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Abstract: In the last few years research into Cannabis and its constituent phytocannabinoids has 
burgeoned, particularly in the potential application of novel cannabis phytochemicals for the treat-
ment of diverse illnesses related to neurodegeneration and dementia, including Alzheimer’s (AD), 
Parkinson’s (PD) and Huntington’s disease (HD). To date, these neurological diseases have mostly 
relied on symptomatological management. However, with an aging population globally, the search 
for more efficient and disease-modifying treatments that could delay or mitigate disease progression 
is imperative. In this context, this review aims to present state of the art in the research with can-
nabinoids and novel cannabinoid-based drug candidates that have been emerged as novel promising 
alternatives for drug development and innovation in the therapeutics of a number of diseases, espe-
cially those related to CNS-disturbance and impairment. 
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1 INTRODUCTION 

 Cannabis has been used since the beginning of human 
civilization, and it was first described by a Chinese Emperor 
around 2700 B.C. for the treatment of constipation, gout, 
beriberi, malaria, rheumatism and menstrual disorders [1]. 
The use of the plant was disseminated worldwide until the 
beginning of the twentieth century for a number of medicinal 
purposes and recreational use [2]. In occidental medicine, the 
first report of its use was in 1843, by the Irish physician Wil-
liam Brook O’Shaughnessy for the treatment of convulsion 
and other illnesses [3, 4]. The plant extracts were included in 
both British and American Pharmacopeias in the 19th Cen-
tury for their sedative and anticonvulsant effects. However, 
the use of these extracts was forsaken due to both their 
chemical variability that gave rise to adverse effects but also 
the negative social impact as a consequence of recreational 
use [4]. Only in the 21st Century, in spite of its restrictions, 
cannabis returned to favor to be studied for therapeutical 
purposes [4]. Indeed, modern medicinal cannabis is gaining 
more widespread acceptance as an option in the treatment of 
a spectrum of illnesses. With a loosening of the regulatory 
framework for access in many countries, many more people 
will be expected to seek medicinal cannabis for a variety of 
conditions beyond its more established use in chemotherapy-  
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related nausea and vomiting, chronic pain, muscle spasticity 
and epilepsy [5]. Alternative extraction methods such as cold 
and supercritical CO2 processes may preserve a range of ter-
penes, parent cannabinoid carboxylic acids and other phyto-
cannabinoids [6], which also extends to the extraction of 
hemp for the food and nutraceutical industries [7]. Thus, the 
changing landscape of both the composition and exposure 
profile of phytochemicals in medicinal cannabis may be sub-
stantively different from what we have experienced to date. 
This review is therefore timely to describe and discuss a 
number of major and minor phytocannabinoids and other 
cannabis phytochemicals in terms of their pharmacology, 
bioactivity and potential applications in disease, with a focus 
on novel neurotherapies. It is in this field where the plethora 
of novel phytochemicals in cannabis may be exploited for 
the most promise in developing new treatments for neuro-
logical diseases [8]. 

 The term cannabinoid is broad, being used for synthetic 
cannabinoids, as well as for endocannabinoids and phyto-
cannabinoids that act on the cannabinoid receptors. This 
term was originally used for designating a set of oxygenated 
aromatic hydrocarbon metabolites from marihuana, consti-
tuted by 21 carbon atoms, which are now named phytocan-
nabinoids [9]. Currently, thousands of cannabis strains are 
known in the market with different composition of phyto-
cannabinoids, which are classified and marketed on the basis 
of the total amount of THC (Δ9-tetrahydrocannabinol, 13, 
Fig. 3) and CBD (cannabidiol, 20, Fig. 3) [10, 11]. Nowadays, 
among the 10 known subclasses of phytocannabinoids, the 
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most common and studied are the psychotropics, where THC 
is the most notable constituent, followed by CBN (cannabinol, 
15, Fig. 3), Δ8-THC (Δ8-tetrahydrocannabinol, 14, Fig. 3) 
and the non-psychotropics such as CBD (20, Fig. 3), CBC 
(cannabichromene, 17, Fig. 3) and CBG (cannabigerol, 9, 
Fig. 3) [11-13]. All these compounds exert their biological 
effects variably through an interaction with a variety of re-
ceptors, including the cannabinoid receptors CB1 and CB2, 
but notwithstanding a number of other non-cannabinoid re-
ceptors, including G-protein coupled receptors (GPR55, 
GPR3) and ion channels [11]. The ability of phytocannabi-
noids to bind to these types of orphan GPCRs has been pro-
posed as an important pathway of cannabis in the context of 
use as alternative treatments of a number of diseases, includ-
ing chronic pain, nausea, multiple sclerosis, epilepsy, anxi-
ety, AD, PD and HD, among others [14, 15]. 

2. THE PLANT CANNABIS AND ITS USES 

 Cannabis is an Asian native species from the Family 
Cannabaceae, being an annual and dioecious plant (and in 
rare cases can develop as hermaphrodite) [16]. All species 
are rich in diverse biologically active chemical constituents 
divided into 18 chemical classes, including cannabinoids, 
alkaloids, terpenoids and flavonoids produced by secondary 
metabolism [17-19]. Based on taxonomy there are three ac-
cepted species of Cannabis, known as C. sativa, C. indica 
and C. ruderalis (Fig. 1) which vary both in physical charac-
teristics such as height but also in chemical composition, 
including psychoactive componentes [18, 20]. Recreational 
use of C. sativa is often considered in physiologically gener-
alised terms as uplifting, energetic and eurphoric and is the 
type more commonly used for recreational purposes, 
whereas C. indica tends to be described more for promotion 
of relaxation and sedation [16]. 

 To date, 538 bioactive compounds have been identified 
in the most studied species C. sativa, of which more than 
100 are phytocanabinoids [18, 21]. Currently, there are 
around 700 types of Cannabis, with variations in their can-
nabinoid and terpene composition [16]. The current chemo-
taxonomic classification of Cannabis establishes a relation-
ship between the amount of THC (13, Fig. 3) and CBD (20, 
Fig. 3) in the plant due to the natural variability, and broadly 
this generates 5 Cannabis chemotypes: 

• Chemotype 1: narcotic, with a higher ratio of THC 
and THCA than CBD and CBDA (>1). 

• Chemotype 2: intermediary, with a similar ratio be-
tween the relation of THC/THCA and CBD/CBDA. 

• Chemotypes 3 and 4: fibrous, with a ratio between 
THC/THCA and CBD/CBDA much smaller than 1, 
therefore ascribed higher concentrations of CBD. 

• Chemotype 5: Plants of fiber type, but with a very 
low amount of cannabinoids [20, 22]. 

