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Evidences of perceptual changes that accompany motor
activity have been limited primarily to audition and
somatosensation. Here we asked whether motor
learning results in changes to visual motion perception.
We designed a reaching task in which participants were
trained to make movements along several directions,
while the visual feedback was provided by an
intrinsically ambiguous moving stimulus directly tied to
hand motion. We find that training improves coherent
motion perception and that changes in movement are
correlated with perceptual changes. No perceptual
changes are observed in passive training even when
observers were provided with an explicit strategy to
facilitate single motion perception. A Bayesian model
suggests that movement training promotes the
fine-tuning of the internal representation of stimulus
geometry. These results emphasize the role of
sensorimotor interaction in determining the persistent
properties in space and time that define a percept.

Introduction

Active interaction with the environment is a defining
feature of our daily activities and critically relies on
the interplay between motor and perceptual processes.
This continuous exchange, besides promoting a
proper calibration of sensory and motor systems
and stabilizing the functional architecture of the
respective circuits (Held & Hein, 1963), allows mutual
adaptation after sensory perturbations or motor
training. The influence of movement on perception
has been documented in situations in which movement
changes – induced by adaptation or learning – elicit

perceptual changes. For instance, adaptation to force
fields (Ostry et al., 2010; Vahdat et al., 2011; Mattar
et al., 2012), visuomotor rotations (Cressman &
Henriques, 2009; Volcic et al., 2013), optic prisms
(Harris, 1963; Beckett, 1980), and locomotion (Jensen
et al., 1998; Leech et al., 2018) induce a shift in position
sense. Similarly, adaptation to altered auditory feedback
in speech results in changes in speech perception (Nasir
& Ostry, 2009; Lametti et al., 2012).

There has been substantially less work on the effects
of motor learning on visual function (Brown et al.,
2007). It has been suggested that movement and
perception share the same common representations
(Prinz, 1997). Most studies report transient changes
to visual perception which accompany movement
(see Schütz-Bosbach and Prinz, 2007, for a review).
Movement execution (Zwickel et al., 2007; Beets et al.,
2010a), movement planning (Wohlschläger, 2001), and
cognitive expectations (Veto et al., 2018) each shape
the visual perception of a moving stimulus. Movement
can bias perceptual sensitivity toward visual events that
either share features with what we are currently doing
(Wohlschläger, 2000) or that deviate from the expected
sensory consequences of our movements (Zwickel et
al., 2007). This finding suggests that action may guide
inferential processes from visual cues to categories
and suggests that cognitive or context expectations
can concurrently influence our perceptual judgments
(Beets et al. 2010a; De Lange et al., 2018; Dogge et
al., 2019). Yet, these studies suggest no evidence of
effects that reflect visual perceptual learning, as an
enhancement of perceptual discrimination/detection
capabilities after motor practice with a visual stimulus.
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Vision is indeed a highly reliable source of information
and it is difficult to induce changes in visual perception,
at least when simple forms of visual feedback like
displayed positions or trajectories are involved.
However, vision, like other exteroceptive senses, does
not provide a unique interpretation of reality, for
example, when we look at objects with shadows or
in different lighting. During development, through
active interaction with the environment we learn to
combine different cues and contextual information to
find a unique solution that usually corresponds with
veridical interpretation. A grating that moves through
an aperture is an example of an inherently ambiguous
visual pattern, because its movement direction cannot
be uniquely determined from visual information alone
(Wallach, 1935; Fennema & Thompson, 1979; Adelson
& Movshon, 1982). Moreover, it has the desired feature
of selectively activating specific early spatiotemporal
frequency channels in the cortex. When we observe two
superimposed gratings moving in different directions – a
“plaid” stimulus – we tend to integrate their drifting
speeds into one coherent motion. Alternatively, the
plaid can be perceived as two separate gratings, which
slide over each other in different directions – a situation
referred to as transparent motion (Stoner et al., 1990).
By varying the features of the individual gratings, the
perceptual ambiguity can be manipulated (Stoner &
Albright, 1992; Kim & Wilson, 1993; Hupé & Rubin,
2004). As a general rule, when the two component
gratings are more balanced, that is, they are more
similar in terms of spatial frequency, contrast, and
luminance, the plaid is more likely perceived as a
coherent pattern moving in one direction.

To understand how movement affects the way we
make sense of this complex visual information, we ask
specifically if experiencing the visual consequences
of self-generated movements can promote perceptual
changes that affect subsequent judgment tasks. In
this respect, the point is not learning a motor skill or
adapting to external perturbations, but just exercising
sensorimotor contingencies, by experiencing the
sensory consequences of self-generated movements.
Accordingly, we designed a motor task in which
the direction and speed of the hand is continuously
displayed as a plaid moving through an aperture. We
then looked at whether motor training affects the ability
to perceive subsequent plaid motions. A Bayesian
generative model of the perceptual process helped to
identify the underlying mechanisms.

Methods

Subjects

A total of 30 subjects (11 male and 19 female,
18–30 years old) participated in this study. All

participants had normal or corrected-to-normal vision
and reported no history of a neurological disorder.
They were naïve to the purpose of the study and
received written and verbal instructions before the start
of the experiment. Each participant was randomly
assigned to one of three groups.

A total of 10 subjects was chosen for each group. The
calculation was performed using the t test for normally
distributed data with unknown standard deviation. The
research was approved by the Ethical Committee of the
Department of Informatics, Bioengineering, Robotics
and Systems Engineering, University of Genoa. Each
subject signed a consent form conforming to these
guidelines.

Apparatus

Visual stimuli were presented on a 19-inch LCD
monitor (Samsung B2430L) at 1920×1080 pixels, and
refreshed at 60 Hz. In a dimly lit room, participants were
seated in front of the screen at about 57 cm of distance,
so that the visual angle of the whole display was 60°;
see Figure 1a. In one part of the experiment (see
below), participants grasped the puck of a digitizing
tablet (CalComp, Inc, 3200-series DrawingSlate II,
Model 32120) to actively drive the motion of the visual
stimulus using planar movements. The digitizer had a
305 mm×457 mm workspace, and a 125 Hz sampling
rate. The center point of the screen was mapped onto
the center of the digitizing tablet, with a 1:1 scale factor,
see Figure 1c.

