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Sustainable management of plant pathogens is becoming more challenging, and novel
solutions are needed. Plant biologically active secondary metabolites are important
sources of novel crop protection chemistry. Effective individual compounds of these
natural products have the potential to be successful new agrochemicals. In this study,
we identified lauric acid (LA) from soybean defense leaf volatiles. LA inhibited the growth
of Phytophthora sojae, the causal agent of soybean root rot. It influenced mycelial
development, sporangium formation, and zoospore generation and germination by
damaging the P. sojae cell membrane. Additionally, we showed that LA and several
of its derivatives, such as glycerol monolaurate (GML), had similar biological activities.
Both LA and GML were safe to soybean plants when used at less than 0.3 g a.i./plant
and could promote soybean growth, implying their potential as eco-friendly biological
control agents.
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INTRODUCTION

Oomycetes are fungus-like eukaryotic organisms that belong to the class Saprolegniomycetidae of
the kingdom Stramenopila (Yutin et al., 2008). They encompass notorious plant disease agents,
including Phytophthora, Pythium, and Albugo, and a group of downy mildews (Tyler, 2001).
Oomycetes have a negative impact on natural and farm ecosystems due to their strong pathogenicity
and infectivity (Kamoun et al., 2015). In addition to the well-known potato late blight caused by
Phytophthora infestans, which led to the 19th-century Irish famine, the persistence of sudden oak
death caused by Phytophthora ramorum and grape downy mildew caused by Plasmopara viticola
demonstrate that oomycete phytopathogens are a persistent threat to subsistence and commercial
farming and destructive to native plants (Erwin and Ribeiro, 1996). Soybean (Glycine max L.) root
rot caused by Phytophthora sojae is the leading cause of global soybean production loss (Tyler,
2007). Agrochemicals are largely used to control oomycete diseases, resulting in the emergence of
resistant strains and resurgence events (Randall et al., 2014). The effective and sustainable control
of oomycete-driven diseases requires the identification of novel pharmaceuticals and pesticides
to drive the design of fungicides compatible with integrated pest management (IPM) approaches
(Gessler et al., 2011).
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Environmental-friendly botanical fungicides are valuable
because of their higher efficiency, lower residue, and lower
toxicity. Multiple interdisciplinary studies and abundant
resources have been applied to find new and effective alternatives
for the IPM of various oomycete species. Historically, traditional
healers have used plants to prevent or cure infections, and
active elements for disease control have been identified in
various species. For example, artemisinin, present in sweet
wormwood (Artemisia annua), a Chinese medicinal plant, is
an effective antimalarial agent (Tu, 2011). Medium-chain fatty
acids (MCFAs), including octanoic acid (C8), capric acid (C10),
and lauric acid (LA) (C12), distilled from virgin coconut oil,
inhibit various bacterial, fungal, and viral pathogens and have
been widely used in human and veterinary medicine (Kabara
et al., 1972; Bartolotta et al., 2001; Rouse et al., 2005; Yang
et al., 2009, 2018; Shilling et al., 2013; Fortuoso et al., 2019).
For example, capric acid kills Candida albicans quickly and
effectively (Bergsson et al., 2001). LA is the most active MCFA
at lower concentrations and after longer incubation times
(Bergsson et al., 2001; Lalouckova et al., 2021). Additionally,
LA has antimicrobial activity against both Gram-positive and
Gram-negative pathogens, including Staphylococcus aureus,
Streptococcus mutans, Streptococcus pyogenes, Escherichia coli,
and Helicobacter pylori (Kabara et al., 1972; Rouse et al., 2005). In
addition to their effect on human and animal pathogens, MCFAs
also inhibit mycelial growth and spore germination of four plant
pathogenic fungi: Alternaria solani, Colletotrichum lagenarium,
Fusarium oxysporum f. sp. Cucumerinum, and F. oxysporum f.
sp. lycopersici (Liu et al., 2008). These observations suggest that
MCFAs may be useful for developing alternative IMP approaches
for the control of phytopathogens.