 Cannabis has been cultivated since ancient times in some 
regions of Central and Southeast Asia, being used as a 
source of fiber, food, oils and medicines, but also used for 
recreational and religious purposes [13, 18]. Currently, can-
nabis can be readily cultivated in temperate and tropical cli-
mates [16]. Over time its domestication was influenced by 
human selection factors such as inbreeding, outbreeding and 
genome mixing [10], with a risk that domestication has re-
duced both biodiversity and chemical diversity in modern 
cultivated cannabis strains [10]. Its medicinal use has been 
reported from over 5000 years ago by a Chinese Emperor to 
treat malaria, rheumatism, gout, constipation and fatigue [13, 
18] and cannabis has been used in Traditional Medicine. 
However, due to difficulties in the standardization of ex-

 

Fig. (1). Illustration of morphological aspects of Cannabis species.  
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tracts, their low solubility in water that impedes injectable 
administration and a slow oral absorption with a consequent 
irregularity in extract absorption, cannabis use for medicinal 
purposes declined from 1937 [16]. Additional legal restric-
tions and cannabis taxation in the United States at that time 
also further limited its accessibility and use, which spread 
globally [23]. In 1960, the plant, its extracts and isolated 
cannabinoids were included in the Single Convention on 
Narcotic Drugs, in part as a consequence of their adverse 
side effects not being compensatable by therapeutic benefits 
[24, 25]. Ten years later, in 1971, by the Convention of Psy-
chotropic Substances (COPS), the use of all THC analogues 
and derivatives was prohibited, except for medical and scien-
tific purposes when specifically authorized [25, 26]. Despite 
the legal prohibition, marihuana is the most commonly used 
illicit drug in occidental countries, causing euphoria and 
changes in sensorial perception amongst other effects [27]. 
Many studies report that its intense and recurring recrea-
tional use, mainly amongst young people, has enhanced the 
risk of certain mental disorders, dependence and psychosis 
[28], which has been related to adverse effects in central 
GABAergic, glutamatergic and dopaminergic systems. By 
contrast, the use of Cannabis in the elderly has been reported 
to improve quality of life, reducing pain and prescribed 
opioid drug use [14]. 

 The most active constituents, the cannabinoid metabo-
lites, also known as phytocannabinoids, are produced within 
the glandular trichomes in leaves, bracts and stems, espe-
cially in the female plant [18, 29]. These glands are respon-
sible for interactions between the plant and the environment, 
assisting in defense against pests and interactions with herbi-
vores [18]. Plant genetic modifications have been explored 
to change the relative proportion of expressed phytocannabi-
noids and hence the pharmacological effects of cannabis 
extracts [25, 26]. In C. sativa, the Δ9-THC (13, Fig. 3) class 
is responsible for 17,3% of the extract’s composition, fol-
lowed by the class of CBG (16,3%, 9, Fig. 3) and CBD 
(9,6%, 20, Fig. 3) [30]. 

3. PHYTOCANNABINOIDS 

 Phytocannabinoids are predominant, but not exclusive 
constituents of Cannabis species, with some aromatic ketone 
analogues also found in Radula sp and in fungi Pichia spp 
[12, 31]. To date, ca. of 120 phytocannabinoids are known, 
with a chemical structure with an oxygenated 21 carbon at-

oms skeleton, with a common fragment that includes the 
dibenzopyran ring and a hydrophobic alkyl chain [32]. This 
variety of compounds arises from the differences in the sub-
stituents and stereochemistry of the 3 structural subunits, 
namely the isopropenyl residue of the terpenoid moiety (A), 
the resorcinol nucleous (B) and the alkyl side chain (C, Fig. 2) 
[12]. 

 In the biosynthetic pathway of phytocannabinoids (Fig. 
3), Acetyl-CoA (1) and Malonyl-CoA (2) are the precursor 
building blocks of the aromatic fragment from the polyketide 
intermediate 3, which undergoes sequential cyclization, aro-
matization and reduction to originate the olivetolic acid (4). 
In a parallel route, the formation of geranyl pirophosphate 
(7) is given from isopentenyl diphosphate (IPP, 5) and di-
methylalyl diphosphate (DMAPP, 6) [25]. Under an enzy-
matic transformation, intermediates 4 and 7 lead to cannabi-
gerolic acid (CBGA, 8), that undergoes decarboxylation to 
generate CBG (9). Compound 8 is also the key-intermediate 
in three other distinct ways to form the carboxylated phyto-
cannabinoids THCA (Δ9-tetrahydrocannabinolic acid, 10, 
Fig. 3), CBCA (cannabichromenic acid 11, Fig. 3) and 
CBDA (canabidiolic acid, 12, Fig. 3) [12, 25, 33]. Once 
formed, metabolite 10 undergoes decarboxylation to generate 
THC (13, Fig. 3) that can, in turn, undergo isomerization to 
form Δ8-THC (14, Fig. 3) or oxidation to CBN (cannabinol, 
15, Fig. 3), which can then be hydrolyzed to CBND (can-
nabinodiol, 16, Fig. 3). In another biosynthetic cascade, 
compound 11 can undergo decarboxylation or a cyclization 
step to form compounds CBC (17, Fig. 3) or cannabicyclic 
acid (CBLA, 18, Fig. 3), respectively, and both can result in 
the final product CBL (cannabicyclol, 19, Fig. 3). As a result 
of the third chemical pathway from CBGA (8, Fig. 3), com-
pound 12 can undergo a decarboxylation step to form CBD 
(20, Fig. 3) or a cyclization process that leads to cannabielso-
lic acid (CBEA, 21, Fig. 3). Finally, both metabolites 20 and 
21 can generate CBE (cannabielsoin, 22, Fig. 3) [11]. The 
structural diversity of phytocannabinoids can be explained as 
a result of non-enzymatic transformations induced by heat, 
light and oxidation in their acid precursors [12], being classi-
fied as neutral cannabinoids, without carboxyl groups and 
acid cannabinoids [12, 18], besides other polyketides than 6 
that can participate in the biosynthetic cascade [10]. Thus, it 
is presumed that all these phytocannabinoids are firstly gen-
erated in the carboxylated form and then can be subjected to 
decarboxylation by enzyme-assisted reactions or during the 
plant storage process [34]. 
 Phytocannabinoids are divided in 10 subclasses, includ-
ing degradation products, precursors and byproducts [12, 18, 
29, 35], such as CBG, (9, Fig. 3), THC (13, Fig. 3), Δ8-THC 
(14, Fig. 3), CBN (15, Fig. 3), CBC (17, Fig. 3), CBL (19, 
Fig. 3), CBD (20, Fig. 3), CBE (22, Fig. 3), Δ9-
tetrahydrocannabivarine (THCV, 23, Fig. 4) and cannabitriol 
(CBT, 24, Fig. 4). In addition, these compounds are classi-
fied into classic and non-classic cannabinoids, depending on 
the presence of a tricyclic skeleton or an opened-ring feature, 
respectively [36]. The proportion of each class of constituent 
is dependent on cultivation conditions, species, geographic 
location and processing method [30]. 
 Considering chemical structural similarities, the phyto-
cannabinoids are capable of acting at different receptors and 
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Fig. (2). Schematic general structure of a phytocannabinoid  
skeleton, with the three variable structural fragments: the isopropenyl 
residue at the terpenoids moiety (A), the resorcinol nucleous (B) 
and the alkyl side chain (C).  
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confering a number of pharmacological effects [17], whereas 
terpenoids and other metabolites can modulate phytocan-
nabinoid activity in the body, such as facilitating blood-brain 
barrier (BBB) transposition [16, 21]. Originally, phytocan-
nabinoids were termed due to their ability to activate mam-
malian cannabinoid receptors CB1 and CB2. However, in 
recent years, other receptors out of the known domain of the 
endocannabinoid system (ECS) have been proposed, includ-
ing G-coupled protein receptors (GPCR) (e.g. GPR55, 
GPR18), opioid and serotonin receptors and transient recep-
tor potential (TRP) ion channels [32]. In their acid form, 
phytocannabinoids exhibit weak affinity for receptors CB1 
and CB2 [11], while in the neutral form there are believed to be 
able to inhibit anandamide (AEA, 25, Fig. 5) reuptake [37]. 

