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Abstract: Parkinson’s disease (PD) is a major age-related neurodegenerative disorder characterized
by the loss of dopaminergic neurons in the substantia nigra par compacta (SNpc). Rotenone
is a neurotoxin that is routinely used to model PD to aid in understanding the mechanisms of
neuronal death. Safflower (Carthamus tinctorius. L.) has long been used to treat cerebrovascular
diseases in China. This plant contains flavonoids, which have been reported to be effective in
models of neurodegenerative disease. We previously reported that kaempferol derivatives from
safflower could bind DJ-1, a protein associated with PD, and that a flavonoid extract from safflower
exhibited neuroprotective effects in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse
model of PD. In this study, a standardized safflower flavonoid extract (SAFE) was isolated from
safflower and found to primarily contain flavonoids. The aim of the current study was to confirm
the neuroprotective effects of SAFE in rotenone-induced Parkinson rats. The results showed that
SAFE treatment increased body weight and improved rearing behavior and grip strength. SAFE
(35 or 70 mg/kg/day) treatment reversed the decreased protein expression of tyrosine hydroxylase,
dopamine transporter and DJ-1 and increased the levels of dopamine and its metabolite. In contrast,
acetylcholine levels were decreased. SAFE treatment also led to partial inhibition of PD-associated
changes in extracellular space diffusion parameters. These changes were detected using a magnetic
resonance imaging (MRI) tracer-based method, which provides novel information regarding neuronal
loss and astrocyte activation. Thus, our results indicate that SAFE represents a potential therapeutic
herbal treatment for PD.
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1. Introduction

Neurodegenerative disorders, such as Parkinson’s disease (PD) and Alzheimer’s disease (AD),
affect millions of patients at ever growing numbers in aging societies, and no curative treatments
exist [1]. PD is the second most common chronic and progressive neurodegenerative disorder after
AD [2]. Disease onset in PD is variable and can be observed in younger, middle-aged or elderly
patients, although this disease is most commonly observed in adults over 60 years of age [3,4]. PD is
clinically characterized by symptoms such as akinesia, rigidity, bradykinesia, resting tremor, postural
instability and balance, and sensory-motor integration deficits [5–7]. Progressive loss of dopaminergic
neurons in the substantia nigra par compacta (SNpc) and subsequent depletion of dopamine (DA) in
the striatum, which is the main projection area of the substantia nigra (SN), is the primary cause of PD
symptoms [8]. Various environmental and genetic factors have been suggested, but the etiology of
PD remains largely unknown [3]. Epidemiological evidence has indicated that pesticides and other
environmental toxins may play a role in the development of idiopathic PD [9]. Rotenone is a pesticide
and toxin that can be used to induce PD in an animal model [10]. In rats, rotenone reproduces many
key pathological features of PD such as oxidative damage, α-synuclein aggregation [11], oxidative
stress-induced striatal dopaminergic terminal degeneration [12], selective nigrostriatal loss, cognitive
deficits and depression-like behavior [13]. Currently, DA supplement therapy is a standard treatment
for PD. Although Madopar® (levodopa + benserazide) is the gold standard treatment, long-term use
of this drug can cause adverse symptoms [14].

Flavonoids are the active components of many medicinal herbs and exert many health-related
properties. Pharmacological studies indicate that extracts from safflower (Carthamus tinctorius. L.),
a member of the Compositae family that is natively distributed over Asia and some African countries,
show a number of effects including neuroprotective [15], cardioprotective [16], anti-fibrotic [17],
anti-coagulation and anti-thrombotic [18], anti-aging [19], vasodilation and anti-hypertensive [20],
and anti-oxidative [21] properties.

In earlier studies, our group confirmed that compounds isolated from safflower such as
kaempferol 3-O-rutinoside (K3R) and anhydrosafflor yellow B (AYB) could reduce the levels of
hydrogen peroxide (H2O2)-induced reactive oxygen species in PC12 cells. DJ-1 (also known as PARK7),
a causative gene product from a familial form of PD, plays a role in anti-oxidative stress responses,
and loss of DJ-1 function is thought to result in the onset of PD. Additional work from our group
also found that K3R and AYB were found to specifically bind to the C106 region by using a quartz
crystal microbalance. K3R levels was diminished in cells transfected with siRNA targeting DJ-1,
indicating DJ-1-dependent activity of K3R and DJ-1-independent activity of AYB [22]. Furthermore,
flavonoid extracts from safflower have been shown to exert a neuroprotective effect against the
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD [23].

Brain tissue is comprised of two components: cellular elements (neurons and glial cells) and
the space between the cellular elements—the extracellular space (ECS) [24]. Neurons are bathed by
interstitial fluid (ISF) within the brain ECS, which forms the microenvironment of the central nervous
system (CNS) [25,26]. Thus, changes in ECS diffusion parameters may be a key factor in identifying
the mechanisms and pathologic changes that underlie PD and may reveal improved therapeutic
approaches for the treatment of PD.