Phytochemicals have a long history as sources of novel
agrochemicals. Phytopathologists search for natural products
(NPs) that can be developed into pesticides for the treatment
of plant diseases. For example, poacic acid, which is commonly
found in grass lignocellulosic hydrolyzates, inhibits the growth
of Sclerotinia sclerotiorum and A. solani fungi and P. sojae
oomycetes (Piotrowski et al., 2015). There is considerable
evidence for direct protective effects of chemicals isolated
from plant root or leaf exudates and leaf or fruit volatile
organic compounds (VOCs) in various organisms. For example,
ε-viniferin, isolated from Vitis vinifera canes, has antifungal
activity against P. viticola and Botrytis cinerea (Schnee et al.,
2013). Secomicromelin, 7-methoxy-8-(4′-methyl-3′-furanyl)
coumarin, micromarin B, and isomicromelin, present in
Micromelum falcatum fruits, inhibit Pythium insidiosum mycelial
growth (Suthiwong et al., 2014). Cuminic acid, present in
Cuminum cyminum L. seeds, inhibits Phytophthora capsici
mycelial growth and zoospore germination (Wang et al., 2016).
Gossypol, which is naturally present in cotton root tissues,
has a strong inhibitory activity on the growth of various
soil-borne oomycetes and fungi, including Pythium irregulare,
Pythium ultimum, and F. oxysporum (Mellon et al., 2014).
Several leaf VOCs are produced and emitted rapidly when
plants respond to stresses, such as herbivore or mechanical
damage or attack by necrotrophic fungi (Cowan, 1999; Scala
et al., 2013; Matsui and Koeduka, 2016; Tanaka et al., 2018;

Wang et al., 2020). These phytochemicals may contribute
directly to plant defense by preventing pathogen invasion
(Matsui, 2006; Kishimoto et al., 2008).

Here, we analyzed soybean leaf volatiles derived from
compatible (disease-producing) and incompatible (successful
plant defense) interactions with P. sojae, the causal agent
of soybean root and stem rot disease. LA was identified
by headspace solid-phase microextraction coupled with gas
chromatography–mass spectrometry (HS-SPME-GC–MS)
among the incompatible interaction-produced volatiles. Both
LA and glycerol monolaurate (GML), a chemical compound
formed from LA and glycerol, inhibited the mycelial growth of
P. sojae in Petri dish assays. GML also disrupted or disintegrated
the P. sojae plasma membrane, leading to shrunken mycelia and
cytoplasmic electrolyte leakage. We provide a conclusion about
the functions and the protective mechanisms of LA as a potential
oomycete biological control agent.

MATERIALS AND METHODS

Plant and P. sojae Cultivation
Soybean plants were cultivated in a growth chamber at 25°C, with
a cycle of 16 h of high light intensity and 8 h of darkness. P. sojae
strains were grown on 10% V8 medium (10% V8 juice, 0.02%
CaCO3, and 1.5% agar) at 25°C in the dark. Hyphal plugs were
cultured in V8 liquid medium for mycelial harvest. The mycelia
were washed with sterile tap water three times and cultured
in the darkness at 25°C for 6 h for zoosporangium incubation
and zoospore release. Finally, the concentration of the zoospore
suspension was adjusted to 1× 105 mL.

GC–MS Analysis
Soybean leaves inoculated with P. sojae were placed in a 20-mL
headspace bottle. An AOC-6000 Multifunctional Autosampler
(Shimadzu, Kyoto, Japan) was used for SPME injection, and a
GCMS-TQ8040 NX (Shimadzu) was used for detection using the
following standard SPME parameters: SPME fiber, FIB-C-WR-
95/10; aging temperature, 240°C; aging time before extraction,
30 min; equilibration temperature, 40°C; equilibration time,
5 min; extraction time, 30 min; injection port temperature, 250°C;
desorption time, 2 min; and aging time after extraction, 5 min.
The GC–MS parameters used were as follows: column, inert cap
pure-wax, 30 m× 0.25 mm× 0.25 m; oven program, 50°C(5 min)
and 10°C/min 250°C(10 min); carrier gas pressure, 83.5 kPa;
injection mode, split; split ratio, 5:1; ion-source temperature,
200°C; interface temperature, 250°C; detector voltage, tuning
voltage+0.3 kV; and acquisition mode, MRM.

