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Many ecological systems are now exposed to multiple stressors, and ecosys-
tem management increasingly requires consideration of the joint effects of
multiple stressors on focal populations, communities and ecosystems. In
the absence of empirical data, ecosystem managers could use null models
based on the combination of independently acting stressors to estimate the
joint effects of multiple stressors. Here, we used a simulation study and a
meta-analysis to explore the consequences of null model selection for the
prediction of mortality resulting from exposure to two stressors. Comparing
five existing null models, we show that some null models systematically pre-
dict lower mortality rates than others, with predicted mortality rates up to
67.5% higher or 50% lower than the commonly used Simple Addition
model. However, the null model predicting the highest mortality rate
differed across parameter sets, and therefore there is no general ‘precaution-
ary null model’ for multiple stressors. Using a multi-model framework, we
re-analysed data from two earlier meta-analyses and found that 54% of the
observed joint effects fell within the range of predictions from the suite of
null models. Furthermore, we found that most null models systematically
underestimated the observed joint effects, with only the Stressor Addition
model showing a bias for overestimation. Finally, we found that the intensity
of individual stressors was the strongest predictor of the magnitude of the
joint effect across all null models. As a result, studies characterizing the
effects of individuals stressors are still required for accurate prediction of
mortality resulting from multiple stressors.

1. Introduction

The anthropocene has been characterized by widespread changes to the natural
world. Most ecosystems are now exposed to multiple stressors, which can have
cumulative effects that can drive profound changes in ecosystem function and
biodiversity [1,2]. As such, the management of multiple stressors and their
cumulative effects is an issue from local (e.g. [3]) to global scales (e.g. Conven-
tion on Biological Diversity Aichi Target 10 [4]). Addressing multiple stressors
is inherently complicated due to the complexity of natural systems, the variety
of stressors acting on ecosystems, and the variance in individual, population
and community responses to those stressors [5]. Yet, despite these challenges,
many decision-makers are legislatively required to consider the cumulative
effects of multiple stressors, and therefore improving the scientific understand-
ing of multiple stressors and their interactions is an important focus for
researchers [6].

An important part of understanding the cumulative effects of multiple stres-
sors is understanding whether stressors will have some mechanistic (e.g.
physical or physiological) interaction that would impact populations or ecosys-
tems more (i.e. synergistic) or less (i.e. antagonistic) severely relative to the sum
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of the independent effects of each stressor (e.g. [7-9];
see [10] for a review). The implication is that synergistic
stressor combinations represent ‘ecological surprises’ that
can complicate environmental management because of their
potential to accelerate biodiversity loss and impair the
functioning of ecosystems [2,11,12]. Conversely, unexpected
antagonistic combinations may help managers prevent
severe adverse losses, such that understanding which effect
to expect is critical.

However, the determination of synergistic or antagonistic
stressor combinations can only be made by comparing the
realized impact of multiple stressors to that predicted by a
particular null model [13,14]. Importantly, there are a range
of null models predicting the joint effect of independently
acting stressors [15-17] which vary in their predictions for a
given set of parameter values (i.e. given individual stress
effects; see figure 1). As such, an observed effect deemed to
be synergistic in reference to one null model may be consistent
with (or even antagonistic to) a second null model. Because
different studies may use different null models, it is challen-
ging to derive general trends about the probability that
multiple stressors produce synergistic impacts. Furthermore,
because most studies only consider a single null model (e.g.
[18-22]), the impression that the joint effects of multiple stres-
sors are often synergistic or antagonistic could be a result of an
incomplete consideration of the range of potential null models.
Finally, among-study differences in analytic approaches com-
plicate the interpretation of the predictive ability of various
null models (see box 1), and the frequency of synergistic and
antagonistic stressor effects.