As previously described, rotenone is a chemical that can cause PD, but there is no research
regarding the use of a standardized flavonoid extract of safflower (SAFE) for treatment in
a rotenone-induced PD animal model. In this study, we investigated the neuroprotective effects
of a standardized flavonoid extract of safflower, using K3R and AYB levels as quality standards,
in a rotenone-induced PD rat model.
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2. Results

2.1. Qualitative Quantitative Analyses of SAFE Components

High-performance liquid chromatography (HPLC) analysis showed that the 30% ethanol elutate
of safflower contained K3R and AYB, as shown in the standardized HPLC chromatogram of SAFE
(Figure 1A,C). Our results indicated that the primary components were flavonoids, which accounted
for 70.75% of the total number of components in SAFE. K3R and AYB were representative compounds
of glycoside and chalcone flavonoids (two flavonoid subclasses), respectively. According to the liquid
chromatography/mass spectrometry (LC/MS) analyses (Figure 1B, Table 1), the extract was comprised
of approximately 7.83% K3R (No. 16) and 7.97% AYB (No. 18) along with other less prevalent
flavonoids, including anhydrosafflor yellow A (AYA) (No. 1), quercetin 3-O-rutinoside (rutin) (Q3R)
(No. 4), isorhamnetin methylpentosyl hexoside (No. 17), and 4′,5-dihydroxyl-6-O-glucopyranosyl
flavanone (4D6GF) or its isomer (No. 6) [23].
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Table 1. Representative compounds identified in the SAFE by HPLC-ESI-IT-TOF-MSn analysis.

No. tR (min) Meas. m/z ([M − H]−) Diff. (ppm) Formula Characterisc Fragment Ions Identification

1 * 9.122 611.1609 1.47 C27H32O16

MS2: 593.1455(0.83), C27H29O15; 521.1235(1.86), C24H25O13; 503.1153(1.27), C24H23O12;
491.1148(100), C23H23O12; 485.1192(0.19), C24H21O11; 473.1047(9.40), C23H21O11;
461.1045(0.76), C22H21O11; 421.1120(4.41), C20H21O10; 403.1088(28.95), C20H19O9;
385.0892(6.81), C20H17O8; 325.068332.65), C18H13O6; 313.0699(5.68), C17H13O6;
283.0594(11.67), C16H11O5.
MS3(491.1148): 473.1105(82.37), C23H21O11; 353.0593(45.23), C19H13O7; 323.0514(61.48),
C18H11O6; 301.0705(62.80), C16H13O6; 283.0625(100), C16H11O5.

hydroxysafflor yellow A (HSYA)

4 19.348 609.1432 −3.61 C27H30O16

MS2: 301.0329(100), C15H9O7; 300.0262(7.36), C15H8O7.
MS3(300.0265): 271.0292(7.98), C14H7O6; 255.0255(100), C14H7O5; 244.0250(80.91),
C12H5O6; 173.0889(10.06), C11H9O2.

6-hydroxykaempferol
3-O-β-D-rutinoside (6H3R) or
quercetin 3-O-rutinoside (rutin)

16 * 33.482 593.1502 −2.87 C27H30O15

MS2: 285.0404(100), C15H9O6, [M – H − rutinosyl]−.
MS3(285.0404): 257.0422(100), C14H9O5; 239.0377(36.25), C14H7O4; 267.0273(51.50),
C15H7O5; 229.05410(74.95), C13H9O4; 163.0080(49.24), C8H3O4; 150.9977 (15.98),
C7H3O4, 1,3A−.

kaempferol-3-O-rutinoside (K3R)

17 36.083 623.1614 −2.73 C28H32O16

MS2: 608.1311(0.66), C27H28O16, [M − H − CH3]•−; 477.0929(0.13), C22H21O12,
[M – H − 146 (C6H10O4, methylpenstosyl)]−; 357.0626(1.70), C18H14O8; 315.0503(100),
C16H11O7, [aglycon − H]−; 300.0257(37.43), C15H8O7; 271.0221(16.31), C14H7O6;
255.0306(5.67), C14H7O5.
MS3(315.0503): 255.0327(3.63), C14H7O5; 181.0147(0.19), C8H5O5.

isorhamnetin
methylpentosyl hexoside

18 * 37.790 1043.2646 −2.68 C48H52O26

MS2: 1025.2493, C48H49O25; 923.2204, C44H43O22; 449.1065, C21H21O11.
MS3(449.1065): 431.0942, C21H19O10; 329.0574, C13H13O10; 311.0489,C13H11O9;
299.0527, C16H11O6; 287.0534, C15H11O6; 261.0660, C10H13O8; 259.0604, C14H11O5;
241.0495, C14H9O4; 207.0557, C7H11O7; 178.9990, C8H3O5; 153.0181, C7H5O4.

anhydrosafflor yellow B (AYB)

23 42.513 449.1077 −2.67 C21H22O11
MS2: 287.0553, C15H11O6.
MS3(287.0553): 181.0257, C8H5O5; 153.0119, C7H5O4; 119.0573, C8H7O.

neocarthamin or its isomer

* Confirmed by comparison with reference compounds.
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2.2. Changes in Body Weight and Behavior

Daily subcutaneous injections of rotenone elicited a progressive loss in body weight and
behavioral deficits. The present study observed that rats in the rotenone-treated group consumed less
food and water compared to rats in the control group. As shown in Figure 2A (body weight change
during rotenone treatment from day 1 to day 9), the body weight of the rats was markedly decreased
following rotenone treatment for 7 days compared to the control group. In addition, a significant
decrease in body weight was observed in rotenone-treated rats at 10 days following rotenone treatment
compared to the control group (p < 0.001, Figure 2B).