Inhibitory Effects of LA and Its
Derivatives on P. sojae Growth
Hyphal plugs with a 6 mm were cultured in V8 liquid medium
containing different concentrations (0.5, 1, 1.5, 2, and 2.5 mM) of
LA, its derivatives–GML, methyl laurate (MEL), and ethyl laurate
(ETL)–or the same volume of sterile water as a control reference
(CK). The inoculated medium was incubated in the darkness at
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25°C for 5 days. Then, the colony diameter was measured, and
the mycelium status was observed under a light microscope.

Effects of LA and Its Derivatives on
P. sojae Zoosporangium Forming and
Zoospores Release
Different concentrations of LA or its derivatives, GML, MEL,
and ETL, were added into washed mycelia cultured in V8 liquid
medium. After incubation at 25°C for 6 h, the number of
zoosporangia was determined under a light microscope.

Lauric acid and its derivatives were added into the same
number of sporangium culture dishes without zoospore release.
The zoospores were cultured at 25°C, and the number of
zoospores was determined under a light microscope.

Effects of LA and Its Derivatives on
P. sojae (R2) Zoospore Germination
A 0.1-mL spore suspension was evenly coated on V8 medium
containing different concentrations of LA or its derivatives, GML,
MEL, and ETL. After incubation at 25°C for 4 days, colony
formation was analyzed visually.

Damage of the P. sojae Cell Membrane
by LA and Its Derivatives
Mycelia were cultured in V8 liquid medium for 3 days before
different concentrations of LA, and its derivatives, GML, MEL,
and ETL, were added to the medium. After 1–2 h of treatment,
1/10 of the total volume of propidium iodate (PI) was added
to the culture. After 20 min of incubation, the mycelia were
rinsed with PBS 2–3 times. The mycelium was observed under
a fluorescence microscope.

The same mycelia were placed in liquid V8 medium
containing different concentrations of LA or its derivatives,
and the concentrations of DNA and protein, and the electrical
conductivity, were measured every 2 h and plotted for analysis.

Safety of LA and Its Derivatives on
Soybean Plants
Different concentrations (0.5, 1, 1.5, 2, and 2.5 mM) of LA
or its derivatives, GML, MEL, and ETL, were mixed with the
same volume of soil. Sterile water was used as a blank control
(CK), and each treatment was repeated three times. The growth
and development of soybean seedlings were recorded 7 and
14 days after planting.

Use of LA and Its Derivatives as Preplant
Soil Fumigants
Different concentrations (0.5, 1, 1.5, 2, and 2.5 mM) of LA or
its derivatives, GML, MEL, and ETL, were mixed with the same
volume of soil. Sterile water was used as a blank control. The soil
was covered with a plastic film; after 15 days, the plastic film was
removed, and the soil was ventilated for 2 days. Soybeans were
then planted, and their height was measured after 5 days.

RESULTS

Lauric Acid Is Induced in Incompatible
Soybean–P. sojae Interactions
Soybean is the main host of P. sojae. Therefore, soybean
cultivars that contain resistance genes to P. sojae (Rps) are
important resources in agricultural production. Resistance genes
provide defense ability against pathogen varieties and induce the
emergence of hypersensitive responses and the production of
secondary metabolites.

We analyzed the leaf volatiles produced during incompatible
soybean–P. sojae interactions. After inoculation with P. sojae, the
main constituents of the volatiles produced from the leaves of
the susceptible soybean cultivar Williams (without Rps genes)
and the resistant cultivar Williams 82 (with the resistance gene
Rps1k) were determined by GC–MS. The LA concentration in
the leaf volatiles of Williams 82 was significantly higher than
that of Williams (Supplementary Figure 1), suggesting that LA
contributes to the defense response of soybean to P. sojae.

Lauric Acid Is Toxic to P. sojae
We measured the radial growth diameters of different P. sojae
races grown on V8 medium containing different concentrations
of LA; the toxicity of LA to P. sojae was conspicuous (Figure 1
and Supplementary Table 1). After 5 days’ growing on V8
medium with 0.5 mM LA, the diameter of Race2 (strain P6497)
hypha was 26.27 mm, and the bacteriostatic rate was 54.21%.
Furthermore, the bacteriostatic rates of Race7 (strain P7064),
Race17 (strain P7074), and Race19 (strain P7076) were 30.87,
28.22, and 23.33%, respectively. On the medium containing
2.5 mM LA, the bacteriostatic rates for Race2, Race 7, Race17,
and Race19 were 64.84, 57.06, 42.16, and 62.86%, respectively.
Higher concentrations of LA exacerbated its toxicity to various
P. sojae races.