3.1. Cannabigerol (CBG) 
 CBG (9, Fig. 3) was isolated for the first time by Mech-
oulam and Gaoni in 1964 from the Cannabis resin [30, 38]. 

This compound is a non-psychotropic phytocannabinoid ob-
tained through decarboxylation of CBGA (8, Fig. 3) [30], and 
is present in low concentrations in Cannabis because it is the 
precursor of CBD (20, Fig. 3) and THC (13, Fig. 3) [31]. 
However, in some commercial hemp varieties, it is the main 
constituent [39] and can be also found in the aerial parts of 
Helichrysum umbraculigerum [31]. CBG (9, Fig. 3) has a 
low affinity for the CB1 receptor, instead acting as CB2 an-
tagonist [27, 39]. In addition, it is a potent TRPM8 antago-
nist, being capable of activating TRPV1 and TRPA1. It also 
acts as an agonist of α2-adrenergic receptors, which explains 
its analgesic properties and as a 5-HT1A anatagonist, block-
ing the antiemetic and anti-nausea effects caused by CBD 
(20, Fig. 3) [2]. CBG (9, Fig. 3) is also able to bind perox-
isome proliferator-activated receptor gamma (PPARγ) modu-
lating neuroinflammation [40, 41], as well as having anti-
inflammatory, anti-apoptotic and anti-proliferative effects 
[42, 43]. It also has been reported for its antimicrobial activ-
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ity against gram-negative bactéria [38] and its inhibitory 
activity in anadamide (AEA) reuptake [2]. 

 CBG has been studied for the treatment of Huntington 
disease (HD) due to its antioxidant and anti-inflammatory 
properties [40]. In vivo models of HD, using 3-
nitropropionate (3NP)-injured or R6/2 mice at a dose of 10 
mg/day showed a protective profile in the disease, preserving 
striatal neurons against 3NP-induced toxicity. Additionally, 
it was also active in mitigating mitochondrial dysfunction, 
calpain activation and 3NP-induced oxidative damage, while 
the effect on R6/2 mice was only moderate [40]. Compound 
VCE-003.2, which is a quinone derivative of CBG, was 
evaluated in 3NP-injured mice at a dose of 20 mg/kg, dem-
onstrating enhanced cerebral antioxidant activity and animal 
locomotion [44]. The same authors also found a protective 
effect of this compound in a Parkinson’s disease animal 
model, belived to occur through PPAR-γ mediated ameliora-
tion of inflammation [14]. This group also demonstrated an 
in vitro pro-neurogenic effect in mice embryonic stem cells 
[41]. Another study with this CBG derivative (10 mg/kg) 
administered orally in male C57BL/6N mice showed a neu-
roprotective effect, increasing neurogenesis in the subven-
tricular region through attenuation in microglial activation 
[41]. 

 In a neuroinflammatory model used for investigation of 
amyotrophic lateral sclerosis (ALS), motorneuronal NSC-34 
cells were pre-treated with CBG (2.5 and 5 µM) and showed 
a marked reduction in LPS-induced neuroinflammation [42]. 
This property was further corroborated by another neuroin-
flammatory assay, again using NSC-34 cells, where LPS-
stimulated RAW-26 macrophages pre-treated with CBG (9, 
Fig. 3) at a dose of 7.5 µM showed a reduction in neuronal 
death and inflammation; this occurred via decreasing pro-
inflammatory TNF-α, INF-γ cytokine expression and at-
tenuation of oxidative stress due to an increase in Nrf-2 lev-
els [45]. Thus, these findings reinforce the neuroprotective 
capacity of CBG (9, Fig. 3) particularly against inflammation 
and oxidative stress. 

3.2. Cannabichromene (CBC) 
 Isolated for the first time in 1966 [46], CBC (17, Fig. 3) 
is considered one of the main phytocannabinoids along with 
THC (13, Fig. 3), CBD (20, Fig. 3) and CBG (9, Fig. 3) [34]. 
However, its concentration in the cannabis plant is often 
considered to be low (0.2-0.3% of dry weight), although 
higher amounts are found in chemotype 1 [34]. Isolated CBC 
(17, Fig. 3) appears as an oil or gum and was not considered 
to show activity at cannabinoid receptors [30, 34], albeit a 
recent study identified CB2 receptor agonism [47]. Mean-
while, a study conducted by Rosenthaler and co-workers 

showed that CBC (17, Fig. 3) has 82.9% of affinity for CB2 
in relation to CB1 [48], and in high doses could cause hypo-
thermia, sedation and hypoactivity in mice characteristic of 
the cannabinoid tetrad [2, 34, 49], albeit one mediated by 
non-CB1 dependent mechanisms [2]. The most important 
molecular target of CBC (17, Fig. 3) is believed to be 
TRPPA1 ion channels, with an IC50 value of 90 nM as a non-
covalent modulator [34]. It shows analgesic action by stimu-
lating the descending antinociceptive pathway and activates 
TRPA1-dependent anti-inflammatory pathways in LPS-
induced models [2]. In addition, CBC was capable of reduc-
ing carrageenan-induced paw edema in rats in diferent doses 
(60, 120 and 240 mg/kg), evidence of its anti-inflammatory 
effect [50]. In vitro studies with human keratinocyte cells 
HaCaT also revealed that CBC (17, Fig. 3) could reduce the 
cytokine IL-6 and MCP-2, a pro-inflammatory mediator in-
volved in macrophage and mastocyte recruitment to sites of 
inflammation [51]. In addition, there are selected studies 
highlighting the antiproliferative effects of CBC (17, Fig. 3) 
[43], as well as its comparative antimicrobial and antifungal 
properties [34]. Importantly, micromolar concentrations of 
CBC increase endocannabinoid tone by inhibition of AEA (25, 
Fig. 5) uptake and degradation of 2-arachidonoylglycerol  
(2-AG, 26, Fig. 5) [34]. 