During the experimental procedure, none of the rats in the control group died. In contrast,
as shown in Figure 2E, 20 rats in the rotenone-treated group succumbed over the course of their
injection regimen (1, 5, 10 and 4 rats succumbed at days 7, 8, 9 and 10, respectively, after the initiation
of rote-none treatment).

Results from the rearing behavior and grip strength tests showed that, after 10 days of rotenone
treatment, rotenone-treated rats presented a significant decrease in rearing behavior and grip strength
compared to the control group (p < 0.001, Figure 2C,D).

After 10 days of rotenone treatment, the rats were randomly divided into four groups based
on body weight, rearing behavior and grip strength and reclassified as follows: rotenone group,
low-dose SAFE (35 mg/kg/day) group, high-dose SAFE (70 mg/kg/day) group and Madopar®

(50 mg/kg/day) group.
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Figure 2. Changes in body weight and behavioral parameters of the PD model. The parameters
are presented as the mean ± SD, * compared to control, (** p < 0.01, *** p < 0.001, rotenone: n = 92,
control: n = 10). (A) Body weight change during rotenone treatment from day 1 to day 9; (B) Day 10
body weight change during rotenone treatment; (C) Rearing behavior result after 10 days of rotenone
treatment; (D) Grip strength result after 10 days of rotenone treatment; (E) Survival of during 10 days
rotenone treatment.

Rats in the SAFE and Madopar® groups consumed more food and water compared to the rats in
the rotenone group. As shown in Figure 3A (body weight change during the SAFE and Madopar®
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treatments from day 1 to day 23), the body weight of the low-dose SAFE (35 mg/kg/day) group rats
was markedly increased following treatment from day 21 to day 23 compared to rotenone treatment
(p < 0.05). In addition, a significant increase was observed in the body weight of SAFE-treated rats
at 24 days following SAFE (35 or 70 mg/kg/day) treatment compared to the rotenone group (both
p < 0.05, Figure 3B). No significant increase was observed in the body weight of Madopar®-treated
rats at 24 days following Madopar® treatment compared to the rotenone group (p > 0.05, Figure 3B).

Results from the rearing behavior and grip strength analyses showed that after 24 days
of treatment, the rearing behavior and grip strength in the SAFE and Madopar®-treated group
significantly increased compared to the rotenone group, low-dose SAFE treated group (both p < 0.001,
and p < 0.01), high-dose SAFE treated group (both p < 0.01, and p < 0.05) and Madopar®-treated (both
p < 0.05, Figure 3C,D) respectively.

During the secondary phase of the experimental procedure, none of the rats in the control group
died. By contrast, as shown in Figure 3E, 5 rats in the rotenone-treated group (1 each on days 3, 4, 11,
15 and 18); 2 rats in the low-dose SAFE-treated group (1 each on days 6 and 23); 3 rats in the high-dose
SAFE-treated group (2 and 1 rats on days 6 and 8, respectively) and 4 rats in the Madopar®-group
(2, 1 and 1 rats on days 4, 6 and 9, respectively, after the initiation of saline treatment) succumbed to
their ailments.
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2.3. Western Blot Analysis 
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Figure 3. Changes in body weight and behavioral parameters during SAFE treatment. (A) Body weight
change during the SAFE treatments from day 1 to day 23; (B) Body weight change during the SAFE
treatments day 24; (C) Rearing behavior result after 24 days of SAFE treatments; (D) Grip strength result
after 24 days of SAFE treatments; (E) Survival of during 24 days SAFE treatments. The parameters are
presented as the mean ± SD, (# compared to control, # p < 0.05, ## p < 0.01, ### p < 0.001; * compared to
rotenone * p < 0.05, ** p < 0.01, *** p < 0.001) (control n = 10, other group n = 18).

2.3. Western Blot Analysis

In the SN, western blot analysis showed that tyrosine hydroxylase (TH), dopamine transporter
(DAT) and DJ-1 protein expression was significantly decreased in the rotenone-treated group compared
to the control group. After the daily oral administration of either SAFE or Madopar® for 24 days,
all of these proteins showed significantly increased expression in comparison to the rotenone group
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(Figure 4). As shown in Figure 4A, low-dose SAFE treatment resulted in more significantly increased
TH protein expression levels compared to the high-dose SAFE and Madopar® groups (p < 0.01),
high-dose SAFE-treated group and Madopar®-treated group (p < 0.05). All three of the treatment
groups (low-dose SAFE, high-dose SAFE and Madopar®) showed significantly increased DAT
expression compared to the rotenone group (Figure 4B, all p < 0.01). Regarding DJ-1 expression,
both SAFE treatment groups showed significantly increased DJ-1 protein expression (p < 0.01 compared
to the rotenone group) than the Madopar®-treated group (p < 0.05 compared to the rotenone group)
(Figure 4C).
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Figure 4. Western blot analysis. After 10 days of rotenone treatment, the levels of TH, DAT and DJ-1
were downregulated. After SAFE treatment, these decreases were reversed. (A) TH protein expression
levels; (B) DAT protein expression levels; (C) DJ-1 protein expression levels. The parameters are
presented as the mean ± SD, (# compared to control, # p < 0.05, ## p < 0.01; * compared to rotenone,
* p < 0.05, ** p < 0.01) (n = 4).