In ecological studies, the Simple Addition model is
often chosen as the null model against which joint stress
effects are tested [14,19,26]. This model assumes that the
joint effects of multiple stressors will be equal to the sum
of the effects of the individual stressors. While Simple
Addition represents an intuitive null model (and is invoked
by certain statistical tests; see [16]); it has features that make
it undesirable as a default null model. In particular, when
mortality is used as the endpoint of interest, Simple Addition
assumes there is a strong negative correlation in the distri-
bution of sensitivity to each stressor (i.e. individuals that
are sensitive to stressor A are insensitive to stressor B, and
vice versa). However, this assumption is not supported by
any empirical research to our knowledge, and is opposed
by studies showing across-context repeatability in the physio-
logical stress response in many species [27]. Furthermore, a
recent study by Thompson et al. [17] demonstrated that
when the Simple Addition model is applied to community-
level properties, it does not properly aggregate the responses
of individual species to produce a linear expectation at
the community level. Finally, predictions of mortality for
multiple stressors under Simple Addition can exceed
100% (e.g. if stressor A causes 55% mortality alone, and
stressor B causes 50% mortality alone) and as such Simple
Addition produces impossible mortality predictions in
some circumstances [10] (see also [17]).

Other null models from the ecological and ecotoxico-
logical literature are also based on the independent action
of each stressor but with different assumptions. For example,
the Multiplicative model is based on the assumption that
stressors are additive in terms of their probabilistic sum
(table 1), which implies that the population’s sensitivity to
mortality from different stressors is uncorrelated [16].

Alternatively, the Dominance model assumes that the stressor
with the largest effect determines the outcome of joint stress
effects (table 1), implying a strong positive correlation in the
sensitivity to different stressors. The Concentration Addition
model is widely used in the field of (eco)toxicology, and
assumes that the intensity of stressors (or the concentration
of chemicals) is exchangeable, if they are scaled by their
potency [31]. This model requires understanding the relation-
ship between stressor intensity and the endpoint of interest
(which we term the stressor-effect relationship, box 1)
through either empirical means, or by assuming its shape.
Finally, the Stressor Addition model assumes that individuals
have a set tolerance towards all types of stress (their general
stress capacity) and that all stressors can be translated
into general stress levels, which act as a common currency
to combine the effects of multiple stressors [32]. The set of
models considered in this study are not a complete set of
all possible null models for the joint effect of multiple stres-
sors, and we expect that additional null models will be
developed in the future. However, our study represents an
attempt to move towards a multi-model framework in a
field that has traditionally focused on the Simple Addition
model as a default expectation for the comparison of multiple
stressor effects.

In this study, we quantify the mortality predictions
made by different null models for populations exposed to
two stressors. We focus on mortality because it has a strong
direct relationship with population dynamics, and is, there-
fore, often a focus for ecosystem managers. However, four
out of the five null models considered (all except the Stressor
Addition model) have direct applications for continuous end-
points such as growth or reproduction (see [16] for examples),
and as such, our study may provide general insights for
the consideration of multiple stressors. In our study we use
two complementary approaches, as follows. (i) We examine
the range of predictions made by five null models under differ-
ent stressor-effect relationships and stressor intensities using
simulated data. Such an examination is critical for understand-
ing the conditions under which null model selection is
consequential (i.e. null models diverge) or inconsequential
(i.e. null models converge). In conducting these analyses, we
compare the predictions of the Multiplicative, Dominance,
Concentration Addition and Stressor Addition null models
to the Simple Addition model, because this is the most com-
monly applied null model in ecological studies of multiple
stressors. Additionally, we evaluate whether any of the null
models considered in this study could be considered as a pre-
cautionary null model for policy and management decisions
that rely upon the precautionary principle [33], which we
define as a null model that consistently predicts the highest
level of impacts (i.e. highest mortality rate). (ii) We re-analyse
data presented in previous meta-analyses of multiple stressor
effects [14,19]. In doing so, we consider if the observed joint
effects are consistent with any of the five null models we con-
sider in the current study, which differs from the common
approach of only comparing the observed joint effects
with those predicted by the Simple Addition model (e.g.
[19,22,26]). As such, this analysis allows us to quantify what
proportion of stressor combinations could be explained by
the combined effects of independently acting stressors (i.e.
those within the range of the null models), and identify stressor
combinations that are synergistic or antagonistic with respect
to all null models.