 There are few studies related to the potential role of CBC 
(17, Fig. 3) in the management of neurodegenerative dis-
eases (NDs), given its recognised anti-inflammatory and 
neuroprotective properties from preclinical studies. An in 
vitro study with C6 glial cells stimulated by amyloid-β pro-
tein (Aβ), 10 nM CBC (17, Fig. 3) was capable of reducing 
the concentration of cellular nitrite, while in Aβ-induced 
neuronal SH-SY5Y cells, this compound was able to de-
crease cell death only at the concentration of 10 µM [52]. 
CBC was also found to enhance the viability of neural stem 
progenitor cells 47, while Schubert and co-workers demon-
strated that CBC could prevent oxytosis in HT-22 cells, 
which is a type of programmed cell death involving gluta-
mate and, in turn, oxidative stress [53]. 

3.3. Cannabidiol (CBD) 
 CBD (20, Fig. 3) was isolated in 1940 by Adams and 
colleagues [54, 55], but only in 1963 was its chemical struc-
ture completely elucidated by Gaoni and Mechoulan [36, 
56]. CBD (20, Fig. 3) is the second most abundant chemical 
constituent in Cannabis, especially in plants of the fiber type 
[17]. This compound is not psychomimetic, having an ac-
ceptable safety profile and tolerability to be proposed for the 
treatment of several CNS-related diseases [28]. In spite of its 
relative low oral bioavailability (13-19%), when adminis-
tered by injection it could promptly pass through the BBB 
[57]. CBD (20, Fig. 3) has a low affinity for the CB1 and 
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Fig. (5). Chemical structures of endogenous cannabinoids, AEA (25) and 2-AG (26). 
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CB2 cannabinoid receptors (CB1-R and CB2-R, respec-
tively) [17], being a negative non-competitive allosteric 
modulator of CB1-R and capable of reducing the efficacy 
and potency of THC (13, Fig. 3) and 2-AG (26, Fig. 5) in 
HEK 293A cells that express CB1-R, without adverse side 
effects [58, 59]. As a modulator CBD (20, Fig. 3) has a dem-
onstrated capacity to block the psychotropic effects and at-
tenuate anxiogenic effects caused by high doses of THC (13, 
Fig. 3) [4]. In fact, these properties are in accordance with 
the known properties of allosteric modulators that have the 
potential to avoid adverse effects in the central and periph-
eral nervous system elicited by conventional orthosteric 
ligands [17, 58]. A study evidenced that CBD (20, Fig. 3) 
has 74.5% of affinity for CB2-R relative to CB1-R [48]. 
However, until now no CBD-specific receptor has been iden-
tified [60]; instead various receptor activities have been as-
cribed to CBD (20, Fig. 3), including PPAR-γ and 5HT re-
ceptor agonism [61, 62]. 

 Cannabidiol has documented neuroprotective efficacy in 
in vitro and experimental animal models of Alzheimer’s dis-
ease [63-66]. In regards to neuroprotection, in vitro assays 
demonstrated that CBD (20, Fig. 3) reduced both Aβ produc-
tion and tau hyperphosphorylation as pathological hallmarks 
of AD [57, 67-69]. In SH-SY5Y neuronal cells, CBD (20, 
Fig. 3) neutralized the increase in APP expression through 
ubiquitinization, leading to a progressive reduction in Aβ 
and less apoptotic events [69]. The effect in the amyloi-
dogenic pathway could be mediated by peroxisome prolif-
erator-activated receptors (PPARs), where CBD (20, Fig. 3) 
decreased reactive gliosis and neuronal damage, aside from 
promoting neurogenesis [70, 71]. A recent study in N13 cells 
and micróglia showed that at 100 nM CBD (20, Fig. 3) led to 
a decreasing intracelular calcium concentration as a result of 
high concentration of ATP, considering that Ca+2 is an im-
portant cellular messenger and is involved in several pa-
thologies [72]. In in vivo models of AD it was demonstrated 
that CBD (20, Fig. 3) could play a central role in attenuation 
of Aβ-induced inflammation and diminish reactive gliosis 
[65]. In other studies with in vivo PD models, such as dam-
age induced by the neurotoxin 6-hydroxydopamine (6-
OHDA) in rodents, CBD (20, Fig. 3) showed neuroprotec-
tive properties, as well as the capacity to modulate other 
non-motor symptoms such as anxiety, depression and cogni-
tion [73, 74]. Brazilian researchers showed that CBD (20, 
Fig. 3) was able to attenuate pain, a non-motor symptom of 
PD, in C57/BL6 mice exposed to the neuronal injury from 6-
OHDA, reducing allodynia and hyperalgesia [75]. In addi-
tion, reserpine-induced motor and cognitive impairmennts in 
rats were ameliorated by administration of CBD (20, Fig. 3) 
at the doses of 0.5 mg/kg and 5 mg/kg, being capable of sig-
nificantly reducing catalepsy and oral movements and, at the 
lower dose, also improving memory deficits [76]. These 
findings highlight that CBD (20, Fig. 3) possesses important 
antioxidant, neuroprotective and anti-inflammatory prop-
erites that could be explored in the development of new 
medicines to treat diverse CNS-related diseases [77]. Lim-
ited evidence of elevated serum hepatic markers, CBD-drug 
interactions and hepatotoxicity has been noted with can-
nabidiol [78-80], leading to the search for new derivatives 
with a more favourable activity and safety profile [81]. A 
clearer understanding of CBD’s somewhat enigmatic phar-

macology would assist drug development in this area, par-
ticularly with regards to selectivity. 

3.4. Δ9-tetrahydrocannabinol (THC) 

 THC (13, Fig. 3) is the major constituent in Cannabis 
and was isolated for the first time in 1942 [38], but only had 
its structure fully elucidated by Mechoulan and colleagues in 
1964 [27, 35]. This compound is thermodynamically unsta-
ble, undergoing isomerization in the presence of acids to 
form Δ8-THC (14, Fig. 3) [36]. THC is promptly absorbed 
and distributed in the body, being metabolized by cyto-
chrome P450 [16]. Due to its lypophilicity, it was thought 
that its pharmacological properties were resultant of interac-
tions with phospholipid membranes [9] until the discovery of 
the cannabinoid receptors. Initially, THC (13, Fig. 3) was 
described as a CB1-R agonist, but in vivo studies evidenced 
it acts as only a CB1-R partial agonist [28] and exerts its 
effects by imitating endogenous cannabinoids [82]. Its activ-
ity towards CB1 receptors makes this compound unique as 
the only phytocannabinoid totally active and potent in the 
four classic assays that evaluate cannabinoid psychotropic 
capability (ring test, open field, hot plate and tail flick), caus-
ing the characteristic tetrad of cannabinoid effects: hypoki-
nesia, hypothermia, antinociception and catalepsy [2]. Acti-
vation of CB1-R by THC (13, Fig. 3) also causes local anal-
gesia [83, 84] when intramuscularly injected at the dose of 
1mg/mL, and without adverse effects [84]. 