2.4. HPLC Analysis of DA and Its Metabolites

We measured the levels of DA and its metabolites dihydroxyphenyl acetic acid (DOPAC) and
homovanillic acid (HVA) in the striatum using HPLC-based measurements. Rotenone injection caused
significant decreases of DA and its metabolites DOPAC and HVA in the striatum compared to the
control group (Figure 5A–C; p < 0.05). However, daily oral administration of low-dose SAFE, high-dose
SAFE or Madopar® increased the levels of DA (p < 0.001, p < 0.001 and p < 0.01, respectively, Figure 5A)
as well as the levels of DOPAC (p < 0.01, p < 0.01 and p < 0.05, respectively, Figure 5B) and HVA
(p < 0.01, p < 0.01 and p < 0.05, respectively, Figure 5C) compared to the rotenone group.



Molecules 2016, 21, 1107 8 of 18
Molecules 2016, 21, 1107 8 of 17 

 

 
Figure 5. HPLC analysis of DA and its metabolites.  Effects of SAFE on DA and its metabolites in 
the the striatum of rotenone-induced rat model of PD. (A) DA levels; (B) DOPAC levels; (C) HVA 
levels. The parameters are presented as the mean ± SD, (# compared to control, # p < 0.05; * compared 
to rotenone, * p < 0.05, ** p < 0.01, *** p < 0.001) (n = 4). 

2.5. Mass Spectrometry Imaging(MSI) Analysis 

After measuring the changes in body weight and behavioral parameters, we confirmed the 
success of the rotenone-induced PD model and the efficiency of the drug treatment using the 
negative-ion scan mode (146.1146 m/z) to measure Ach levels. As shown in Figure 6, the 
hippocampal acetylcholine (Ach) levels in rotenone-treated rats were increased compared to control 
rats. However, after 24 days of low-dose SAFE treatment, the Ach content was decreased compared 
to the rotenone group (Figure 6). 

 
Figure 6. Imaging mass spectrometry analysis. After 10 days of rotenone treatment, increased Ach 
was detected in the hippocampus. After 24 days of low-dose SAFE (35 g/kg/day) treatment, the Ach 
levels were clearly decreased. Data are representative of three independent experiments with similar 
results (n = 3). 

Figure 5. HPLC analysis of DA and its metabolites. Effects of SAFE on DA and its metabolites in the
the striatum of rotenone-induced rat model of PD. (A) DA levels; (B) DOPAC levels; (C) HVA levels.
The parameters are presented as the mean ± SD, (# compared to control, # p < 0.05; * compared to
rotenone, * p < 0.05, ** p < 0.01, *** p < 0.001) (n = 4).

2.5. Mass Spectrometry Imaging (MSI) Analysis

After measuring the changes in body weight and behavioral parameters, we confirmed the success
of the rotenone-induced PD model and the efficiency of the drug treatment using the negative-ion scan
mode (146.1146 m/z) to measure Ach levels. As shown in Figure 6, the hippocampal acetylcholine
(Ach) levels in rotenone-treated rats were increased compared to control rats. However, after 24 days of
low-dose SAFE treatment, the Ach content was decreased compared to the rotenone group (Figure 6).

Molecules 2016, 21, 1107 8 of 17 

 

 
Figure 5. HPLC analysis of DA and its metabolites.  Effects of SAFE on DA and its metabolites in 
the the striatum of rotenone-induced rat model of PD. (A) DA levels; (B) DOPAC levels; (C) HVA 
levels. The parameters are presented as the mean ± SD, (# compared to control, # p < 0.05; * compared 
to rotenone, * p < 0.05, ** p < 0.01, *** p < 0.001) (n = 4). 

2.5. Mass Spectrometry Imaging(MSI) Analysis 

After measuring the changes in body weight and behavioral parameters, we confirmed the 
success of the rotenone-induced PD model and the efficiency of the drug treatment using the 
negative-ion scan mode (146.1146 m/z) to measure Ach levels. As shown in Figure 6, the 
hippocampal acetylcholine (Ach) levels in rotenone-treated rats were increased compared to control 
rats. However, after 24 days of low-dose SAFE treatment, the Ach content was decreased compared 
to the rotenone group (Figure 6). 

 
Figure 6. Imaging mass spectrometry analysis. After 10 days of rotenone treatment, increased Ach 
was detected in the hippocampus. After 24 days of low-dose SAFE (35 g/kg/day) treatment, the Ach 
levels were clearly decreased. Data are representative of three independent experiments with similar 
results (n = 3). 

Figure 6. Imaging mass spectrometry analysis. After 10 days of rotenone treatment, increased Ach was
detected in the hippocampus. After 24 days of low-dose SAFE (35 g/kg/day) treatment, the Ach levels
were clearly decreased. Data are representative of three independent experiments with similar results
(n = 3).