Stimuli

We presented a plaid stimulus composed of two
square-wave gratings through a circular aperture, about
13° in diameter, on a black background, as shown in
Figure 1a. The luminance of the black background
outside the aperture was 0 cd/m2. The two gratings
had normal directions θ1 and θ2. The plaid moved at
speed v = 5°/s in the direction θ = 45° (from the lower
left corner of the screen to the upper right corner).
�θ1 = θ1 − θ = −60° and �θ2 = θ2 − θ = −75.5°
define the relative directions of the individual gratings
with respect to the direction of the plaid. With this
geometric arrangement, the ratio between the two
gratings speeds is cos�θ1/cos�θ2. In particular, stimuli
were designed as plaids, whose direction fell outside
the range of the directions of the two component
gratings (type II plaid; see Ferrera & Wilson, 1990).
We chose gratings directions that were relatively close
to one another, and far away from the direction of
the whole plaid pattern. Because of this geometric
arrangement the plaid motion direction was distinct
from that of the gratings (Cropper et al., 1996), and
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Figure 1. Experimental setup and protocol. (a) Experimental setup: The participant is seated in front of a screen and is exposed to
moving visual stimuli (plaid). During active training, they perform planar movements that result in motion of the plaid on the screen.
Visual feedback of the arm is blocked. (b) A plaid stimulus with velocity v, composed of two gratings moving at velocities v1, v2.
(c) The experimental protocol has three phases: participants start with a perceptual judgment task, then they perform a training task,
and finally they repeat the perceptual task. Participants were divided into three groups, each with a different training condition:
active, visual-only, and cognitive. (d) The perceptual task is a 2AFC paradigm. Participants see two consecutive moving plaid stimuli,
and are asked to choose which stimulus is moving in a direction more similar to that of the red arrow. (e) During training, participants
are exposed to moving plaids. In the active group, they perform planar hand movements to control the plaid motion on the screen,
while participants of both the visual-only and cognitive groups observe played-back motions. In the cognitive condition, participants
are instructed to focus their attention on the intersections of the gratings.

the directions of gratings were sufficiently close to
one another to be interchangeable with their average.
Each grating was composed of dark (55–65 cd/m2)
and light (115–125 cd/m2) stripes, and a spatial
frequency of 0.6 cycle/°. Stimulus was presented
in transparency (Stone et al., 1990; Stoner et al.,
1990; Stoner & Albright, 1992), and the perceptual
uncertainty was modulated by varying the contrast
level of each grating. The overall plaid image was
defined as:

L(x, t) = L0[1 +C1g1(x, t) +C2g2(x, t)],

where L0 is the mean intensity, g1 and g2 are the
functions that defined the two component gratings,
and C1 and C2 are the gratings’ contrast levels,
respectively (Stoner et al., 1990). The total contrast
C = C1 +C2 was kept constant, and the relative
contrast difference between the gratings of each
plaid was defined as �c = |C1 −C2|/C. In all
experiments, we set L0 � 90 cd/m2 and C = 0.5.
Participants were instructed to maintain fixation at
the center of the stimulus during the entire duration
of stimulus presentation. Stimuli were generated using

Psychophysics Toolbox for Matlab (Brainard, 1997;
Kleiner et al., 2007).

Experimental protocol

The experimental procedure had three phases; see
Figure 1c (top). Participants were initially administered
a perceptual judgment task (pre-training test). Next,
they underwent a training phase under a variety of
conditions (see below). After training, they repeated the
perceptual judgment task (post-training test).

Perceptual judgment task
The purpose of this test was to quantify the ability

to correctly assess the direction of plaid motion as
the relative contrast difference of the two gratings
(�c) was varied. The test used a two-alternative
forced-choice (2AFC) paradigm (Figure 1d). Each
trial started with a fixation point (black screen with
a white cross at the center) displayed for 2 s. Then,
a red arrow with a θa = 45° direction, was displayed
for 1 s. Finally, two different plaids were presented for
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1 s each, separated by a 1 s fixation point. The two
plaids were identical and both moved in the direction
θ = 45°, but had a different �c. At the end of the
trial, participants were asked to choose which of the
two plaids had a movement direction that was most
similar to that denoted by the red arrow. They had to
provide an answer by pressing the left or right arrow
on the keyboard within a 3 s time limit to indicate
the first or the second plaid, respectively. Throughout
the entire test, one plaid (reference stimulus, R) had
a constant contrast difference, �cR = 0.8, which
corresponds to a large imbalance in the contrast of
the component gratings, which in turn favours the
perception of the individual gratings motions. In the
other plaid (test stimulus, T), the contrast difference
�cT changed on each trial, within a 0 to 0.8 range.
The test and reference plaids were presented in random
order.

We used a Bayesian adaptive procedure – � (Psi)
method (Kontsevich & Tyler, 1999; Prins, 2013) – to
select the value of �cT on the current trial, based on
the participant’s answers in the previous trials. We took
the selection of the test stimulus as the correct answer.
Every time the subject answered correctly, the �cT
value was increased, so that it gradually became more
and more similar to �cR.

The entire perceptual judgment test took a total
of 100 trials to complete, which corresponded with a
duration of about 30 minutes.

Active motor training
Participants were instructed to perform out and

back planar arm movements between two briefly
presented visual cues, in a target direction θT (Figure 1c,
bottom, left). The motion of a plaid on the screen was
continuously yoked to the instantaneous direction of
hand movement, θ (t), so that the two gratings moved
in directions θ1(t) = θ (t) + �θ1 and θ2(t) = θ (t) + �θ2
while their relative orientations with respect to plaid
motion, that is, �θ1 and �θ2 remained constant.

The training phase was organized into a series of
trials, each characterized by a different target hand
direction.