Box 1. A conceptual framework for predicting the joint effect of multiple stressors

Functional definitions used in this study
Stressor: changes in environmental parameters beyond their usual range (often directly or indirectly caused by human
activity) that ultimately results in a negative biological response.

Stressor intensity: measure of the strength of a stressor (e.g. the concentration of a toxic chemical or the increase in temp-
erature of a waterbody). In our simulations, stressor intensities are normalized to the unit scale (0,1), where stressor intensity
values of 0 indicate the absence of the stressor and stressor intensity values of 1 relate to the maximum effect of the stressor
(e.g. 100% mortality). SIo and Sl in table 1.

Stressor-effect relationship: the functional relationship between the stressor intensity (e.g. the concentration of a pollutant)
and the population response (here, the population mortality rate). f4 and fg in table 1.

Individual stress effect: the population mortality rate caused by exposure to a single stressor, at a given stressor intensity.
fa(Sl4) and fg(Slp) in table 1.

Joint stressor effect (joint effect): the mortality rate experienced by a population exposed to two (or more) stressors, at given
stressor intensities. fag(Sla, Slp) in table 1.

Null models for multiple stressors: models predicting the joint effect of multiple stressors based on the independent action of
each stressor (i.e. stressors do not have any explicit mechanistic interactions).
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Figure 1. Conceptual framework showing the relationship between stressor intensities, stressor-effect relationships, individual stress effects, null models and
the predicted joint stressor effects under those null models, for two stressors acting on a population. Stressor intensities determine the individual stress
effects, as mediated by the stressor-effect relationships. The manner in which individual stress effects combine to create a joint effect is described by
the five null models considered in this study. In this example, stressor intensities of 0.40 (for stressor A) and 0.30 (for stressor B) result in individual
stress effects of 30% and 11% mortality, respectively. Null models of multiple stressors predict that a population exposed to both of these stressors
will experience mortality between 30% (Dominance model) and 78% (Stressor Addition model).

Table 1. Null models for the joint effects of two stressors (see box 1 for a description of each variable in the model equations, and see [16] for a
detailed description of each model).

model also called model equation reference
Simple Addition Additive, Linear Addition fag(Sly, Slg) = £u(Sla) + f5(Slg) [28]
Multiplicative® Effect Addition, Risk model fag(Sla, Slg) = £a(SIp) + f3(Slg) — fa(Sla) f3(Slg) [29]
Dominance Comparative Effects fag(Sla, Slg) = max(fu(Sla), f5(Slg)) [30]
Concentration Addition® — fag(Sly, Slg) = £u(Sly + ¥Slg) [31]
Stressor Addition® — Fua Sl Slg) = Favaap(Fary ( (SI0)) + Findlf3(S15))) [32]

%n the Multiplicative model, individual and joint stress effects must be specified as proportions [13].
bWith ¥ = Sla/Slg, where fy(Slp) = f5(Slg,) = half the effect size limit.

Frcap is the cumulative density function of the population’s stress capacity, while F1

wep 15 the quantile function for the population’s stress capacity.
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Null models in a regression context

Many studies have used null hypothesis significance tests based on (generalized) linear regressions to test whether the
observed effects of multiple stressors adhere to the predictions of various models. Indeed, an alternative idea of a null
model for multiple stressor is a simplified version of a statistical model (e.g. an intercept-only statistical model, or a
model without statistical interaction effects). This approach differs from that used in the current paper, and the relative popu-
larity of regression approaches versus the predictive approach used herein differs between different subfields [23]. One
complication associated with the regression approach is that the use of link functions (or data transformations) to meet
the assumptions of the statistical models alters the form of the null model being tested. For example, the common process
of log-transforming data prior to conducting an ANOVA imposes the Multiplicative null model rather than the Simple
Addition model [16,24], a distinction that is often not appreciated and that can lead to incorrect inferences related to how
stressors combine [25]. Many regression approaches also impose a linear (or linear on the link scale) relationship between
the intensity of stressors and the biological response, however, stressor-effect relationships follow many possible shapes. Not-
withstanding these issues, regression approaches are often more appropriate in observational studies where the intensities of
individual stressors can be measured, but the effects of individual stressors (i.e. in isolation) are often unknown.