 Recent studies suggest that THC (13, Fig. 3) could play 
an important role in AD, facilitating Aβ disaggregation, re-
ducing tau hyperphosphorilation and even acting as a com-
petitive AChE inhibitor [19]. In an in vitro PD model using 
human neuroblastoma SH-SY5Y cells exposed to the toxins 
MPP+, paraquat and lactacystine, THC showed neuroprotec-
tive effects, increasing cell viability and reducing apoptosis 
and oxidative stress, possibly mediated by PPAR-γ [85]. 
Neuroprotective capacity of THC was further supported by 
another study using N18TG2 cells, on which THC attenuated 
glutamate-induced neurotoxicity mediated through the CB1 
receptor [86]. In a 5XFADAPP transgenic AD mice model 
treated for four weeks with 3 mg/kg THC, a reduction in 
brain Aβ aggregates and neurodegeneration was observed, 
associated with an increasing in neprisylin levels, an essen-
tial endopeptidase related to Aβ disaggregation [87]. In an-
other study, male AβPP/PS1 mice treated during the initial 
stages of neurodegeneration with a dose of 0.075 THC 
mg/kg i.p. showed memory enhancement, in comparison to 
wild type mice. However, combined treatment with 
THC/CBD was shown to be more effective [88]. In another 
in vivo study, 3 mg/kg THC (13, Fig. 3) treatment reversed 
the age-related decline in cognitive performance in older 
mice via a CB1-R related pathway, accompanied by en-
hanced expression of synaptic proteins and increased hippo-
campal neuronal density [89]. Therefore, in addition to CBD 
(20, Fig. 3), THC (13, Fig. 3), in spite of its psychotropics 
effects, has been evaluated for decreasing oxidative stress, 
neuroinflammation and neuroprotection in illnesses close 
related to inflammatory cytokine dysregulation and overpro-
duction of free radicals, with evidence of additive effects 
with CBD (20, Fig. 3) in conferring neuroprotection relevant 
to neurodegenerative processes in dementia [53]. 
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3.5. Δ8-tetrahydrocannabinol (Δ8-THC) 

 Δ8-THC (14, Fig. 3) is found only in a few varieties of 
Cannabis and is a regioisomer of THC [36], with the double 
bond at the C-8/C9 position being thermodynamically more 
stable than in the position C9/C10 [38]. Δ8-THC (14, Fig. 3) 
shows affinity for both CB1 and CB2 receptors in a similar 
manner as observed for THC (13, Fig. 3) [36]. In vitro stud-
ies with HT-22 cells suggested that this phytocannabinoid 
could prevent oxytosis, mantaining cellular viability, ATP 
levels and promoting growth factors in embryonic E18 neu-
rons [53]. In addition, evaluation in MC65 cells expressing 
Aβ showed that Δ8-THC (14, Fig. 3) is efficient in prevent-
ing Aβ-induced toxicity with an IC50 of 85 nM [53]. 

3.6. Δ9-tetrahydrocannabivarine (THCV) 
 THCV (23, Fig. 3) is a THC analogue with a n-propyl 
side chain [30]. The mode of action of THCV (23, Fig. 3) is 
still controversial, with some studies suggesting it acts as an 
antagonist of both CB1 (Ki= 75.4 nM) and CB2 (Ki= 
62.8nM) receptors [36], while other reports describe THCV 
(23, Fig. 3) as a partial agonist of CB2-R [2]. As a CB1-R 
antagonist, this compound is capbable of attenuating the ef-
fects of the CB1 agonistsWIN55212-2 and CP55,940 [90, 
91], and in doses lower than 3 mg/kg it is also capable of 
reducing hypothermia and nociception and increasing heart 
rate in human volunteers arising from THC (13, Fig. 3). 
However, in higher doses (e.g. 10mg/kg) THCV (23, Fig. 3) 
acts in vivo as a CB1-R agonist [2, 22]. THCV (23, Fig. 3) 
could also interact with TRP ion channels, being an agonist 
of TRPA1, TRPV1 and TRPV2-4, while also acting as an 
antagonist of TRPM8, TRPV5 and TRPV6 [90, 92]. Studies 
of its pharmacokinetics evidenced a maximum absorption 
after 30 minutes of oral or intraperitoneal administration in 
both mice and rats, with a faster elimination and half-life 
higher than 8 hours from oral administration [93]. In vivo 
experiments showed neuroprotective effects of THCV (23, 
Fig. 3) on LPS-injured mice, with the proposed mode of ac-
tion for neuronal preservation occurring through CB2-R 
modulation, since knock-out mice were more susceptible to 
these lesions [2, 91]. Another in vivo study using male Spra-
gue–Dawley rats injured by 6-OHDA showed that THCV 
(23, Fig. 3) administered at the dose of 2 mg/kg was capable 
to improve gait and reduce slow movements, while chronic 
treatment for 14 days was shown to reduce nigrostriatal do-
paminergic neuronal loss characteristic of PD [91]. Recently, 
in another pharmacological approach by using the zebra-fish 
model, researchers demonstrated that THCV (23, Fig. 3) 
influenced Ca+2 transport through TRPV5 and TRPV6 recep-
tors [92], which could be an interesting pathway to mitigate 
neurodegeneration where calcium imbalance is believed to 
play a key role in excitotoxicity. In addition, Ca+2-dependent 
process are also involved in decreasing inflammation and 
pain [22]. Finally, several studies have shown that THCV 
(23, Fig. 3) could exert anti-convulsant and anti-epileptic 
properties, while also being investigated for the treatment of 
obesity and insulin resistance [2, 60]. 

3.7. Cannabinol (CBN) 
 CBN (15, Fig. 3) was the first phytocannabinoid to be 
isolated in the 19th century and its chemical structure was 

elucidated in 1930 [2]. This metabolite is found in its acid 
form in C. sativa and C. indica, and it undergoes decarboxy-
lation under heating, being also an oxidation product of THC 
(13, Fig. 3) [30, 38]. Its concentration increases during stor-
age as levels of THC (13, Fig. 3) decrease [38]. Pharmaco-
logically, CBN (15, Fig. 3) acts as partial agonist of CB1 
receptor and exhibits high affinity for CB2, albeit showing 
lower efficacy than THC (13, Fig. 3) [27]. An in vivo evalua-
tion of the mechanical withdrawal threshold in Von Frey test 
in rats treated with 1 mg/mL of CBN (15, Fig. 3) evidenced a 
markedly increasing mechanical threshold, suggesting that 
peripheral application could provide analgesia with the po-
tential to be used in chronic pain. The mechanism of action 
is thought to be related to modulation of the CB1 receptor, 
similarly to THC (13, Fig. 3) [83]. Schubert and co-workers 
also demonstrated that CBN could act as neuroprotector in 
HT-22 cells and cortical embryonic E18 neurons, in addition 
to its ability for stimulating degradation and clearance of 
pre-formed Aβ aggregates in MC65 cells at the concentration 
of 100 nM [53]. Interestingly, CBN was found to act syner-
gistically with THC (13, Fig. 3) in conferring neuroprotec-
tion in the same study [53]. 