At the beginning of each trial, participants had to
place the hand (depicted as a blue cursor on the screen)
inside a start region (circle on a black background)
and hold it there for 2 s. Then both the start region
and the cursor disappeared, and a circular aperture
was displayed. Two white circles placed just outside
the aperture were displayed for 1 s, at opposite sides
with respect to the center of the aperture, 28° of
visual angle from one another with respect to the
participant. The circles indicated the target hand
direction for that trial. As the circles disappeared, a
plaid appeared inside the aperture. Participants were
instructed to move the hand back and forth in the

target direction, between the two remembered circle
positions. Participants were encouraged to maintain a
speed no greater than 5°/s – the speed of the plaid used
in the perceptual judgment task. To aid in maintaining
the correct speed, participants continuously received
visual feedback on movement speed (circular spot
in the bottom left corner of the screen; green if the
speed was ≤5°/s, red otherwise). Each trial had a fixed
duration of 30 s.

During training, participants were prevented from
seeing their arm, so that the only visual information
about their movement direction was provided by the
plaid motion. During the movement training phase,
the relative contrast difference, �c, in the plaid was
set to that subject’s threshold level, as estimated at
the end of the pre-training perceptual judgment task.
The entire training protocol involved four target
directions (0°, 45°, 90°, 135°) each repeated 10 times in
pseudo-random order, for a total of 40 trials and an
approximate duration of 40 minutes.

Visual-only training
Participants were instructed to observe on the screen

a plaid moving through an aperture, while performing
no movements. The plaid stimulus was the playback of
a stimulus generated by another participant in the active
training group (Figure 1c, bottom, middle). Again, the
total duration of this phase was about 40 minutes.

Cognitive training
As in the visual-only training condition, participants

had to observe on the screen a plaid while performing
no movements. In addition, they were provided a hint
to estimate the plaid movement direction – attend to
the movements of the grating intersection points which
have the same direction and speed of the plaid; see
Figure 1c (bottom, right). Again, the total duration was
about 40 minutes.

Data analysis

For each subject, we quantified performance in the
perceptual judgment tasks before and after training
by estimating a psychometric curve using a Bayesian
adaptive � (psi) method (Kontsevich & Tyler, 1999;
Prins, 2013) and assuming a normal cumulative
distribution function. We used the threshold and slope
of the estimated psychometric curve as measures of
perceptual performance. The threshold value is defined
as the �cT value corresponding with a 75% probability
of selecting the test stimulus, whereas the slope is
defined as the inclination value of the psychometric
curve at the threshold point. It is important to note
that the number of trials (i.e., 100) chosen for the
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perceptual judgment task allows full convergence
for the perceptual threshold values, but not for the
slope estimates (Kontsevich & Tyler, 1999). We then
assessed whether perceptual performance was affected
by training in the active, visual or cognitive training
conditions. To do this, we took perceptual threshold
and slope before training (Thpre, Slopepre) as the
baseline perceptual performance. We then looked at the
threshold and slope after training (Thpost, Slopepost).
For each quantity and for all experimental conditions,
we first assessed normality (Anderson-Darling test). If
normality was not ruled out for perceptual thresholds
and/or slopes, we ran a repeated measures two-way
ANOVA with time (PRE, POST) and experimental
condition (active, visual, cognitive) as within- and
between-subject factors.

In case the normality assumption had to be rejected,
we used a non-parametric test (Kruskal-Wallis) to
assess differences among conditions in the perceptual
baseline (Thpre and Slopepre). We then focused on the
training-related change (�Th = Thpost − Thpre; same
for slope). We tested for differences among experimental
conditions, using one-way ANOVA if normality was
not ruled out; a nonparametric test (Wilcoxon rank
sum test) otherwise. Post hoc analyses were conducted
using pairwise t test, with a Bonferroni-Holm
correction.

Finally, we examined movements of the hand in
the active motor training condition. For each trial,
we calculated the statistical distribution of hand
velocities (direction and magnitude), by separately
accounting for forward and backward movements. We
subtracted the target direction from the distribution
of movement directions and then took the mean
(bias) and standard deviation of the directional
error for each block and each subject. We assessed
how these quantities changed over the course of
training (correlation with block number) and whether
these changes correlated with changes in perceptual
performance.

Computational model

Plaid geometry
Plaid geometry is completely specified by the overall

plaid velocity, v and by the directions of the two
gratings, θ1 and θ2. The velocity of a single grating,
vi, i = 1, 2 is calculated as the projection of the
plaid velocity onto the grating’s normal direction:
vi = ui · (uTi · v) where ui = [cos θi sin θi]T , i = 1, 2; see
Figure 1b. This expression can be rewritten as

vi = (ui · uTi ) · v = Ui · v. (1)

Sensory system
We assumed that the perceived velocity of each

grating, mi, i = 1, 2, is affected by additive zero-mean
Gaussian noise, so that:

{
m1 = v1 + η1 = U1 · v + η1
m2 = v2 + η2 = U2 · v + η2,

(2)

where ηi ∼ Normal(0,Qi), i = 1, 2 and the noise
covariance matrix, Qi, is defined as

Qi = R(θi)T ·
[
σ 2
i⊥ 0

0 σ 2
i‖

]
· R(θi), (3)

where σ 2
i⊥ and σ 2

i‖ are the noise variances in directions
that are perpendicular and parallel to grating i,
and R(θi) is a rotation matrix. As in Hedges et
al. (2011), we set σ 2

i‖ = h σ 2
i⊥ with h = 0.3, so that

the covariance matrix is aligned with the grating’s
normal direction. As a consequence, we have that
p(mi|v) = Normal(mi;Ui · v,Qi).

Perception of a single grating is known to be affected
by contrast. We assume that the noise variance is
proportional to the inverse power of the relative
contrast ci = Ci/C, i.e. σ 2

i = s2/cqi , where q > 0 is the
power exponent and s2 is the variance corresponding
to a relative contrast ci = 1. This model is consistent
with the findings of Hürlimann et al. (2002), who
derived a similar expression. This expression also
predicts that zero contrast (i.e., no grating) corresponds
with an infinite noise variance. As a consequence, the
covariance matrix of each grating is a function of the
contrast: Qi = Qi(ci).