2. Methods

(@) Null model simulations

To examine the range of joint effects predicted by different null
models, we simulated stressor intensities (SI, and Slg) and
stressor-effect relationships (fa and fg) for two stressors and calcu-
lated the predicted joint stressor effect under the five null models
presented in table 1. A single simulation was conducted for each
unique set of parameter values including stressor intensities
from 0 to 1 (at intervals of 0.01) and stressor-effect relationships
that were one of five shapes (linear, accelerating, diminishing,
steep middle, steep extremes—see electronic supplementary
material, figure S1 for more details). The distribution of stress
capacities (Fgrcap) used in the Stressor Addition model was para-
meterized using a symmetric beta distribution with a==3.2 as
per Liess et al. [32]. This analysis, therefore, included 250 000
unique parameter sets which collectively represent a broad suite
of possible conditions across which resource managers may
need to consider the joint effects of two stressors including individ-
ual stressors that cause anywhere between 0% and 100% mortality,
and a suite of common stressor-effect relationships.

We note that an analytical approach could be used to pro-
duce some of the insights from these simulations. For example,
comparing the equations in table 1 demonstrates that the Domi-
nance model will always predict a joint effect equal to or less
than the prediction from the Simple Addition and Multiplicative
null models (similarly, the Dominance model always predicts a
lower or equal joint effect to the Multiplicative model). However,
an analytical consideration of all null models in this study is
complicated by variation in stressor-effect relationships and the
distribution of stress capacities, and for these reasons, we
selected a simulation approach.

We quantified model divergence as the absolute difference in
percentage mortality between the null model predicting the high-
est and lowest mortality rates, for a given parameter set. Similarly,
the model deviation was measured as the standard deviation in
mortality rates across null models. High values of model deviation
and divergence, therefore, suggest that null model selection is con-
sequential, while low values suggest that all null models make
similar predictions. In all cases, mortality predictions greater
than 100% (e.g. from the Simple Addition model), were truncated
to 100% prior to calculations and plotting.

(b) Meta-analysis

To explore how empirical data on the joint effects of multiple stres-
sors compare to the joint effects predicted by null models, we re-
analysed the data compiled by Crain ef al. [19] and Darling &
Coté [14]. These authors conducted meta-analyses on the effects
of two stressors acting in combination, and required the contribut-
ing experiments to be conducted in a full factorial design (i.e. to

have measured the response in (i) a control group, (ii) a group
exposed to just stressor A, (iii) a group exposed to just stressor B
and (iv) a group exposed to stressors A and B in combination).
We subsetted the experiments included in the Crain et al. [19]
and Darling & Coté [14] datasets that measured the effects of
two stressors on survival or mortality in animal or plant popu-
lations (n=170). We further filtered the data by excluding
experiments in which exposure to either of the ‘stressors’ resulted
in an increase in survival (1 = 49), as these effects were not consist-
ent with our definition of a stressor (see box 1). For the remaining
data (1=121 experiments), we calculated the individual
stress effects (i.e. fa(SIa) and fg(SIp)) and joint stress effects
(i.e. fag(Sla, SIp)) for each experiment. To do so we converted all
values to per cent mortality (e.g. % mortality = 100% — % survival),
and then calculated the difference in mortality between the treat-
ment and control groups as the stress effects (e.g. fa(SIa) =
mortality in the group exposed to just stressor A —mortality in
the control group). For each experiment, we then calculated the
predicted joint effects under each of the five null models listed in
table 1. For the Concentration Addition model, we calculated the
predicted joint effects under all combinations of the five stressor-
effect relationships included in electronic supplementary material,
figure S1, while scaling the stressor-effect relationships to the scope
of possible mortality values (e.g. if the control group showed 10%
mortality, the maximum stress effect for each stressor-effect
relationship was reduced to 90%, while maintaining the shapes
in electronic supplementary material, figure S1). For the Stressor
Addition model, we used a symmetric beta distribution (p=g=
3.2) for the distribution of general stress capacity, as above.