Molecules 2016, 21, 1107 9 of 18

2.6. Effects of SAFE on ECS Diffusion Parameters in the Striatum of Rats with Rotenone-Induced PD

The free water diffusion coefficient (D) was calculated as 5.18 × 10−4 mm2/s in 0.3% agar gel
at 37 ◦C [27]. In this study, we measured the effective diffusion coefficient (D*). The unilateral
damage induced by rotenone in the striatum caused a significant extension in the t1/2 of Gd-DTPA,
reduced the k′ and decreased the tortuosity (λ =

√
D/D∗; all p < 0.01, Figure 7B–D). Both SAFE

treatments resulted in significant shortening of t1/2 (p < 0.001 and p < 0.01, respectively, compared to
the rotenone group, Figure 7B) and an increase in k′ (p < 0.001 and p < 0.01, respectively, Figure 7C) and
λ (both p < 0.001, respectively, Figure 7D). Although Madopar® treatment significantly increased the
λ (p < 0.01, Figure 7D), it did not significantly increased the k′ and shorten the t1/2 parameter (p > 0.05,
Figure 7B,C). Figure 7A shows the elimination process of gadolinium-diethylene triamine pentaacetic
acid (Gd-DTPA) in the striatum.
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Gd-DTPA diffusion parameters (B) t1/2; (C) k′; (D) λ in the brain of rotenone-induced rat model of
PD after SAFE treatment. The parameters are presented as the mean ± SD, (# compared to control,
# p < 0.05, ## p < 0.01; * compared to rotenone, ** p < 0.01, *** p < 0.001) (n = 4).

3. Discussion

The rotenone-induced PD model is associated with neuronal damage in the SN and striatum,
which can manifest as marked deterioration in motor function, behavioral changes, loss of body weight
and altered muscle morphology [28–30]. After 10 days of treatment with rotenone (2 mg/kg/day),
treated animals developed symptoms of PD such as body weight loss, motor function impairment and
behavioral changes.

Recent therapeutic advances in PD have revealed the promising role of flavonoids, which have
been shown to ameliorate the loss of cognitive function by protecting susceptible neurons, maintain
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motor control to reduce motor complications, and sustain nigrostriatal integrity and functionality [31].
Findings by Gao X. [32] suggest that flavonoid intake may reduce PD risk, whereas Gao L. [33]
reported that flavonoids from Scutellaria baicalensis Georgi possess neuroprotective properties. Gao L.’s
report explored the effects of baicalein on motor behavioral deficits and showed that this compound
significantly improved the abnormal behaviors in an MPTP-induced mouse model of PD.

In our study, SAFE treatment in rats with induced PD led to a marked recovery of body weight,
motor function and behavioral changes. After 24 days of SAFE treatment, there were significant
differences between the rotenone group and SAFE group with regard to body weight, rearing behavior
and grip strength. The grip strength test was used to measure any alterations in the motor coordination.
Both of tests were employed to assess behavioral deficits in the rats receiving subcutaneous or
intravenous rotenone.

Rotenone treatment leads to nigrostriatal dopaminergic neurodegeneration, resulting in a loss
of TH-positive neurons in the SN [34]. TH is a rate-limiting enzyme in the synthesis of DA as
well as a transmitter and marker of dopaminergic neurons [34], and reduced levels of TH result in
decreased levels of DA in the SN in patients with PD [35,36]. Released DA can be recycled back to
the presynaptic terminal through the specific transporter DAT [37]. Dopaminergic neurons appear
to be associated with the utilization of DAT; however, DAT does not mediate rotenone toxicity. DJ-1
protects DA neurons against mitochondrial dysfunction and oxidative stress through an autophagic
pathway [38]. Pesticides and mitochondrial toxins are associated with mitochondrial dysfunction and
oxidative stress, and in vivo rotenone exposure generates significant oxidative modification of DJ-1.
These modifications are restricted to dopaminergic regions such as the SN, striatum, olfactory bulb and,
to some extent, the cortex [39]. A previous study from our group identified DJ-1-binding compounds
in safflower extract. By using a quartz crystal microbalance (QCM), we identified 5 DJ-1-binding
compounds that have been utilized in Traditional Chinese Medicine (TCM) and possess anti-oxidant
activities. SAFE included all 5 of these compounds, with K3R and AYB representing the most prevalent
constituents. Thus, these two compounds were classified as the quality standard of SAFE.

In our experiment, HPLC analysis showed that the 30% ethanol elution of safflower contained K3R
and AYB. Isolation of these compounds from safflower was identical to our earlier work, suggesting
that this process has good reproducibility.

Western blot analysis is the one of the most commonly used methods to detect protein. In our
study, we observed that the expression of TH, DAT and DJ-1 protein was significantly decreased in the
rotenone-treated group; however, after SAFE treatment, these levels were restored. DAT exists in two
forms: the glycosolated form (80 kDa) and non-glycosylated form (50 kDa). In this study, we observed
that only non-glycosylated DAT was present in the brain tissue of rotenone-treated rats.

By HPLC, the present findings reveal a neuroprotective effect of SAFE in the rat rotenone model
of PD. Rats treated with SAFE showed significantly increased DA levels as well as increased levels of
the metabolites DOPAC and HVA in the striatum decreased by rotenone treatment.