Bayesian generative model of plaid perception
We used a Bayesian framework to model the way

humans perceive plaid motion (Hürlimann et al.,
2002; Stocker & Simoncelli, 2006; Hedges et al., 2011).
The optimal estimate of plaid velocity, v, from the
observed gratings velocities,m1 andm2, is the one which
maximizes the posterior probability of v, given m1 and
m2:

v̂ = argmax
v

p(v|m) (4)

From Bayes’ theorem, the posterior probability
is given by: p(v|m1,m2) ∝ L(v) · p(v), where
L(v) = p(m1|v) · p(m2|v) is the likelihood of v given the
observations (m1 and m2), whereas p(v) is the velocity
prior, which reflects prior experience of the subject
with observation of moving stimuli. Several studies
have reported a perceptual bias toward low-velocity
stimuli, which was modeled as a zero-mean, exponential
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(Stocker & Simoncelli, 2006), or power-law (Hedges et
al., 2011) probability density function. Here, we assume
a Gaussian dependence: p(v) = Normal(v; 0, Iσ 2

p ).
This perceptual model implies that the contrasts of

the gratings affect plaid velocity estimation through
the gratings covariances, Qi(ci). In fact, when the two
gratings have the same contrast they equally activate
the corresponding Fourier (bandpass) motion channels
and they equally contribute to the perception of the
moving plaid. However, there is some evidence that
perceiving the velocity of a single grating is affected
by vision of another moving grating with a different
contrast (Stone et al., 1990; Champion et al., 2007).
Hence in the case of contrast unbalance, that is, �c �= 0,
one grating systematically affects the perception of
the other. To incorporate this effect, we tentatively
assumed that the perceptual system uses an inaccurate
representation of plaid geometry, Ûi, thus generating
inaccurate predictions of the grating velocities. We
specifically set Ûi = Ui + �Ui, where �U1 = kU2 �c
and similarly �U2 = kU1 �c, in which k denotes the
amount of cross-talk. A consequence of this inaccurate
representation of plaid geometry is that each grating is
perceived as slightly rotated toward the other, in a way
that is proportional to the relative contrast difference.
In conclusion, our Bayesian perceptual model assumes
that contrast unbalance has both a systematic and a
random effect (onUi and Qi, i = 1, 2, respectively).

The optimal estimate of plaid velocity, v̂ is a
random variable (different mi’s give a different estimate)
with a normal distribution, in which both mean and
covariance depend on the relative contrast difference,
�c: p(v̂|v, �c) = Normal(v̂; μv(�c), �v(�c)).
Notice that, because of the prior, the estimate is
biased – namely, the estimator’s expected value is not
the true plaid velocity v. Different from earlier Bayesian
formulations (Weiss et al., 2002; Hedges et al., 2011),
the proposed model predicts two key empirical findings
about the error in perceived plaid direction: (i) the
error decreases with the logarithm of the contrast ratio
(Stone et al., 1990) and (ii) the error is directed toward
the higher contrast grating at high plaid speeds, but
when the speed decreases, the perceived plaid direction
is biased toward the low contrast grating (Champion et
al., 2007); see the Supplementary Material for details.

Perceptual judgment task
The probability of estimating a plaid direction θ̂

given a specific �c is given by

p(θ̂ |�c) =
∫ ∞

0
p(v̂|�c) · |v̂| · d |v̂| (5)

The perceptual judgment task can be modelled as
a binary decision between two possible answers, test

(T) or reference (R). The probability of answering
T as a function of the contrast difference �cT in
the test stimulus and �cR in the reference stimulus,
that is, Pr(T |θ̂ , �cT , �cR), where θ̂ = θa (45° in our
experiment), can be calculated from Bayes’ theorem:

Pr(T |θ̂ , �cT , �cR) = p(θ̂ |�cT )
p(θ̂ |�cT ) + p(θ̂ |�cR)

(6)

Note that the model predicts that for �cT = �cR, the
posterior probability is Pr(T |θ̂ , �cT , �cR) = 0.5. By
decreasing �cT , the Pr(T |θ̂ , �cT , �cR) is expected
to be greater. Hence, for a given value of �cR and θ̂ ,
the function fT (�cT ) = Pr(T |θ̂ , �cT , �cR) can be
interpreted as a psychometric curve, whose magnitude
ranges between 0.5 and 1.

Figure 2 summarizes the proposed Bayesian model
of plaid perception. Relative contrast modulates the
distribution of the estimated plaid velocity. Two relative
contrast conditions, one fixed (R) and one variable (T ),
are used to build a psychometric curve which denotes
the probability of selecting plaid T when asked which
of plaid T or R has a movement direction which is
closest to the displayed cue.

Estimation of model parameters
The psychometric curve of Equation 6 is a

function of the model parameters w = [s2, q, σ 2
p , k]T ,

that is, Pr(T |�cT , θ̂ = θa) = fT (�cT ; w). We
identified the model parameters w from the
perceptual judgment data before and after each
of the training conditions. The available dataset,
D = {(�cR(l ), �cT (l ), y(l )), l = 1, . . . ,L}, was obtained
from repeated forced-choice tests with different values
of �cR(l ) and �cT (l ), where y(l ) is the T/R answer
to the l-th test trial (we assume that if T is chosen
then y(l ) = 1; y(l ) = 0 otherwise). The answer y can
be modeled as a random variable with a binomial
distribution: Pr(y) = py · (1 − p)1−y, where p = Pr(y =
1|�cT , θ̂ = θa) = Pr(T |�cT , θ̂ = θa) = fT (�cT ; w).