For each experiment, we then determined if the observed joint
effect fell within or outside the range of joint effects predicted by
the five null models. To understand which model most accurately
predicted the observed joint stressor effects in our dataset, we cal-
culated the bias and precision of each of the null models relative to
the observed joint effects. We calculated bias as the mean differ-
ence in the model predictions from the observed joint effects,
and the precision as the standard deviation in the difference in
the model predictions from the observed joint effects.

(c) Software

Simulations and data analysis were conducted in R v. 3.6.1 [34] using
the tidyverse suite of packages [35]. We also used the distr package
[36] for simulating beta distributions with different characteristics.

3. Results

(@) Null model simulations
Across parameter sets (i.e. given values of stressor intensi-
ties and stressor-effect relationships), null models showed a
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Figure 2. The distribution of model deviation (standard deviation of the predicted joint effects) and model divergence (the difference between the maximum and
minimum predicted joint effects) across five null models over 250 000 parameter sets. Low values of deviation and divergence are produced when all null models
make similar predictions for the joint effect of two stressors, while high values indicate that null models produced different predictions.

Table 2. Strength of model input variables as drivers of the amount of
predicted mortality across five null models. Each variable listed below was
included in a univariate binomial family generalized linear model and the
resultant model likelihood compared with likelihood from an intercept only
model, in the manner outlined by McFadden [37]. Larger pseudo R* values
indicate that the variable has a stronger impact on the amount of
predicted mortality.

variable pseudo R*

intensity of stressor A 0.139
intensity of stressor B 0.137
stressor-effect relationship for stressor A 0.047
stressor-effect relationship for stressor B 0.054
null model 0.044

median divergence of 44.0% mortality and a median deviation
of 18.0% mortality (figure 2). In general, model divergence
and deviation increased as stressor intensities increased, and
were higher when the stressor-effect relationships followed a
‘diminishing or steep extremes” shape (electronic supplemen-
tary material, table S1). In comparison to the commonly used
Simple Addition model, other null models predicted popu-
lation mortality rates up to 67.5% higher or up to 50% lower
(electronic supplementary material, figure S3). As expected,
Dominance and Multiplicative null models never produced
mortality estimates greater than the Simple Addition model.
In addition, the Stressor Addition model never produced
mortality estimates less than the Simple Addition model. As
a result of interactions between the shapes of the two stres-
sor-effect relationships, the Concentration Addition model
produced highly variable mortality estimates (electronic
supplementary material, figure S3).

These results illustrate the challenge of predicting the joint
effects of multiple stressors. Even in simple two stressor
systems different stressor-intensities, stressor-effect relation-
ships and null models cause large amounts of variation in
the predicted joint effect. To attempt to understand what
factors have the most impact on the variance in predicted
mortality across models, we used pseudo R? values to quan-
tify the variance in mortality explained by the different input
variables [37]. We found that the stressor intensities were the
strongest drivers of variance in predicted mortality (table 2).

Additionally, the two stressor-effect relationships, and the
null model used, were about equal contributors to the vari-
in predicted mortality. However,
individual stress effects are known (i.e. fo(SIA) and fg(Slg)),
variance in the null model used can lead to substantial var-
iance in predicted joint effects (electronic supplementary
material, figure 54).