3.8. Cannabicyclol (CBL), Cannabielsoin (CBE) and 
Cannabitriol (CBT) 
 CBL (19, Fig. 3) was firstly isolated by Korte and Sheper 
in 1964 [94-96] and is the phytocannabinoid found in lowest 
concentrations in the plant [94], produced by heating from 
CBC (17, Fig. 3) [38]. CBE (22, Fig. 3), isolated by Shani 
and Mechoulan as its acid derivative in 1974, is naturally 
produced by photo-oxidation of CBD (20, Fig. 3) and CBDA 
(12, Fig. 3) [38] and is also found as a CBD (20, Fig. 3) me-
tabolite in animal studies [97, 98]. In 1965, Obata and Ishi-
kawa discovered CBT (24, Fig. 3) [99], but its chemical 
structure was elucidated only ten years later [100]. There are 
nine CBT (24, Fig. 3) isomers, distinguished by the substitu-
tion of the hydroxyl groups Interestingly, in spite of their 
chemical structure and similarity with other bioactive Can-
nabis-derived constituents, none of these phytocannabinoids 
have been studied for their potential effects on neurodegen-
erative diseases. 

3.9. Potential Pharmacological Benefits of Cannabinoids 
in Neurodegeneration Pathogenesis 
 In general, NDs are associated with neuroinflammation 
as a consequence of the release of cytokines and oxidative 
stress mediated by overproduction of ROS and RNS, in addi-
tion to depression and anxiety [101-105]. In this context, as 
discussed above, phytocannabinoids could play important 
modulatory role by either ECS or in other bioreceptors, 
which may contribute to their potential pharmacological ef-
fects against NDs. By acting via ECS, they lead to an in-
crease in endocannabinoids as AEA (25) and 2-AG (26, Fig. 5), 
which bind to CB1Rs at the nervous terminal of γ-
aminobutyric acid (GABA) and, in turn, enhance dopamine 
concentration and transmission [28, 106]. In addition, an 
increase in endocannabinoids production could also provide 
antipsychotic [107] and antidepressive [108] effects ob-
served in animal models, probably by interaction with 
TRPV1. On the other side, alosteric modulation of sero-
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toninergic receptor (5-HT1A) plays an important role in emo-
tional regulation and response to stress, in depression neuro-
biology [109] and also neuroprotective effects [102]. Litera-
ture data also suggest the effects of cannabinoids in the acti-
vation of Peroxisome proliferator-activated receptor gamma 
(PPARγ), leading to microglial activation and lower expres-
sion of inflammatory genes [102], exerting neuroprotective 
effects [110]. In Fig. 6, there are highlighted some targets 
and potential pharmacological effects of cannabionids in the 
pathogenesis of NDs. 

4. CANNABINOID RECEPTORS AND ENDOCANNA- 
BINOID SYSTEM (ECS) 

 Before the discovery of cannabinoid receptors, it was 
thought that cannabinoids exert their biological effects 
mainly by interaction with cellular membranes due to their 
lipophilicity [113]. However, further studies conducted with 
Cannabis preparations led to the discovery of the receptors 
involved in the signalling of their effects on CNS [60]. The 
CB1 receptor was the first to be identified in the brain in 
1988 [31]. It was cloned in 1991, followed by the CB2 re-
ceptor two years later [113-115]. Both receptors belong to 
the GPCR class and are constituted by seven transmembrane 
domains connected by three extracellular and three intracelu-
lar loops, one extracelular N-terminal tail and one intracellu-
lar C-terminal tail [59, 116]. These two homologue receptors 
are expressed in all mammalians, fish, reptiles, birds and in 
most invertebrates [117]. When activated, due to the cou-
pling with Gi/o-protein, these receptors supress adenylate 

cyclase and the formation of cyclic adenosine monophos-
phate (cAMP) [113, 118] and promote activity of mitogen-
activated protein kinase (MAPK) [116, 118]. There are three 
main classes of compounds that act in these receptors: the 
cannabinoids, eicosanoids (endocannabinoids) and aminoal-
kylindoles [116]. 

 The first crystalline structure of CB1-R with a stabilizing 
antagonist was performed in 2016, revealing that the N-
terminal region plays a fundamental role in ligand recogni-
tion, leading to a better comprehension of the native state of 
this receptor [59, 119, 120]. At the beginning of 2019, the 
first crystalline structure of CB2-R with the antagonist 
AM10257 was reported [121]. Until then, all computational 
studies with CB2 were based on homology models, provid-
ing limited understanding about its structure and conforma-
tion [59]. 

 CB1-R is the most expressed GPCR in brain, especially 
in the olfactory bulb, hippocampus, basal ganglia and cere-
bellum [113]; this is in contrast to other regions such as the 
thalamus, cerebral stem and medulla, where it is absent 
[122]. It is present in pre-synaptic neurons [123, 124], 
mainly in glutamatergic and GABAergic neurons [116], and 
in peripheral sensorial neurons as part of the pain pathway 
[125]. In addition, CB1-R is also found in astrocytes where 
is activates Gs protein [48], leading to the release of neuro-
transmitters such as glutamate. This can elicit an increase in 
the concentration of intracellular Ca2+ [116] and may also be 
involved in the regulation of local cerebral blood flow and 
neuronal energy supply [126]. On the other hand, in post-

 

Fig. (6). Some molecular targets and potential pharmacological effects of cannabinoids in Neurodegenerative diseases. Adapted from Refs. 
[13, 111, 112]. (A higher resolution / colour version of this figure is available in the electronic copy of the article). 
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synaptic neurons, these receptors control the activity of ion 
channels against excitotoxicity [126]. Besides being ex-
pressed in CNS, CB1-R can be also found in other tissues of 
heart, urinary bladder, small bowel, reproductive system 
[116, 125, 127] and in the mitochondria of striated muscle, 
suggesting a role in cell respiration [59]. CB1-R participates 
in the modulation of a variety of neurocerebral functions, 
including executive processing, emotional state (anxiety and 
depression), reward, modulation of nociception and memory 
through the endocannabinoid, GABAergic, dopaminergic 
and glutamatergic systems [123, 126]. Once activated, CB1-
R can lead to retrograde release of neurotransmitters that 
could be inhibitory or excitatory, depending on the cerebral 
region [125]. CB1 receptors also play a role in regulation of 
sleep, appetite, short term memory and motor coordination 
[16]. According to the most recent findings about CB1-
related pharmacological activites, its activation by agonists 
could lead to beneficial effects towards diverse pathologies 
that include pain, anxiety, depression and neurodegenerative 
diseases like HD [59, 60]. Meanwhile, polymorphisms in the 
CNR1 gene have been associated with diseases like schizo-
phrenia and depression in PD [118]. The development of 
CB1 receptor-selective agonists has been hampered by 
pharmacologically predictable CNS side effects related to 
intoxication, while limitations related to CB1 receptor an-
tagonists are best exemplified by the history of rimonabant, 
which had limited availability as an anti-obesity medication 
prior to withdrawal due to side effects such as depression 
and suicidal ideation [60]. 