Lauric Acid Derivatives Had Lower
Toxicity to P. sojae
Fatty acids can merge into cell membranes, and their
hydrophilicity and lipophilicity likely affect their antimicrobial
activity. To verify this hypothesis, we analyzed the mycelial
growth diameter of P. sojae (Race2) grown under different
concentrations of LA and its derivatives, GML, MEL, and
ETL. The diameters and bacteriostatic rates of mycelia treated
with GML, MEL, and ETL at 0.5 mM were 50.80, 57.53, and
57.37 mm, and 27.32, 17.70, and 17.93%, respectively. For LA,
the corresponding values were 45.40 mm and 35.05%, indicating
that its toxicity is higher than that of the three derivatives tested
(Figure 2 and Supplementary Table 2). The inhibitory effect of
LA of P. sojae was the most significant at the lowest concentration
(0.5 mM). In summary, the toxicity effects to P. sojae were the
highest for LA, followed by GML, ETL, and MEL.

Lauric Acid Effects on the Development
of P. sojae Mycelia and Sporangium
We observed the morphology of P. sojae hyphae with an optical
microscope. LA treatments led to hyphae with more branches,
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FIGURE 1 | Inhibitory effects of lauric acid (LA) to various P. sojae species. (A) Four different P. sojae races (Race2, Race7, Race17, and, Race19) were cultured on
V8 medium with different concentrations of LA for 5 days. The experiment was repeated three times with similar results. (B) The diameter of each colony was
measured and statistical analyzed via software Statistical Product and Service Solutions (SPSS). Means with different letters are significantly different (p < 0.05).

FIGURE 2 | Inhibitory effects of lauric acid (LA) and its derivatives to P. sojae. (A) The mycelia of P. sojae (Race2) were cultured on media containing LA, glycerol
monolaurate (GML), methyl laurate (MEL), or ethyl laurate (ETL) for 5 days. (B) The diameter of each colony was measured and statistical analyzed via software
Statistical Product and Service Solutions (SPSS). Means with different letters are significantly different (p < 0.05).

distortions, bending, and nodules than those in the control group.
Moreover, LA-treated hyphae had few zoosporangia (Figure 3).

To explore how LA and its derivatives affect P. sojae
zoosporangium formation and zoospore release, we determined
the number of zoosporangia formed and calculated the inhibition
effect of each chemical. The number of zoosporangia was
reduced with 0.16 mM LA or GML when compared with the
water control; no zoosporangia were observed with 0.64 mM
treatments. With 1.28 mM MEL or ETL, a small number of
zoosporangia were obtained (Supplementary Table 3).

Zoosporangia formed in the water could not release
zoospores when the LA or GML concentration increased to
0.64 mM. Interestingly, almost no zoospores were released
from zoosporangia treated with 0.32 mM GML, which was
significantly lower than what we observed for LA, MEL, or ETL
(Supplementary Table 3).

Lauric Acid and Its Derivatives Affect the
Germination of P. sojae Zoospores
To explore the influence of LA and its derivatives on P. sojae
zoospore germination, we evenly daubed zoospore suspensions
onto media containing various concentrations of LA, GML,
MEL, or ETL. Compared to the V8 medium control, LA and

GML at 0.08 mM significantly inhibited zoospore germination,
and few zoospores could form individual colonies (Figure 4).
However, MEL and ETL had weak inhibitory effects on zoospore
germination at the maximum concentration of 1.28 mM
(Figure 4 and Supplementary Table 4).

Lauric Acid Induced Cell Membrane
Damage and Cell Substance Leakage in
P. sojae
Propidium iodate is a DNA-binding and a cell-membrane–
impermeable dye, usually used as a marker for membrane
integrity and cell viability; PI cannot cross the membrane of
live cells but can penetrate and stain the cell nucleus red if
the cell membrane is damaged. We PI-stained P. sojae hyphae
nuclei after exposure to LA and observed that the cell membrane
was severely damaged, resulting in red fluorescence in the
nucleus (Figure 5A).