The optimal estimate of the model parameters
given the data were obtained by maximizing the
model log-likelihood, assuming that the L trials of the
perceptual task are independent. The likelihood is given
by:

L(w) =
L∏
l=1

{
fT (�cT (l ); w)y(l ) · [

1 − fT (�cT (l ); w)
]1−y(l )

}
(7)

For each subject and for each condition (before and
after training), we estimated the model parameters w
through numeric maximization of logL(w).
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Figure 2. Bayesian model for the plaid estimation process and forced-choice paradigm. A test (T) and reference (R) plaid are shown,
with �cT = 0 (top) and �cR = 0.08 (bottom). For each plaid, the optimal estimate of plaid velocity, v̂, is represented. p(v̂|v,�c) has
a normal distribution, in which both mean and covariance depend on the relative contrast difference, �c. The probability of
estimating a plaid direction θ̂ given a specific �c is given by p(θ̂ |�c). The psychometric curve represents the probability of answering
T as a function of the contrast difference �cT and �cR, i.e. Pr(T |θ̂ , �cT ,�cR), where θ̂ = θa (45° in our experiment).

Results

The experimental apparatus and procedure used in
this study are illustrated in Figure 1.

Figure 1b illustrated the plaid stimulus, which is
formed by two gratings with different orientations.
When a single moving grating is observed through an
aperture, only the component velocity perpendicular
to its orientation can be perceived. By adjusting the
relative difference in the contrast of the two gratings,
they seem either to be sliding one over the other in
directions v1 and v2, or as a single plaid pattern moving
in direction v. In this way, the extent to which one
perceives the coherent motion of a single plaid or two
separate gratings can be manipulated.

In the experiment, participants undergo an initial
perceptual judgment task to assess perception of plaid
motion for different contrast values (see Figure 1d).
The perceptual task involves a two-alternative
forced-choice (2AFC). Participants are presented with
two consecutive moving plaids that differ in the amount
of the contrast difference. They are required to indicate
which plaid is moving in a direction most similar to
that shown by a red arrow. One of the two plaids, a
reference stimulus, has a fixed contrast difference �cR
between the two gratings. In the other, a test stimulus,
the contrast difference �cT is systematically varied, and
it is always less, which makes it easier to detect the plaid
motion direction. This is followed by a training phase

(Figure 1e), after which the perceptual task is repeated.
In all conditions the plaid motion is seen through an
aperture. Three different groups of participants were
tested. In an active training condition participants use
self-operated plaids: they control the plaid motion by
moving their hand, such that the direction and velocity
of the moving plaid corresponds with that of the
hand; vision of the hand is blocked. Participants were
instructed to make continuous movements back and
forth between two circles that were presented briefly at
the start of a continuous movement trial. The contrast
difference �c between the single gratings that form the
plaid is based on the individual threshold estimated
from the pre-training perceptual task. In a visual-only
condition, the participant sees a played-back moving
plaid stimulus of another participant. In a cognitive
condition the stimulus is identical to that in the
visual-only condition, and in addition the experimenter
instructs the participant to attend to the intersections
of the two gratings. The motion of the intersections
corresponds with that of the plaid. This focuses the
participant’s attention on the relevant information
(Adelson & Movshon, 1982; Lu & Sperling, 1995) and
provides them with an explicit strategy that enables
them to correctly estimate the plaid motion.

Perceptual learning

The results of perceptual task (the probability of
selecting the test stimulus as a function of the contrast
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Figure 3. Results of the perceptual judgment task. (a) Representative psychometric curves. Each curve shows the probability that the
participant chooses the test stimulus over a range of relative contrast differences �cT . The grey curve represents the perceptual
baseline of a representative subject (before training), whereas the colored curve indicates the perceptual change (after training).
Solid lines represent the average values, the filled circles indicate the 75% threshold value (Thpre, Thpost), and the dashed black lines
show the slope of the curves at the threshold point (Slopepre, Slopepost). The horizontal black segment displays the threshold
difference, �Th = Thpost − Thpre. (b) Bar plots represent the average values of threshold differences �Th and slope differences
�Slope in all experimental conditions: active (ACT) in red; visual only (VIS) in blue; cognitive (COG) in green; active less-matched
(ALM) in orange. Dots represent the individual values for each subject. Error bars denote standard errors. The average value of �Th in
the active group is significantly greater than in the visual-only (p = 0.003) and the cognitive (p = 0.019) groups. (c) Qualitative
analysis of intersubject variability is shown in terms of threshold and slope changes for the individual subjects in each condition. In all
three conditions, the grey dots represent the pre-training values. (d) Qualitative analysis of inter subjects variability is shown in terms
of the minimum polygons enclosing all data points in each group.

difference �cT ) and, in particular, training related
changes in perception are presented in Figure 3a.

Both threshold differences (�Th = Thpost − Thpre)
and differences (�Slope = Slopepost − Slopepre) in the
slope of the psychometric function are shown. A better
perceptual performance is reflected in an ability to select
the test stimulus under conditions of greater contrast
difference, that is for larger values of �cT . Both
threshold and slope values were estimated using the
adaptive � procedure (see Methods). It is worth noting
that the number of trials (100) chosen for the perceptual
judgment task allows full convergence for perceptual
threshold values, but not for the slope estimates (see
Methods) (Kontsevich & Tyler, 1999). The values of
the perceptual slope are shown for completeness and to
allow for qualitative analysis of the results. Figure 3b
shows psychometric threshold differences and slope
differences for all participants in each experimental
condition. It can be seen that there are changes in

the psychometric threshold for the active group, only,
and no changes in slope in any of the experimental
conditions. Statistical analyses were conducted using
difference scores which were found to be normally
distributed (p > 0.05; Anderson-Darling test), whereas
the pre-training and post-training perceptual values
were not normally distributed (p < 0.05). We ran
nonparametric tests (Kruskal-Wallis) to verify that
baseline values for threshold and slope did not differ.
We tested for differences in both the threshold (�Th)
and the slope (�Slope) of the psychometric curves.
We observed a significant difference in threshold
between experimental conditions, p = 0.0002; F(2,27)
= 7.45; one-way analysis of variance (ANOVA),
and no reliable difference in slope. Post hoc analyses
(Bonferroni-Holm) revealed a significant difference in
the threshold of the active and visual-only conditions
(p = 0.003) and between the active and cognitive
conditions (p = 0.019).
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Figure 4. Results of active motor training. (a) For a typical subject, the trajectories (blue dots) of hand movements across all trials of
the first block for all movement directions are represented. Solid black lines represent the tested directions. Scale bar: 2 cm. (b) For
the same typical subject, the frequency distribution (grey polar histogram) of hand movement across all trials of the first block for all
movement directions are represented. Dashed black lines represent the tested directions. Red solid lines represent the median value
of the motor bias for each direction. The black arrow shows the sign of the directional bias. Bin size: 1°. (c) Qualitative analysis of inter
subject variability is shown in terms of perceptual threshold and motor bias changes for the individual subjects in the active group.
Perceptual thresholds relate to the judgment task (not the training task). (d) Relationship between perceptual change from before to
after movement training (�Perceptual threshold), and the change in movement direction (�Motor bias) that occurred in conjunction
with training (p = 0.0006).

