.R.; Peña, M.Á.; Jouyban, A.; Martínez, F. Solubility and preferential solvation of

sulfadiazine, sulfamerazine and sulfamethazine in propylene glycol + water mixtures at 298.15 K. J. Mol. Liq.
2015, 204, 132–136. [CrossRef]

34. Barton, A. CRC Handbook of Solubility Parameters and Other Cohesion Parameters, 2nd ed.; CRC Press:
New York, NY, USA, 1991.

35. Delgado, D.R.; Mogollon-Waltero, E.M.; Ortiz, C.P.; Peña, M.; Almanza, O.A.; Martínez, F.; Jouyban, A.
Enthalpy-entropy compensation analysis of the triclocarban dissolution process in some {1,4-dioxane (1) +

water (2)} mixtures. J. Mol. Liq. 2018, 271, 522–529. [CrossRef]
36. Hildebtand, J.H.; Prausnitz, J.M.; Scott, R.L. Regular and Related Solutions: The Solubility of Gases, Liquids,

and Solids; Van Nostrand Reinhold Company: New Tork, NY, USA, 1970.
37. Grant, D.J.W.; Mehdizadeh, M.; Chow, A.H.L.; Fairbrother, J.E. Non-linear van’t Hoff solubility-temperature

plots and their pharmaceutical interpretation. Int. J. Pharm. 1984, 18, 25–38. [CrossRef]
38. Jouyban, A.; Acree, W.E. Mathematical derivation of the Jouyban-Acree model to represent solute solubility

data in mixed solvents at various temperatures. J. Mol. Liq. 2018, 256, 541–547. [CrossRef]
39. Ruidiaz, M.; Delgado, D.R.; Martínez, F. Correlating the solubility of indomethacin in 1,4-dioxane + water

mixtures by means of the Jouyban-Acree model. Rev. Colomb. Cienc. Químico Farm. 2010, 39, 211–226.

http://dx.doi.org/10.1016/j.jep.2020.112717
http://dx.doi.org/10.4062/biomolther.2015.172
http://www.ncbi.nlm.nih.gov/pubmed/26759703
http://dx.doi.org/10.1042/bj1030528
http://dx.doi.org/10.1016/j.foodchem.2013.11.002
http://dx.doi.org/10.1021/ja02206a017
http://dx.doi.org/10.1080/19440049.2019.1650962
http://dx.doi.org/10.1007/s40005-016-0299-z
http://dx.doi.org/10.1080/00319100701313862
http://dx.doi.org/10.1016/j.drudis.2011.11.007
http://dx.doi.org/10.1021/je300173v
http://dx.doi.org/10.1016/j.fluid.2013.09.018
http://dx.doi.org/10.1016/j.fluid.2015.02.018
http://dx.doi.org/10.1016/j.molliq.2008.01.005
http://dx.doi.org/10.1016/j.molliq.2012.11.001
http://dx.doi.org/10.1016/j.molliq.2015.01.047
http://dx.doi.org/10.1016/j.molliq.2018.09.026
http://dx.doi.org/10.1016/0378-5173(84)90104-2
http://dx.doi.org/10.1016/j.molliq.2018.01.171


Pharmaceuticals 2020, 13, 395 16 of 17

40. Acree, W.; Jouyban, A.; Acree, W.E. In silico prediction of drug solubility in water-ethanol mixtures using
Jouyban-Acree model. J. Pharm Pharm. Sci. 2006, 9, 262–269.

41. Nieto, A.M.R.; Cerquera, N.E.; Delgado, D.R. Measurement and correlation of solubility of ethylparaben
in pure and binary solvents and thermodynamic properties of solution. Rev. Colomb. Cienc. Químico Farm.
2019, 48, 332–347. [CrossRef]
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