We used our simulated dataset to investigate whether any

ation even when

of the five null models considered herein could be used as a
precautionary null model for resource management decisions
requiring the prediction of the joint effect of multiple stres-
sors. If a single null model routinely makes the highest
mortality predictions, resource managers could use such a
model as an upper (i.e. precautionary) prediction for the
amount of mortality likely to occur from a given combination
of stressors. No single null model in our simulation predicted
the highest level of mortality across all parameter sets, and
therefore none of the null models considered in this study
can be considered a general precautionary null model. The
Stressor Addition model was the null model most likely to
produce the highest mortality estimate (figure 3a); however,
there was a wide area of parameter space over which no
null model consistently produced precautionary esimates
(figure 3b). These results suggest that the shape of the stres-
sor-effect relationships often determine which null model
produces the highest mortality estimates.

(b) Meta-analysis

In total, 121 experiments included in Crain et al.’s [19] and
Darling & Co6té’s [14] meta-analyses met the criteria for
inclusion in our re-analysis. Of these 121 experiments, we
found that 54% of the observed joint effects fell within the
range of null model predictions (figure 4a), despite only
29% of the observed joint effects being within +5% mortality
of the prediction from the Simple Addition model. In
addition, we found that 24% of the observed joint effects
exceeded the predictions of all null models and 22% were
lower than the predictions of all null models.

On average, most null models predicted less mortality
than observed (figure 4b), with biases of —8.0%, —12.9%,
—-9.9% and —6.9% for the Simple Addition, Dominance,
Multiplicative and Concentration Addition models, respect-
ively. The stressor addition model was the only null model
to predict higher mortality than observed, on average
(bias =+5.7%, precision=36.3%), and also had the lowest
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Figure 3. Precautionary null models. Here, we show the number of parameter sets in which a particular null model produced predicted mortality values equal to
the highest value predicted across all null models (a). In addition, we show the parameter space over which a model could be considered precautionary, at different
precaution levels (b). For example, a model was considered precautionary at the less than 0.05 level if, for all simulation conditions, the model predicts joint effects
to be no less than 0.05 (5%) below the maximum predicted joint effect across all null models. The paucity of precautionary null models for low levels of stressor
intensities demonstrates that for these combinations of stressor intensities, the shape of the stressor-effect relationships determines which null model predicts the
highest mortality rate. As such, no single null model (from the five considered here) can be considered as a precautionary model across all combinations of stressor
intensities.
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Figure 4. Null model predictions for the joint effects of two stressors relative to the effects observed in 121 factorial experiments (a). Each row represents a single
experiment and shows the range of predicted mortality under the five null models considered in this study (horizontal light grey bars) in comparison to the observed
mortality (shown with a coloured square with blue, black or red coloration indicating the observed mortality was less than, within or greater than the range of null
model predictions). In (b), we show the accuracy of each null model in predicting the observed mortality resulting from two stressors. Grey polygons show the
distribution of the difference between the model predictions and the observed mortality, across all 121 experiments, with negative values indicating the model
predicted less mortality than observed. Black dots indicate the average difference between the model predictions and the observed mortality (bias), and error bars
illustrate the model’s precision (standard deviation of the difference).
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absolute bias. However, the precision of the Stressor Addition
model (£36.3%) was lower than all other models (+31.9%,
+31.4%, +31.3%, +33.4% for the Simple Addition, Domi-
nance, Multiplicative and Concentration Addition models,
respectively), and as such, no clear model can be considered
as the most accurate predictor for this dataset.

Null models provide a comparator for observed patterns in
nature and can help to challenge scientists’ commonsense jud-
gements about how unusual patterns may have been produced
[38]. The suite of five null models considered in this study
describe five ways (table 1) in which stressors could combine
to produce joint effects without any mechanistic interaction
between the individual stressors. While some stressors do
interact through physical (e.g. the photomodification of poly-
cyclic aromatic hydrocarbons by ultraviolet radiation [39]) or
physiological (e.g. competition between toxic metals for
cation uptake sites in fish gills [40]) means our simulation
study demonstrates that direct interactions between stressors
are not theoretically required to produce a range of joint effects
for two stressors acting in combination (see also [16]). In our
simulation study, we show null model mortality estimates
differ by an average of 44% between the models with the
most and least severe predictions (figure 2), and that null
model predicted joint effects can differ substantially from the
commonly used Simple Addition model.