 The CB2 receptor is expressed by the CNR2 gene in 
chromosome 1 with 44% homology at the protein level with 
CB1 [125, 128, 129]. It is coupled to heterotrimeric proteins 
Gi/o, through which triggers multiple signal transduction 
pathways involved in cell proliferation, differentiation and 
survival [115]. CB2-R is located peripherally in imunomodu-
lating cells in organs such as spleen, tonsils and liver [116, 
126], and in microglia from post-synaptic areas [123, 125]. 
Its function is mostly to modulate the release of cytokines 
and migration of immune cells [125]. When activated, these 
receptors also act to decrease the release of pro-inflammatory 
cytokines and other neurotoxic factors with the resultant at-
tenuation of damage in neurons [116, 126], in addition to 
blocking the differentiation of microglia into a neurotoxic 
phenotype [57]. CB2-R is lesser expressed in the CNS than 
CB1-R, but in some pathological conditions (e.g. anxiety, 
epilepsy and AD) its expression can increase, suggesting its 
involvement in diverse psychiatric illnesses [19, 123, 126]. 
CB2-R agonist activation causes inactivation of voltage-
dependent calcium channels [116], which leads to a decline 
in cAMP levels through the MAPK pathway and, in turn, 
influences cell survival, proliferation and response to stress 
[126]. Considering that CB2-R is capable of promoting ho-
meostasis and neuron survival by inhibition of excitotoxicity, 
apoptosis and oxidative stress, it has been considered a 
promising target for the treatment of autoimune and inflam-
matory diseases [60, 115, 126]. Indeed, recent exploratory 
clincial trials for a CB2-R selective agonist, olorinab, in the 
treatment of inflammatory and irritable gastrointestinal dis-
orders [25] provide some degree of both proof-of-concept 
and target validation to an immunomodulatory role that may 

further translate to CNS neuro-inflammatory disorders in the 
future. 

 Based on the above-mentioned features, the ECS is an 
endogenous signalling system cosntituted by CB receptors, 
metabolic and catabolic enzymes, endocannabinoids and 
transporters that control diverse actions of cannabinoids both 
in the CNS and peripheral nervous system (PNS) [21]. The 
endocannabinoids are amides, ethers or esters of fatty acids 
with polyunsaturated long chains [37, 130] acting as retro-
grade transmitters, since they are released in post-synaptic 
neurons and act in pre-synaptic cells where the receptor ex-
pression is highest [16], They have with a half-life of ap-
proximately 15 minutes [21]. Based on the literature, the 
most studied endocannabinoids are 2-AG (26, Fig. 5) and 
AEA (25, Fig. 5), with the latter being the first endogenous 
cannabinoid to be discovered after the characterization of 
CB1-R in 1992 [37, 130]. These two compounds belong to 
two different classes of lipids, the 2-acylglycerols (2-AcGs) 
and the N-acylethanolamines (NAEs), respectively [60], and 
are stored in cytosolic adiposomes which play a kay role in 
metabolism and cell sigmalling [21, 131]. Besides acting on 
CB1-R, these compounds act on channels of the TRP class, 
including TRPV1, TRPA1 and TRPM8 [37], orphan G protein-
coupled receptors like GPCRs: GPR18, GPR55, GPR119 but 
also on PPARs [21, 59]. The main enzyme in the biosynthesis 
of AEA (25, Fig. 5) is N-acylphosphatidilethanolamine 
(NAPE-PLS), whereas diacylgliyerol lipases (DAGL)-α and 
β are responsible for the production of 2-AG (26, Fig. 5) [60, 
127, 130]. Once produced, their uptake from the extracellular 
environment to the intracellular medium occurs through fa-
cilitated diffusion by the action of endocannabinoid mem-
brane transporters (EMTs) [60, 126, 130], whereas their in-
tracellular transport is promoted by fatty acid binding pro-
teins (FABPS). FABP1 is also a THC transporter, and its 
extracellular transport is operated by microvesicles [21]. The 
endocannabinoids are synthesized on-demand and are bio-
logically inactivated by degradation through the specific 
enzymes fatty acid amide hydrolase (FAAH) and monoacyl-
glycerol lipase (MAGL), for AEA and 2-AG (26, Fig. 5) 
respectively [124, 127, 130]. In addition, other enzymes 
haver been shown to utilize the endocannabinoids as sub-
strates, such as COX-2 and cytochrome P450 [130]. Cur-
rently, the ECS possess 37 known components that include 
GPCRs and other receptors, enzymes for synthesis and deg-
radation, transporters and the endocannabinoids themselves 
[21, 116]. It is suggested that membrane lipids like choles-
terol could affect ECS-related receptors and enzymes, being 
responsible for its fine adjustment [21]. Recent findings 
point out that GPR55, an orphan GCPR, could be a new can-
nabinoid receptor (CB3) [118, 130, 132], with only a 14-
15% homology with CB1 and CB receptors [59]. 

 More specifically, the ECS is a neuromodulator system 
acting on diverse neuronal populations [16], influencing the 
regulation of fundamental processes in the CNS and PNS 
[130], including hormetic and homeostatic processes [126]. 
In a pleiotropic manner therefore, an ECS imbalance may 
result in aberrant enodcannabinoid tone flowing on to influ-
ence the pathophysiology of several diseases [116]. For these 
reasons, it has received focused attention as a promising tar-
get for the modulation of a diverse set of neurodegenerative 
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diseases in which oxidative damage and inflammation play a 
central role. However known limitations in targeting ECS 
function for clinical benefit include the recognised and 
aforementioned adverse side effects of CB1-R antagonists 
and a lack of efficacy of FAAH blockers that have hindered 
clinical utility, as two examples of where to reduce or en-
hance ECS tone are not without their risks [133, 134]. 

5. OTHER CANNABIS PHYTOCHEMICALS: 
BIOACTIVITY AND NEUROPROTECTION 

 Additionally, relatively novel and minor non-cannabinoid 
phytochemicals found in cannabis include the cannabis fla-
vonoids cannflavin A-C (Fig. 7), canniprene (30, Fig. 7) and 
selected terpenes [135]. The stilbenoid canniprene shares 
anti-inflammatory properties targeting 5-lipoxygenase [136], 
a target for neuroprotection in a transgenic AD mouse model 
[137], while the cannflavins are prenylated flavonoids that 
can constitute up to 1% of leaf material, are also abundant in 
inflorescences [80] and possess demonstrated anti-
inflammatory profiles in vitro [138, 139]. 