To further investigate the potential damage to the cell
membrane, we analyzed cell substance leakage in P. sojae mycelia
treated with LA and its derivatives, GML, MEL, and ETL.
Total DNA and protein concentrations were monitored every
2 h in the growth media. DNA and protein contents increased
significantly over time and gradually flattened out in LA and
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FIGURE 3 | Effect of LA on P. sojae mycelial morphology. Mycelia were treated with LA or the same volume of water (CK) for 2 h before their morphology was
analyzed. Mycelial growth after LA treatment was disorderly, the terminal branch number increased significantly, and the formation of zoosporangium was inhibited.
In CK, the mycelium grew normally and expanded without any distortion, bending, or increased terminal branching. The experiment was repeated three times with
similar results.

FIGURE 4 | The effects of LA and its derivatives on P. sojae zoospore germination. To observe zoospore germination, zoospore suspensions were smeared on V8
medium containing LA, GML, MEL, or ETL at different concentrations. The experiment was repeated three times with similar results. Means with different letters are
significantly different (Statistical Product and Service Solutions (SPSS), p < 0.05).

GML solutions but changed only slightly in CK, MEL, or ETL
solutions (Figures 5B, C). The conductibility of the five tested
solutions increased in the first 2 h, but it was significantly higher
in LA and GML than in CK, MEL, or ETL (Figure 5D). The
results indicated that the P. sojae DNA and proteins penetrated
the solution upon treatment with LA or GML, probably because
the cell membrane was damaged or destroyed.

Host Security of Treatments With LA and
Its Derivatives on Soybean Plants
To understand the security of LA and its derivatives on host
plants, we applied different concentrations of LA, GML, MEL,
or ETL in the pot-planting holes; soybean seedling height
was measured at 7 and 14 days after planting. When LA

and GML concentrations were lower than 0.3 g a.i./plant, the
treatments promoted soybean growth, whereas the application
of 0.3 g a.i./plant did not influence plant growth, and there was
no significant difference in height compared with the control
group. At 0.6 g a.i./plant, MEL and ETL treatments did not
significantly affect plant growth compared to the control at the
two time points. However, concentrations higher than 0.6 g
a.i./plant were harmful to plants and inhibited their growth
(Supplementary Table 5).

Potential of LA and Its Derivatives as
Biological Control Agents
The mycelium and oospores of P. sojae formed on V8 medium
were homogenized using a blender and mixed with potted
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FIGURE 5 | Effect of LA on P. sojae cell membrane integrity. (A) P. sojae hyphae nuclei stained with propidium iodide (PI) after exposure to LA (upper image) or the
same amount of water (lower image) and observed under a microscope. (B) Effects of LA and its derivatives, GML, MEL, or ETL, on DNA content. (C) Effects of LA
GML, MEL, and ETL on protein content. (D) Effects of LA, GML, MEL, and ETL on solution conductivity. Means with different letters are significantly different (SPSS,
p < 0.05).

soil before LA, and its derivatives, GML, MEL, or ETL, were
added to the pots. Seeds of the P. sojae–susceptible soybean
cultivar Williams (lacking Rps resistance genes) were sowed in
the processed soil, and soybean height was measured after 5 days.
Potted soybean plants grown in soil treated with LA or its
derivatives had similar growth patterns than those in sterilized
soil (CK2). However, most seedlings were killed by P. sojae in
inoculated soil when plants were planted without LA, GML, MEL,
or ETL treatments (CK1) (Figure 6).

DISCUSSION

Because of the expanding global population and the increasingly
stringent environmental, toxicological, and regulatory
requirements, plant pathogen control remains a constant
need, and the products suitable for phytopathogen management
are further limited. NPs are primary or secondary metabolites
produced by living cells and have been an important source and
template for the development of novel environmental-friendly
agrochemicals. The metabolites synthesized in response to
pathogen infection, such as leaf VOCs, have been particularly
important and have functional benefits in multiple aspects
of plant defense. Several VOCs are produced and emitted
rapidly when plants respond to biotic stress, and such
compounds require further exploration as leads for novel
crop protection chemistry. VOCs tend to be chemically complex,
and few are used directly for agricultural pathogen control.
Nevertheless, it is technically possible to identify the effective
constituents in VOCs and modify them as commercial products,
transforming many NPs into agriculturally suitable molecules for
pathogen control.