Figures 3c,d summarize intersubject variability.
After training, all subjects in the active group exhibit a
threshold value which is close to the maximum value
of 0.8, in other words they correctly select the test
stimulus throughout the entire range of �cT . If we
look at the subjects with low thresholds, the majority
of threshold increases are seen in the active condition.
In contrast, subjects in the visual and cognitive groups
exhibit no consistent trend in either threshold or slope.
Figure 3d displays intersubject variability in terms of
the minimum polygons enclosing all data points in each
group. Before training, the subjects within each group
exhibit a similar amount of variability. After training,
the subjects in the active group display a polarization
towards greater threshold values. The distribution of
the differences between ’pre’ and ’post’ values in both
thresholds and slopes shows for the three training
conditions a different clustering in three distinct regions
of the �Threshold −�Slope plane.

As a control, to test the idea that the observed
perceptual changes are tied to movement, the following
experimental condition was conducted, in which we
introduce random variation between the direction of
the hand movement and the direction of the displayed
plaid. If perceptual learning depends on movement,
this new condition will result in decreased perceptual
change. Ten additional subjects participated in this
control experiment. They received the same instructions
as in the active training condition. However, for each
new target direction (θT ) – denoted by the two initial
cues at the edge of the aperture – we set the plaid
velocity (v) so that the speed was identical to the speed
of the hand (|vH |), i.e. |v| = |vH |, but the direction of
the plaid (θ ) was set to be random, where θ = θT + θrnd ,

where θrnd is a random angle, uniformly distributed in
the range [–45°, 45°]. Accordingly, in this condition the
plaid velocity is defined as:

v = |vH | · sgn(dT · vH ) · [cos θ, sin θ ]

where dT = [cos θT , sin θT ] is the direction of the target.
In this way, the direction of the plaid movement is
completely unrelated to the direction of the hand.

The results of this control experiment – active
less-matched condition – are summarized in Figure 3b
(data points and bars are displayed in orange) to
facilitate comparison with the results of the main
experiment. These results indicate no systematic change
in either the threshold or the slope. Similar to the
main experiment, for both threshold and slope the
normal distribution hypothesis was rejected for pre-
and post-training values (p < 0.05; Anderson-Darling
test), but not for their change (p > 0.05). The change
from before to after training, in both threshold (�Th)
and slope (�Slope), was found to be not-significant
(p > 0.5; one-sample t test). This result can be
compared with the changes observed in the other
conditions: active (p = 0.0016), visual (p > 0.05), and
cognitive (p > 0.5). In conclusion, only the active
condition resulted a significant change in perceptual
performance.

Motor training

During movements, the subjects in the active group
initially exhibit a positive (counterclockwise) directional
bias (Figures 4a,b). This motor bias tends to decrease
with training. Figure 4c summarizes the intersubject



Journal of Vision (2021) 21(10):13, 1–15 Sedda, Ostry, Sanguineti, & Sabatini 10

Figure 5. Results of model fitting. (a) Comparative parameter fitting for the different training conditions: σ 2
p (Anderson-Darling test for

normality: p > 0.05, t-test p = 0.01 for the active group), k (Anderson-Darling test for normality: p > 0.05, t-test p = 0.026 for the
active group), s2 (Anderson-Darling test for normality: p = 0.003, Wilcoxon rank sum test p = 0.025 for the active group), and q. Grey
and colored boxes refer to pre- and post-training conditions, respectively. (b) Correlation between thresholds estimated using
perceptual test data and from the Bayesian generative model (p = 0.001). (c) Average thresholds of Bayes’ model psychometric
curves over all subjects of each group. (d) Correlation between the perceptual threshold change, �Threshold, and the corresponding
variation of the cross-talk parameter, �k, (p = 0.004).

variability in both perceptual and motor performance.
Individuals exhibiting a lower initial perceptual
threshold (hence a “poor” sensory performance)
benefit more from motor training. Subjects with an
initially higher perceptual thresholds (i.e., an already
good sensory performance) exhibit a lower motor
bias; in this case the perceptual thresholds remain
constant or increase. We observed a reliable correlation
(R2 = 0.79, p = 0.002) between the change in movement
direction (�Motor bias) observed during training
and the perceptual change before and after training
(�Perceptual Threshold) (Figure 4d). Subjects who
decrease their motor bias after the training (�Motor
bias < 0) show greater perceptual changes.

Computational model

A Bayesian framework was used to model the way
humans perceive plaid motion. The model incorporates
a number of empirical findings on how the perception
of single gratings is affected by contrast.

We specifically assumed that perception is affected by
both random and systematic effects. In particular, the

variance in the perceived velocity of a grating (hereafter
referred to as perceptual variance) increases with the
negative power of the contrast (Hürlimann et al.,
2002), where s2 is the perceptual variance at maximum
contrast, and q is the power exponent. We also assumed
a reciprocal influence of one grating on the perception
of the other grating’s velocity (cross-talk), proportional
to their contrast imbalance through a parameter k.
Finally, we assumed a Gaussian prior for grating
velocities with zero mean and variance σ p

2. As a whole,
the model is fully characterized by the parameter vector
w = [s2, q, k, σ p

2]T ; see Methods for further details.
Unlike previous Bayesian formulations (Weiss et

al., 2002; Hedges et al., 2011), this model is able to
reproduce key findings concerning the directional bias
in the perception of plaid movements (Stone et al.,
1990; Champion et al., 2007); see the Supplementary
Material (Figures S1 and S2) for details.