As described above, DA and Ach are two primary factors directly involved in PD. Based on
the western blot analysis and the HPLC results, we initially speculated that SAFE could positively
influence the DA system. In normal situations, there is a balance between DA and Ach release in the
brain. The significant loss of DA in the striatum plays a critical role in the pathogenesis of PD, which
can result in low DA and high Ach levels. Thus, one approach to treat or cure PD is to increase the
levels of DA while simultaneously decreasing the levels of Ach. To confirm the success of our rat
model of PD as well as determine the efficacy of SAFE, we used MSI to measure the Ach levels.

MSI can indicate the anatomical distribution of a compound and is used for various applications
in pharmaceutical research [40]. MSI is a powerful tool for directly determining the distribution of
proteins, peptides, lipids, neurotransmitters, metabolites and drugs in neural tissue sections in situ
and is thus an important analytical technique in neuroscience research. The imaging of biomolecules
has provided new insights into multiple neurological diseases, including PD and AD [41]. Improper
neuronal function related to abnormal concentrations of neurotransmitters in the brain has been
associated with anxiety and depression, as well as diseases such as PD. Desorption electrospray
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ionization (DESI) mass spectrometry has also been used to image neurotransmitters [42]. In our
experiment, the MSI results showed that rotenone caused an increase of Ach levels, while low-dose
SAFE treatment (35 mg/kg/day) caused a clear decrease in hippocampal Ach levels.

The ECS is the microenvironment of the neurons and glia and is used as an important
communication channel; this space includes ions, transmitters, metabolites, peptides, neurohormones
and molecules of the extracellular matrix, all of which either directly or indirectly affect neuronal
and glial cell functions [43,44]. The ECS is also essential for intercellular communication, nutrient
and metabolite trafficking, and drug delivery [44]. Neurons and glia release a number of neuroactive
substances that diffuse via the ECS to their targets located on other neurons and glial cells, which are
frequently a far distance from the release sites, allowing for long distance extrasynaptic communication
between cells [43]. Diffusion is an important transport mechanism for many substances introduced
into the ECS of the brain [45]. The movement of neuroactive substances through the ECS of the CNS
is the basic mechanism for extrasynaptic, or volume, transmission. In acute physiological as well as
pathological states, diffusion in the ECS is affected by cell (especially glial) swelling, resulting from ionic
and water shifts between intra- and extracellular compartments. In more slowly developing or chronic
states, diffusion is affected primarily by structural changes of the tissue related to myelination and the
rebuilding of fine astrocytic processes during development, lactation, aging, injury and degenerative
diseases [46].The process of diffusion is sensitive to the ECS structure, and this sensitivity can be
quantified by measuring the parameter that characterizes the diffusion process [47]. Macroscopic
properties of this geometrically complex environment can be summarized by two parameters: the ECS
volume fraction α and its tortuosity λ. The volume fraction determines what percentage of the total
tissue volume is accessible to the diffusing molecules and is often referred to as porosity in the
literature. Tortuosity describes the average hindrance of a complex medium relative to an obstacle-free
medium [45].

PD is primarily characterized by the loss of dopaminergic neurons in the SNpc DA, also known
as striatal depletion [48]. According to PD specialists, depletion of striatal DA may cause
changes to the normal structure of the ECS. Awareness of molecular diffusion throughout the
brain’s ECS has increased because of its potential role as a mediator of volume transmission and
extrasynaptic communication.

The desire to measure diffusion properties of the brain ECS has led to the development of several
techniques, including the MRI tracer-based method. MRI tracing is capable of determining water
diffusion in the brain ECS [27]. Early studies using this tracer-based MRI method could quantitatively
measure the local diffusion parameters of the brain ECS. Thus, the present study used this method to
measure t1/2, k′ and λ. After rotenone treatment, rotenone-induced neuronal death, especially in the
DA system, caused an extension of the t1/2 and a decrease of k′ and λ. After SAFE treatment, the t1/2
was shortened, the k′ was increased, and λ recovered to baseline levels. Our study also showed that
compared to SAFE, Madopar® was unable to improve motor behavior, body weight loss, t1/2 and
k′. These results suggest that SAFE is superior to Madopar® in improving clinical symptoms and
protecting dopaminergic neurons in rotenone-induced PD rats.

Throughout the experiment, we observed that a lower dose of SAFE (35 mg/kg/day) resulted
in more neuroprotective effects than a higher dose of SAFE (70 mg/kg/day) with regard to changes
in body weight, rearing behavior and grip strength. The low dose of SAFE was also more effective
in increasing the expression of TH compared to the high dose of SAFE. There also appeared to be
a correlation between the Ach levels and the neuroprotective effects of SAFE at either dose. However,
additional studies focusing on the effects of SAFE on Ach are required.

4. Materials and Methods

4.1. Reagents and Animals

Rotenone was purchased from Sigma Aldrich (St. Louis. MO, USA). Safflower was purchased
from Beijing San-He Pharmaceutical Co., Ltd. (Beijing, China). Madopar® was purchased from Roche
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Pharmaceutical Ltd. (Pudong, Shanghai, China). Healthy male Sprague-Dawley (SD) rats weighing
280–320 g were purchased from Beijing HuaFuKang Bioscience Co. Ltd. (Beijing, China) with the
confirmation number SCXK (Jing) 2014-0004. The animal study was approved by the Institutional
Animal Care and Use Committee at Peking University (permit No. LA2016245), and all animal
procedures were performed according to the IACUC policy. All efforts were made to minimize animal
suffering and reduce the number of animals used. All rats were housed under standardized housing
conditions (12/12 h light/dark cycle; temperature, 22 ± 2 ◦C; relative humidity, 50% ± 5%) and were
provided food and water adlibitum.