Of the set of null models considered in this study, the
Dominance model always produced the lowest mortality pre-
dictions. However, no null model systematically produces the
highest mortality predictions and therefore, there does not
seem to be a general precautionary null model for multiple
stressors. As a result, precautionary approaches to estimating
mortality from multiple stressors will require engaging
with a variety of null models, including grappling with the
complexity of the inputs for those null models (e.g. the stres-
sor-effect relationships in the Concentration Addition model
and the shape of the general stress capacity in the Stressor
Addition Model). Nonetheless, we also found that the inten-
sity of individual stressors remains the strongest predictor of
the magnitude of mortality across all null models (table 2).
Given that stressor intensities should be easier to quantify or
estimate than other model inputs (e.g. stressor-effect relation-
ships), this finding suggests that reasonable model predictions
can be produced even in many data deficient scenarios.

In re-analysing data from previous meta-analyses, we
found that the majority (54%) of the observed joint effects
of multiple stressors on mortality rates fell within the interval
of predictions from the set of null models (figure 4a), but that
most null models were biased towards underestimating the
observed effects (figure 4b). Of the null models considered
here, the Stressor Addition model had the lowest absolute
bias, predicting 5.7% more mortality than observed on aver-
age. However, this model also under-predicted mortality in
some experiments by up to 91.3%, and over-predicted mor-
tality by up to 93.8% in other experiments (figure 4b). As a
result, we caution that prediction of mortality from multiple
stressors that are based on single null models are often
likely to be incorrect, sometimes dramatically so.

Our approach of comparing experimental results to a suite
of null models contrasted with that of previous meta-analyses

(e.g. [18,20-22]) and many empirical studies (e.g. [41-43])

which have compared observed joint effects to a single null
model (typically the Simple Addition model). We suggest
that a multi-model approach, in which the range of predictions
made by a set of ecologically reasonable null models is
considered, may provide a more useful framework for ecosys-
tem managers who are tasked with estimating mortality from
multiple stressors. While this interval will often be wide (e.g.
figures 2 and 4q), it is more likely to include the actual outcome
of a given combination of stressors than focusing on a single
null model for prediction. Furthermore, previous guidance
on developing a reasonable set of hypotheses in statistical ana-
lyses (e.g. [44]) could be used to eliminate some null models a
priori, thereby narrowing the scope of the interval.

These results highlight several additional challenges
associated with the study of multiple stressors. First, for
many parameter sets, null models (which are based on the
combination of independently acting stressors) predict a
wide range of possible mortality estimates, and therefore
any observation within that range could be explained by
the independent action of the stressors. Only when the
observed joint effect lies outside the range of predictions pro-
duced by all null models, might we infer that the stressors
have some mechanistic interaction that has led to an unex-
pected joint effect. However, it is also possible that stressors
do have a direct mechanistic interaction and still produce
joint effects within the range of predictions of the null
models. As a result, we suggest that understanding whether
two stressors have a mechanistic interaction is not sufficient
to allow for robust prediction of the joint effects of two stres-
sors, and that much more work on mechanistic interactions
between different stressors is required before this information
is useful for resource management. Instead, we suggest that a
focus on the phenomenology of multiple stressor effects
(which ignores whether stressors have a direct interaction)
is the more fruitful approach to predicting multiple stressor
effects at the current time, despite phenomenological
approaches being generally thought of as less predictive
frameworks [45]. In this argument, we differ from Schafer &
Piggott [16] who suggest that appropriate null models can
be selected based on knowledge of the mechanism of action
of the individual stressors involved. While such an approach
is a promising step to reducing uncertainty surrounding
the joint effects of multiple stressors, we suggest that much
more empirical support is needed to demonstrate that such a
framework offers any predictive capability.