Here, we identified the components of soybean leaf volatiles
produced in incompatible interactions and compatible
interactions with P. sojae and found that LA was emitted
specificity in a resistant cultivar. As previously reported,
LA inhibits the mycelial growth of phytopathogenic fungi.
Additionally, LA significantly reduces the R. solani and
P. ultimum mycelial growth in agar culture at the concentration
of 100 µm or greater, whereas no fungal growth occurred in
liquid culture at concentrations greater than 50 µm (Walters
et al., 2003). In this study, P. sojae mycelia growth was suppressed
by LA, and the formation of zoosporangium was inhibited. This
study provides the first report of the activity of LA against
a Phytophthora pathogen and indicates the need for further
research of its mechanism of action.

Lauric acid-treated mycelia grew disorderly, and the number
of terminal branches increased significantly. Furthermore, the
plasma membrane of P. sojae was disrupted or disintegrated
by LA. MCFAs and monoglycerides are single-chain lipid
amphiphiles that interact with phospholipid membranes as part
of various biological activities. For example, they can have
membrane-disruptive behavior against microbial pathogens on
the human skin surface (Valle-González et al., 2018). LA has a
minimum bactericidal concentration to E. coli at 1 mM (Kim and
Rhee, 2013). Here, we found that LA can inhibit P. sojae growth
at 0.5 mM, which means it has a greater effect on Phytophthora
than on E. coli. Additionally, the concentration of cell substances,
including DNA and protein, in water culture increased after
LA treatment, and PI staining of the nucleus indicated that the
P. sojae cell membrane was damaged.

It has been proposed that the hydrophilic and lipophilic
characteristics of fatty acid derivatives affect their antibacterial
activities according to their ability to incorporate into the
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FIGURE 6 | Potted experiment of P. sojae control by LA and its derivatives. The soil was treated with LA, GML, MEL, or ETL. In CK1, no agent added to the soil. In
CK2, no P. sojae mycelium was added to the soil. Plant height was measured 5 days after planting. The experiment was repeated three times with similar results.
Means with different letters are significantly different (SPSS, p < 0.05).

bacterial cell membrane (Park et al., 2018; Valle-González
et al., 2018). To verify this hypothesis, we selected three
kinds of LA derivatives esterified with different non–fatty acid
moieties and investigated whether the antibacterial activity
from their precursor (i.e., LA) was retained or lost. GML
had comparative bacteriostatic and bactericidal effects against
P. sojae to LA, whereas MEL and ETL had weaker inhibitory
activity. The antimicrobial properties of LA, GML, and their
ester derivatives may be attributed to physicochemical processes
and their interference with various cellular processes. GML
is 200 times more effective than LA in bactericidal activity
(Schlievert and Peterson, 2012), but, in this study, LA had similar
effects to P. sojae, which suggests differences in the inhibitory
mechanisms involved.

Glycerol monolaurate has a potent antimicrobial activity, and
LA has the ability to convert into GML, which can destroy
the lipid membrane of bacteria (Jin et al., 2021). The high
levels of activity of capric and lauric acids, and particularly
that of monocaprin, are notable and suggest that these lipids
have specific antichlamydial activities (Bergsson et al., 1998).
A recent study demonstrated that the potencies of saturated
FAs increased sharply by lowering the pH, and a decrease of
only 0.5 pH units could cause a change from non-lethal to
lethal conditions. Conversely, the bactericidal action of GLM
was not pH-dependent (Sun et al., 2003). That means GML
is more environmentally stable and likely more suitable for
crop protection.

As the main component of coconut oil and breast milk, LA
is usually part of regular diets and feed additives, showing potent
antimicrobial effects and lack of toxicity (Zeiger et al., 2017; Khan
et al., 2020; Zhang et al., 2020). In the host security test, with
concentrations lower than 0.3 g a.i./plant, both LA and GML
could promote soybean growth; however, higher concentrations
may negatively influence host growth.

None of the natural and eco-friendly chemical alternatives
currently registered and available have the full spectrum of
activity and versatility of methyl bromide as preplant soil
fumigants (Duniway, 2002). Based on the results described here,
LA and GML have potent antimicrobial effects and positive
effects regulating plant growth. Hence, they may be promising
substitutes for traditional anti-Phytophthora agents.
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