 They remain largely unstudied when compared to con-
ventional flavonoids, which have well documented neuro-
protective and anti-aggregatory activity against neurotoxic 
amyloidogenic proteins in experimental models [7, 140, 
141]. Recent evidence of a relatively potent neuroprotective 
effect of cannflavin A was described against β-amyloid tox-
icity, associated with inhibition of aggregation of this hall-
mark and toxic AD-related protein [142]. Of recent note, an 
unnatural isomer derivative of cannflavin B has demon-
strated pancreatic anti-cancer activity in vivo [143] and may 
enter clinical trials soon, highlighting the very real potential 
of novel drug development based on the chemical diversity 
of the cannabis plant.Terpenes form a diverse array of com-
pounds found in many plants, with over 200 expressed in a 
range of cannabis chemovars [144, 145]. They represent a 
major class of chemicals that give cannabis its scent and 
aroma, which is often a reference that breeders use to culti-
vate particular types of cannabis [6]. Common terpenes 
found across the varying cannabis chemotypes include li-

monene, α-pinene, humulene, β-carophyllene and myrcene 
[146]. Terpenes are also believed to partly contribute to the 
synergistic efficacy of medicinal cannabis strains, known as 
the entourage effect [145], although the basis of this interac-
tion has been difficult to elucidate given the sheer number of 
compounds in cannabis and the chemical volatility of many 
of its terpenes. This also does not take into account the loss 
or alteration in terpene composition during various extrac-
tion processes for a range of proprietary medicinal cannabis 
formulations. Some studies also indicate that such synergy 
with the major cannabinoids may be lacking when cannabi-
noid receptor activity has been investigated as the underlying 
basis of the interaction [147]. 

 In isolated bioactivity studies however, terpenes are neu-
roprotective in the presence of oxidative stress, stimulating 
antioxidant defences, limiting ROS-induced apoptosis [148] 
and inhibiting Aβ aggregation in neuronal cells [149]. There 
is also evidence that terpene hydroperoxides can cleave ad-
vanced gylcation end products formed in neurodegenerative 
disease [150]. The cannabis terpene β-caryophyllene medi-
ates CB receptor-independent neuritogenesis in PC-12 cells 
[151] as well as neuroprotection in transgenic APP/PS1 mice 
via CB2 receptor and PPAR-γ pathways [152]. Additionally, 
the sesquiterpene α-bisabolol has been shown to be neuro-
protective in cellular models of amyloid β-mediated neu-
rodegeneration associated with inhibition of fibrillization 
[149, 153], while limonene displays similar efficacy in a 
transgenic Drosophila amyloid β-expressing model [154]. 

 Collectively there is a wealth of preclinical evidence that 
demonstrates that the ‘other’ cannabis consitituents are 
clearly important, comprising up to 5-10% of total cannabis 
phytochemicals and potentially imparting significant bio-
logical activity to medicinal cannabis [144, 145] Interest-
ingly, carboxylated progenitor forms of the major neutral 
phytocannabinoids have also emerged as possessing a di-
verse and favourable bioactivity [155], including neuropro-
tection [110]. This raises the prospect of additional formula-
tions of non-heated or raw medicinal cannabis extracts being 
used potentially for different therapeutic applications. 
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Fig. (7). Chemical structures of cannabis flavonoids; cannflavin A (27), cannflavin B (28), cannflavin C (29) and stilbenoidand canniprene 
(30).  
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Clearly much further research is required, particularly clini-
cal trials, to sort through the realisation of this cannabis 
chemical ‘pot-pourri’ towards clinical translation. 

6. CLINICAL STUDIES IN DEMENTIA 

 To date there have only been limited clinical studies on 
the use of medical cannabis extracts or phytocannabinoid 
formulations in various forms for the treatment of dementia. 
There is much variability in trail design and phytocannabi-
noids used, including synthetic forms of THC such as dron-
abinol or nabilone, off-label use of Sativex® (THC: CBD 
1:1) normally indicated for the relief of multiple sclerosis-
related muscle spasms and pain, as well as whole medical 
cannabis extracts. Distinctions should be made between dis-
ease-modifying and symptomatic benefits, where generally 
cannabinoids have been more likely to provide variable 
benefits in the latter. For example, in clinical dementia trials 
reporting treatment of patients with phytocannabinoids, 
some trials reported significant improvements in a range of 
neuropsychiatric symptoms, whereas other trials returned no 
significant benefit [156]. Where symptomatic benefit is ob-
served, it is more commonly reflected in decreased agitation 
and aggression, increased appetite, sleep quality, objective 
mood and pain control [8]. Generally however, systematic 
reviews in this field indicate a higher benchmark in clinical 
trial design is required before objective assessments of bene-
fit and risk can be made, including cannabinoid dosing and 
cohort numbers [157]. 

 In Parkinson’s disease, orally administered cannabis ex-
tract is well tolerated but resulted in no objective or subjec-
tive improvement in dyskinesias or Parkinsonism [158]. 
However some studies point to improvements in sleep and 
overall quality of life measures in PD patients using CBD 
[159, 160]. To date there is very little information on medi-
cal cannabis efficacy and safety in Alzheimer’s disease, al-
though one small cohort study reported a benefit in CGI 
(clinical global impression) scores using medical cannabis 
oil [161], that similarly attest to the abovementioned symp-
tomatic benefits of phytocannabinoids [8]. There are cur-
rently a number of clinical trials underway in Alzheimer’s 
disease that will undoubtedly shed more light on effective-
ness and safety of medical cannabis as either or both a dis-
ease modifier and a symptomatic treatment. 

 In other types of neurodegenerative diseases, trials in-
clude the use of Sativex in Huntington’s disease, which 
demonstrated a lack of improvement in motor, cognitive (p = 
0.824) and behavioural effects, although no additional ad-
verse side effects were noted in a small cohort of 24 patients 
using Sativex [162]. The combination of THC and CBD is 
often purported to be more effective than THC alone, be-
lieved to be at least in part due to CBD mitigating the nega-
tive psychotropic effects of THC. This may occur through a 
recognised molecular action of CBD in the ventral hippo-
campus, downregulating pERK1-2 signalling modulated by 
THC [163]. However adverse psychotropism with THC is 
more apparent in recreational consumption [164] than in 
medicinal use, where phytocannabinoid dosing is lower and 
this is reasonably concordant with the lower reported inci-
dence of side effects in clinical trials. 

CONCLUSION 

 Phytocannabinoids have emerged in recent years to be 
viewed as promising targets for the treatment of diseases 
where existing pharmacotherapeutic options may be limited 
to symptomatological treatment, such as in neurodegenera-
tive disease. AD and PD have occupied a highlighted posi-
tion globally due to the known rapidly aging world popula-
tion, where The World Health Organization (WHO) has pro-
jected that by 2050, 152 million people will be affected by 
some type of dementia [165]. Phytocannabinoids are chemi-
cally and biologically diverse and possess interesting bioac-
tive properties well suited to their development as novel 
treatments of such diseases. This includes both general anti-
oxidant and anti-inflammatory, but also directly neuroprotec-
tive properties mediated via several distinct biochemical 
pathways. In many respects, cannabis and its constituent 
phytochemicals may only interact with limited elements of 
the ECS at the receptor level, and many potential interactions 
with the ECS are still to be determined. However, the in vi-
tro complexity of interactions between cannabis phytocan-
nabinoids hinted at in preclinical studies outlined here are 
likely to be even more complex in vivo, and likely to occur at 
both pharmacodynamic and pharmacokinetic levels, meaning 
there is still much research required to translate both effec-
tiveness and safety clinically to dementia and other neurode-
generative disorders. 
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