4.2. Herbal Extract and Qualitative Analyses of the SAFE Components

Based on a previous report [26] and minor modifications, 8 kg of safflower were soaked in 50%
ethanol (8 L/kg) for 2–3 h, followed by heat extraction under reflux twice, 1 h for each cycle. The extracts
were combined, concentrated in vacuum, and diluted with de-ionized water to produce a thin extract at
a concentration of 1 g/mL. The macroporous resin separation method was used to elute the extract with
10%, 30%, 50% and 95% ethanol (Figure 8), and the content was determined using HPLC and LC/MS
analyses. LC/MS conditions: HPLC-DAD-MSn analysis was performed on a Shimadzu LC-20A
instrument (Kyoto, Japan) coupled with an ion-trap-time-of-flight mass spectrometer (Shimadzu Corp.,
Kyoto, Japan) via an electrospray ionization interface. Chromatographic separation was performed on
an Alltima-C18 column (5 µm, 250 mm× 4.6 mm, Grace Alltech Corp., Columbia, MD, USA) protected
with an Eclipse Plus C18 guard column (5 µm, 4.6 mm × 12.5 mm, Agilent Incorp., Santa Clara, CA,
USA). The column was maintained at 30 ◦C and the flow rate was 1.0000 mL/min. The mobile phase
consisted of water containing 0.3% formic acid (A) and acetonitrile:methanol = 9:1 (B) following the
gradient program: 0 min: 90% (A), 10% (B); 5 min: 86% (A), 14% (B); 25 min: 83% (A), 17% (B); 35 min:
82% (A), 18% (B); 65 min: 70% (A), 30% (B); 75 min: 70% (A), 30% (B). The post-column splitting
ratio to source was 1:4. The ESI source was operated in the negative ion and positive ion detection
mode. Other parameters were as follows: curved desolvation line and heat block temperature, 200 ◦C;
nebulizing nitrogen gas flow: 1.5 L/min; interface voltage: (+), 4.5 kV; (−), −3.5 kV; detector voltage:
1.70 kV; mass range: MS, m/z 130–1500; MS2 and MS3, m/z 50–1500; Data were analyzed using LCMS
solution Version 3.60 software (Shimadzu, Kyoto, Japan).
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4.3. Animal Treatment

Prior to the experimental procedure, the rats were acclimatized for one week. After one week, the
animals were randomly divided into two groups: the control (n = 10) and rotenone-treated groups
(n = 92). The rotenone solution was prepared (2 mg/mL of rotenone in 98% sunflower oil, 2% DMSO),
and rats in the rotenone-treated group were subcutaneously injected with 2 mg/kg/day of rotenone
solution once per day for 10 days. Rats in the control group were injected with the same volume
of vehicle.

4.4. Screening for Motor Impairments

Twenty four h after the final rotenone injection (day 10), rats were screened for motor impairments
using the rearing behavior test and grip strength test. Testing the rearing behavior was performed as
previously described [5]. When placed in a clear cylinder, rats will engage in exploratory behavior,
including rearing. During rearing behavior, the forelimbs will contact the wall of the cylinder. For this
test, the rat was placed in a clear plexiglass cylinder (height = 30 cm, diameter = 20 cm) for 5 min.
To assess grip strength, rats were lifted gently by the tail and allowed to grasp a rigid bar attached to
a force transducer and digital display unit. When the first signs of active grasp were observed, the rats
are pulled upward slowly by the tail with increasing firmness until their grasp was overcome. The peak
force was recorded as the maximum grip strength. The test was repeated 3–5 times/limb, and the
maximum grip strength per trial was included in the statistical analysis. After 10 days, the rats in the
rotenone-treated group were randomly divided into four groups according to their behavioral test and
body weight: the Madopar® group (50 mg/kg/day), the SAFE low-dosage group (35 mg/kg/day),
the SAFE high-dosage group (70 mg/kg/day) and model group. The secondary treatment groups were
administered their respective doses by oral gavage once per day. After 24 days, rats were anesthetized
with 10% chloral hydrate solution (0.35 mL/100 g, i.p.), sacrificed and perfused, after which the
rats’ brains were removed no longer than 30 s post-mortem and frozen on powdered dry ice before
transferring to a −80 ◦C freezer. The SN tissue was used for western blotting, and the striatum was
used for HPLC.

4.5. Western Blot Analysis

For western blot analysis, the SN tissues were homogenized on ice in RIPA buffer and centrifuged
at 10,000 rpm for 30 min to isolate the supernatant. The protein concentration was determined using
a BCA protein assay (Pierce, Jinshan, Shanghai, China). Samples were run on 12.5% SDS-PAGE gels
with a total volume of 30 µg of protein loaded per lane. The separated proteins were transferred to
a PVDF membrane using a semidry transfer system (Bio-Rad, Hercules, CA, USA). After blocking with
5% nonfat milk in TBST, the membranes were incubated overnight at 4 ◦C with the following primary
antibodies: TH anti-rabbit polyclonal antibody (1:1000), DAT anti-rabbit polyclonal antibody (1:500),
DJ-1 anti-mouse monoclonal antibody (1:1000) and GAPDH anti-rabbit polyclonal antibody (1:1000)
(Santa Cruz Biotechnology, Santa Cruz, CA, USA). After primary antibody incubation, membranes were
washed with TBST and incubated with either anti-rabbit (1:2000) or anti-mouse secondary antibody
(1:5000), after which the membranes were washed with TBST. Blots were scanned as grayscale images
and quantified using Quantity One software (version 4.6.2, Hercules, CA, USA). The protein levels were
normalized against the levels of GAPDH, and the optical density of each band was quantified [8,49].