The perceptual judgment task was modelled as a
binary decision between two possible alternatives, test
(T) or reference (R). The probability of choosing T
as a function of the estimate of plaid direction, θ̂ ,
and the contrast difference �cT in the test stimuli,
that is, Pr(T |θ̂ , �cT ), is modelled as a Bayesian
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decision process (see Methods, Equation 6). The
predicted psychometric curve is a function of the model
parameters w, that is, Pr(T |θ̂ , �cT ) = fT (�cT , w)
(Figure 2).

We fitted the model to the data and identified the
model parameters w before and after each of the
training conditions. Figure 5 summarizes the fitting
results.

Figure 5a shows the average value of each model
parameter among subjects, before (grey boxes) and
after (colored boxes) each training condition. We found
a significant change in σ 2

p (p = 0.01), k (p = 0.026), and
s2 (p = 0.025) parameters in the active group alone.
Perceptual threshold values for the model are estimated
at the 75th percentile (see Methods) and show a high
correlation with the threshold values in the experimental
tests (see Figure 5b). Figure 5c shows psychometric
threshold differences (�Th = Thpost − Thpre) calculated
from model fitting for all the participants in each
experimental condition (see Equation 6). It can be seen
that, as in the empirical results, there are significant
changes in the psychometric thresholds in the active
group alone. These observations are confirmed by
statistical analysis. We tested for differences in threshold
(�Th) of the psychometric curves. We observed a
significant difference in threshold between experimental
conditions (F(2,27) = 7.76; p = 0.002). Post hoc
analyses (Bonferroni-Holm) revealed a significant
difference in the threshold of the active and visual-only
conditions (p = 0.003) and between the active and
cognitive conditions (p = 0.024). These results on
the perceptual threshold of the curves obtained by
fitting the data with the Bayesian generative model are
in agreement with those found in the results of the
perceptual judgment task by fitting the data with the
cumulative Gaussian function, as shown in Figure 5c;
see Methods. Moreover, we found a reliable relationship
between the change in the model parameter k (�k) from
before to after training, and the perceptual change from
before to after training (�Th) (R2 = 0.81, p = 0.0004);
see Figure 5d. This means that, for subjects with
greater perceptual changes the model predicts a greater
decrease in the cross-talk parameter k.

Discussion

The present study shows that active interaction with
an ambiguous visual stimulus alters the subsequent
perception of stimulus motion. Three groups of
participants performed the same perceptual task
before and after training. Self-operated motion of
plaid stimulus was generated by an active group that
performed planar movements. This was designed to
assess whether perceptual decisions regarding plaid

movements were affected by actively interacting with
the stimulus. A visual-only group observed played-back
plaid motion that was generated by another subject.
This condition quantified the effect of prolonged
exposure to the moving plaid stimulus. A cognitive
group experienced the same stimuli as the visual-only
group. These subjects were additionally instructed to
focus their attention on the gratings intersections and
thus had an explicit strategy that would enable them
to follow the coherent plaid motion. We found that
the perceptual threshold for the direction of plaid
motion changed significantly following training only
in the active movement condition, where it showed
more robust perceptual integration against contrast
imbalance in the plaid. A control condition in which
plaid movements are tied to the speed but not the
direction of the hand (an active less-matched condition)
yielded no significant perceptual learning, very much
like the visual and cognitive conditions.

In the active condition, we also observed practice-
related changes to movement. Movement direction
changed over the course of training, presumably
because the plaid, which effectively serves as a cursor
showing movement direction, is more easily seen
by subjects as moving in the remembered target
direction. We found that the change in the perceptual
threshold was strongly correlated with the change
in movement direction measured during the active
training, consistent with the idea that the perceptual
change is tied to motor training.

A computational model suggests that movement
training affected perceptual judgment by improving the
accuracy of the internal representation of the plaid
geometry. The findings indicate that motor training
resolves visual perceptual ambiguity and contributes to
changes in visual perceptual ability.

Motor training implications for perceptual
discrimination

A small number of studies have examined the effects
of motor learning on vision. Brown et al. (2007) found
that movement initiation toward a moving object
that was to be intercepted differed depending on the
direction of a previously learned force field, indicating
that expectations regarding visual motion are altered
as a result of learning. Beets et al. (2010b) showed
that, when participants trained to make movements
that violated to different degrees the 2/3 power law,
there were improvements in visual discrimination of
movements that corresponded with those that they
experienced during training. These studies indicate that
motor learning can induce a bias in visual perception.
The present study suggests that movement training plays
an even more pivotal role. Indeed, visual perception is
inherently ambiguous. Movement training leads to a
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reduction in perceptual uncertainty, and to a change of
perceptual sensitivity which in the present case is related
to a stimulus parameter (gratings’ contrast difference)
that is not directly controlled during training. Both
movement training and perceptual change occur here
without feedback motor error provided to participants
during training. Changes in movement direction within
single training blocks and over the entire training
session are significantly correlated with the observed
perceptual change (between pre- and post-training
perceptual tasks) suggesting that the two kinds of
learning are cross-related. If we assume that visual
motion perception is based upon an empirical strategy
which serves to resolve perceptual uncertainty (Sung
et al., 2009; Purves et al., 2014), the perceived plaid
motion direction is determined by accumulated
sensorimotor experience. Perceptual decisions regarding
motion direction provide, in turn, sensory evidence
that instructs behaviour. Our results suggest that visual
function over time can be adapted with training, which
is provided by interaction with the stimulus. The
absence of perceptual change when motion of the plaid
was decoupled from the motion of the hand is further
evidence that a moving visual stimulus yoked with
motor action provides a necessary condition of agency
that facilitates perceptual grouping (i.e., plaid motion)
of consistently moving components (i.e., gratings’
motion).