A related issue surrounds the terms ‘synergistic’ and
‘antagonistic’ stressor combinations, which are being used
with increasing frequency [10] but have inconsistent defi-
nitions among studies. Under their original definitions
(sensu [13]), an observed joint effect may be synergistic with
regard to one null model but antagonistic to another null
model, because the determination of synergistic and antagon-
istic stressor combinations was made in reference to a stated
null model. However, many authors have used the terms to
define stressor combinations in exclusive reference to the
Simple Addition model, and have labelled stressor combi-
nations themselves as ‘synergistic’ or ‘antagonistic’ when
they result in joint effects that are more or less severe than
the predictions of that null model. While this latter definition
would provide more consistency and precision for the term, it
leaves the question of how to differentiate joint effects that are
consistent with another null model (e.g. the Multiplicative



model), versus those that fall outside of the range of all null
models. Given the general paucity of stressor combinations
that adhere to the predictions of the Simple Addition
model, it seems prudent to develop terminology to describe
stressor combinations that are consistent with other null
models. Indeed, as Orr et al. [23] discuss in their recent
review, ambiguous and inconsistent use of terms is a general
issue in the study of multiple stressors that hinders knowl-
edge transfer among disciplines and therefore warrants
further attention.

Additionally, our study shows that for some combinations
of parameters, all null models produce similar mortality pre-
dictions (e.g. when both stressor intensities were low, or both
were high; figure 3; electronic supplementary material, figure
S4). As a result, stressors that appear to combine in an addi-
tive manner (i.e. the observed mortality is not significantly
different than that predicted by the Simple Addition model)
may actually be following a different null model. The practi-
cal implication of this finding is that even when the joint
effect of a set of stressors has been measured in a given
system, we cannot extrapolate the joint effect of those same
stressors (in the same system) if the stressor intensities
change. For example, Moreno-Marin et al. [43] found that a
10°C increase in temperature, 137 pmol photonss™' m™
decrease in light and a 25 pM increase in nitrogen produced
joint effects on eelgrass (Zostera marina) that were not signifi-
cantly different from the predictions of the Simple Addition
model. However, we cannot infer that these three stressors
will combine to produce joint effects that are consistent
with the Simple Addition model at other stressor intensities.
An improved approach to understanding multiple stressors
would involve quantifying which null model best predicts
the observed joint effects (a model selection approach)
rather than testing whether the observed joint effects differ
from a specific null model (a null hypothesis significance
testing approach), especially if joint stressor effects were
measured across a broad gradient of stressor intensities.

Our study explores various ways in which different stres-
sor intensities and stressor-effect relationships could combine

to cause mortality in a single population. However, we recog-
nize that the realized response of populations to multiple
stressors will also depend on the ecological context, including
how the stressors impact biotic interactions and the popu-
lation dynamics of the focal species. For example, Hodgson
et al. [46] demonstrated that the form of density dependence
operating on a population impacts the severity of multiple
stressors in a given population. Furthermore, stressors can
impact interspecific relationships, including resource compe-
tition [47], predator-prey relationships [48] or pathogen/
parasite-host relationships [49], which may have larger
impacts than the direct effects of the stressor on the focal
population. While an increased focus on ecological complex-
ity is clearly required to improve the utility of multiple
stressor research for ecosystem management [23], producing
predictive models for natural systems would be supported
by a stronger understanding of the way in which multiple
stressors act on single populations.

The code used to produce and analyse the simulation
component of this paper, including the code used to produce the
figures in our manuscript, is available at https://github.com/
cjdey/null_models_for multiple_stressors. The code used to perform
the meta-analysis is also available at the same link. The data used to
perform the meta-analysis was kindly provided by Ben Halpern [19]
and by Emily Darling [14], and can be requested by contacting them.
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