4.6. HPLC Analysis of DA and Its Metabolites

The levels of DA and its metabolites DOPAC and HVA were analyzed using an electrochemical
(EC) detector (BAS LC-4B, BASi Corp., West Lafayette, IN, USA) as previously described [50,51].
The mobile phase was sodium citrate buffer (85 mM citric acid, 100 mM anhydrous sodium acetate
and 0.2 mM Na2EDTA; pH 3.68). The flow rate was 1.2 mL/min at 25 ◦C in the reversed phase column.
After centrifugation (4 ◦C, 15,000× g, 20 min), 20 µL of striatum tissue homogenate supernatant was



Molecules 2016, 21, 1107 14 of 18

injected directly into the HPLC system. Data were calibrated with an external standard. The levels of
DA and its metabolites were calculated and expressed as ng/mg tissue weight.

4.7. Mass Spectrometry Imaging (MSI) Analysis

To collect respective tissue samples as well as obtain tissue slices for MSI analysis, male SD
rats (typically 280–320 g) were deeply anesthetized and decapitated after scarification approximately
60 min after the last administration of SAFE (35 g/kg/day). The brain was removed a maximum of 30 s
post-mortem and frozen on powdered dry ice before transferring to a −80 ◦C freezer [52,53]. Frozen
hippocampus tissue was cut to 6-µm slices on a cryostat microtome and was used for MSI analysis with
an AFAI-MSI imaging platform system [54–57]. Air flow-assisted desorption electrospray ionization
mass spectrometry imaging (AFADESI-MSI) was used to measure the levels of the neurotransmitter
Ach. To minimize oxidation, tissue sections were analyzed within the shortest possible time after
sectioning, even if stored at −80 ◦C.

4.8. The Measurement of ECS Diffusion Parameters with the MRI Tracer-Based Method

Previous studies using the tracer-based MRI method have quantitatively measured the local
diffusion parameters of the brain ECS [27], as previously described by Li et al. [58]. After the final
drug administration, we microinjected 2 µL Gd-DTPA solution (10 mM) into the rat striatum over
a period of five minutes, and waited five more minutes to avoid dorsal reflux along the needle
track. The anesthetized rat was placed in the prone position and scanned with a T1-weighted
three-dimensional magnetization prepared-rapid acquisition gradient echo (T1 3D MP-RAGE)
sequence in a 3.0 Tesla MRI systems machine (Magnetom Trio, Siemens Medical Solutions, Erlangen,
Germany). Based on the Gd-DTPA injection time, repeated scans were performed for each subject at
different time intervals (15 min and 30 min and 1,2,3 and 4 h post-injection).

Calculation of the diffusion parameters was performed as previously described [25,27,58].
The imaging sequence and parameters were identical to those used in the MRI scan protocol.
A MATLAB-based software program (NanoDetect, version 1.3, MathWorks, Beijing, China) was
developed to co-register the MR images of the same rat before and after the injection [25,27,58].
Then, the program identified areas that were enhanced by Gd-DTPA injection according to the
modified diffusion equation based on the linear relationship between the MRI signal increment
and the average Gd-DTPA concentration in brain tissue; the T1 3D MP-RAGE sequence was used for
the in vivo measurement of the Gd-DTPA concentration in real-time neuroimaging at 3.0 T [28,58,59].
The diffusion parameters t1/2, k′ and λ were calculated using the MATLAB-based software at each
time point post-injection.

4.9. Statistics

The parameters are presented as the mean ± SD. The significance of the differences between
groups was evaluated using one-way analysis of variance (ANOVA) with the Student-Newman-Keuls
post hoc test. Differences were considered to be statistically significant when p < 0.05.

5. Conclusions

In conclusion, a rodent model of PD was generated successfully through the subcutaneous
injection of rotenone, which led to neurodegeneration as previously reported. This model was
employed to understand the pathogenesis of PD and develop novel neuroprotective therapies.
In this study, K3R and AYB comprised the quality standard of the safflower extract and
demonstrated the neuroprotective properties of flavonoids. Oral administration of two doses of
SAFE (35 mg/kg/day and 70 mg/kg/day) was observed to provide a significant neuroprotective
effect in the rotenone-induced rodent model of PD. SAFE also demonstrated the potential to inhibit
apoptosis triggered by neurotoxic species and promote neuronal survival, as shown by the increase in
body weight, recovery from motor function impairment and behavioral changes following treatment.
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Furthermore, SAFE affected the DA system, shortened the t1/2 and increased the λ and k′ SAFE also
reduced hippocampal Ach levels, although the mechanism involved requires further study.
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