It should be noted that focusing attention on the
intersections of the gratings without movement, as in
our cognitive condition, had no effects on subsequent
perceptual judgments. Attending to the intersections
of the gratings facilitates stimulus disambiguation
and coherent stimulus motion is easily seen (Adelson
& Movshon, 1982; Lu & Sperling, 1995). However,
although the immediate perceptual effect is compelling,
attention on its own did not result in perceptual
learning.

Modeling the fine-tuning of internal
representation of plaid geometry

Several studies (Weiss et al., 2002; Hedges et al., 2011)
used a Bayesian framework to model the perceptual
task of estimating the velocity of the plaid from the
perceived velocities of the two gratings. These models
posit that prior information and an internal (neural)
representation of plaid geometry are combined to
obtain the expected value of plaid velocity (Hedges et
al., 2011). Prior information captures the participant’s
prior experience with observing moving patterns
and is summarized by the statistical distribution
of the plaid velocities. The representation of plaid
geometry approximates the mapping from plaid to
gratings’ velocities. Accordingly, inaccurate perception
of plaid motion may be due to (i) an inaccurate

representation of plaid geometry (sensory model),
(ii) an inaccurate perception of the velocity of each
grating (noise variance), (iii) the bias introduced by
previously experienced plaid motions (the prior), or
(iv) a combination of the se reasons.

Recent studies suggest that this Bayesian formulation
cannot account for key observations in the way the
perception of plaid direction is affected by speed
(Champion et al., 2007). In the present article, we made
a number of specific assumptions on how the gratings’
contrasts affect the perceived plaid velocity. First,
consistent with previous findings (Hürlimann et al.,
2002), we assumed that the variance of sensory noise in
perceiving the velocity of a grating is proportional to
an inverse power of the grating contrast. This finding
is reflected in two model parameters: the variance at
maximum contrast and the power exponent. With
these simple additions our model predicts those
same observations (Champion et al., 2007) that have
been claimed to falsify Bayesian models of plaid
perception. We also posited an additional effect in
the representation of plaid geometry: if two gratings
have different contrasts, the represented direction of a
grating affects that of the other – this was denoted by
the “cross-talk” parameter (cf. Stone et al., 1990). This
effect results in a systematic error in the representation
of plaid geometry.

For each participant, we estimated the parameters
that maximize the model likelihood given the data from
the perceptual judgment task. For each experimental
condition, we then assessed the model parameter
changes from before to after training. Significant
changes in the model parameters were obtained for
the active training condition alone. Specifically, we
found that participants in this condition exhibited a
significant decrease in the cross-talk parameter and an
increase of the power law exponent. The decrease in
cross-talk leads to a more accurate representation of the
direction of the gratings and therefore a more accurate
representation of plaid geometry. The increase of the
power law exponent leads to a decreased sensitivity of
sensory noise to contrast.

Note that the cross-talk decrease exhibits a strong
correlation with the observed change in perceptual
threshold. That is, participants who exhibit greater
perceptual changes also show a greater decrease in the
cross-talk. This finding suggests that motor training
in this task leads to a fine-tuning of the internal
representation of plaid geometry.

Why does movement improve the sensory model,
whereas observation on its own does not? One possible
explanation is that during movement, the sensory model
predicts the sensory consequences of movements – the
expected movements of the gratings (Miall & Wolpert,
1996; Wolpert & Flanagan, 2001). The mismatch
between these predictions and the observed movements
of the gratings – sometimes called sensory prediction
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error – is the source of information which can be
used to adapt the sensory model. This information
is not available during passive observation of plaid
movements. Consistent with this view, sensorimotor
adaptation to dynamic or visual perturbations has
been reported to critically depend on the availability
of a sensory prediction error signal (Haith et al.,
2009; Krakauer & Mazzoni, 2011). In addition, this
effect may be facilitated by the availability of multiple
sensory modalities (vision, proprioception), which may
mutually calibrate (Ernst & Banks, 2002). In particular,
movement can mediate the integration between visual
and proprioceptive information, and eventually the
linking of the predicted sensory consequences of
movement to plaid motion disambiguation.

Implications for neural representations of
complex visual motion

Because plaid stimuli are composed of a minimal
number of one-dimensional Fourier components (two),
each selectively recruiting narrow early vision oriented
band-pass frequency channels, they can contribute
to understanding how these channels are involved
in the perceptual learning of coherent sensorimotor
dependencies.

Finding a solution to the plaid motion problem can
be related to the evidence from component-motion and
pattern-motion cells, observed respectively in striate
and extrastriate areas along the primary visual motion
pathway, such as area V3A and middle temporal area
(MT or V5) (Albright & Stoner, 1995). Ultimately,
the steps in the formation of perceptual decisions
and/or guidance of visual behaviours can be linked
to higher-level brain areas (e.g., lateral intraparietal
cortex and prefrontal cortex), which are often described
as “evidence accumulators” (Law & Gold, 2008);
Latimer et al., 2015; Zhang & Tadin, 2019). The
present model simulation suggests a decrease, after
training, of the cross-talk between the two gratings in
the corresponding sensory channels, when the gratings
contrasts are unbalanced, as well as a decrease of the
noise variance. The decrease in cross-talk magnitude
would be consistent with an early neural instantiation
of the perceptual learning process, which might occur
at the coding stage of the component motion directions
(cf., contrast normalization processes in V1). In
contrast, because the cross-talk in the model acts on
gratings’ velocities, it requires a pooling of the responses
of different oriented channels, and its change might
occur at pattern motion coding in an extrastriate area.
Notably, the null effect of visual-only training leads us
to exclude a role of a oculomotor-specific, but rather
a reach-specific, sensorimotor cortical area. Specific
experiments and recordings of neural correlates would
be necessary to disambiguate the different hypotheses.

From a broader perspective, this study suggests a shift
in focus to pattern and motion vision investigation,
which includes continuous interaction with visual
stimulation.

Keywords: movement training, visual perceptual
learning, moving plaid, Bayesian perceptual model,
perceptual judgment
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