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Acid-sensing ion channels (ASICs) are a family of proton-sensing channels that are voltage insensitive, cation selective (mostly
permeable to Na+), and nonspecifically blocked by amiloride. Derived from 5 genes (ACCN1–5), 7 subunits have been identified,
1a, 1b, 2a, 2b, 3, 4, and 5, that are widely expressed in the peripheral and central nervous system as well as other tissues. Over
the years, different studies have shown that activation of these channels is linked to various physiological and pathological
processes, such as memory, learning, fear, anxiety, ischemia, and multiple sclerosis to name a few, so their potential as
therapeutic targets is increasing. This review focuses on recent advances that have helped us to better understand the role played
by ASICs in different pathologies related to neurodegenerative diseases, inflammatory processes, and pain.

1. Introduction

Extracellular acidification occurs in pathological situations,
such as inflammation and brain ischemia, as well as under
normal physiological conditions, such as neuronal activity
and synaptic transmission. However, pH oscillations are
closely regulated and confined to microdomains. Increased
metabolism of carbohydrates produces a pH drop through
products, such as lactic acid and CO2, activating HCO3

−

and Na+/H+ exchangers that contribute to the regulation
of pH [1].

The pH fluctuations affect many cellular processes,
including enzymatic activity, membrane receptors, ion chan-
nel flow, and membrane transporters [2, 3]. Because pH is a
strictly regulated variable in multicellular organisms, local-
ized pH changes may constitute significant signals of cellular
processes that occur in a cell or a group of cells. Extracellular
pH changes that occur in microdomains are sensed through
acid-sensing ion channels (ASICs), which are membrane
channels that are specifically activated by protons (H+) and
produce a large, inward, mostly Na+ current.

For accurate proton-mediated signaling, tight extracellu-
lar pH regulation is essential; failure of the pH buffering

systems may lead to noisy activation of the system and
no signal at all [4]. Recent works have shown that pro-
tons are mediators and ASICs are receptors in some syn-
apses in the central nervous system (CNS) [5, 6]. The
proton-mediated signaling mechanism was first demon-
strated in intestinal-muscular cells from C. elegans, where
extracellular acidification occurs due to activation of an
Na+/H+ exchanger and H+ activates a Cys-loop ionic
channel (a specific proton receptor) that ultimately produces
a muscle contraction [7].

In higher organisms, proton-mediated signaling has
been found to mediate fear-conditioned learning, retinal
cell activation, cochlear and vestibular afferent neuron
synaptic activation, and synaptic transmission in the calyx
of Held in the auditory system [8–12].

ASICs form part of the degenerin/epithelial sodium
channel (DEG/ENaC) super family [13]. They are voltage-
insensitive, cation-selective channels that are mostly perme-
able to Na+ and nonspecifically blocked by amiloride. Seven
different subunits, 1a, 1b, 2a, 2b, 3, 4 and 5 (a and b refer to
splice variants), derived from 5 genes (ACCN1–5) have been
identified in mammals. ASICs typically generate transient
inward currents in response to increments in the H+
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concentration of the extracellular media and constitute the
sensing element in proton-mediated signaling systems. It is
worth to mention that desensitization of the current must
probably constitute a protective mechanism in order to avoid
sustained activation of the ASIC current in case of persistent
acid pH shifts.

Each ASIC subunit consists of two transmembrane
domains (TM1 and TM2), a large cysteine-rich extracellular
loop and short intracellular N- and C-termini (Figure 1(a))
[14, 15]. ASICs are widely expressed by many tissues, either
in the nervous system or outside the nervous system (see
Table 1 for a summary of the distribution and functions
of ASICs).

Most ASIC subunits aggregate and form heteromulti-
mers, generating diverse proton-gated channels that act as
acid sensors spanning a large pH range [16, 17]. ASIC4
and ASIC5 are the least studied of these proton-gated
channels and are considered to be orphan subunits [18, 19].
Both of them, however, are expressed in the central
nervous system.

The crystal structure of the chicken ASIC1a protein
demonstrated that functional ASICs are trimeric assemblies
[14, 15]. Recent evidence has put this into question; however,
data from biochemical studies suggest that a tetrameric con-
formation of ASICs is also possible [20].

ASIC1a homomers and ASIC1a-ASIC2b heteromers
have higher Ca2+ permeability; thus, sustained activation of
these channels may raise intracellular Ca2+ concentrations
in neurons [21–23], although recent evidence indicates that
the Ca2+ permeability of ASICs is of marginal relevance [24].

The function of ASICs depends on their heteromeric
composition. For example, the ASIC3 subunit is not
expressed by neurons in the cortex or any brain nuclei but
is expressed in a transgenic mouse model in which ASIC3
expression is induced in the whole brain, leading to impair-
ment of ASIC-related behaviors, such as fear conditioning.
This action may be due to changes that are produced in the
biophysical properties of brain ASICs, indicating that the
subunit composition and current kinetics are critical for the
integration and processing of ASIC-related behaviors [25].

H+

Na+
Ca2+

Na+
Ca2+

(a)

ASIC1a

ASIC2a

ASIC1b

ASIC3 pH 6.5

pH 6.1

2 nA
1 s

0.2 nA
1 s

2 nA
1 s

0.4 nA
1 s

pH 5.5

pH 4.5

(b)

4.0 5.0 5.5 6.1 6.5

0.4 nA

2 s

(c)

ASIC3 pH50 6.4

pH 1 2 3 4 5 6 7 8 9 10 11 12 13 14

ASIC1b pH50 6.1
ASIC1a pH50 5.8
ASIC2a pH50 4.5

(d)

Figure 1: ASIC structure and properties. In (a) scheme of the ASIC trimer. Current is activated by H+ and carried by Na+ and in lower
proportion by Ca2+. The increase in intracellular Na+ and Ca2+ concentrations caused by ASIC current may activate various intracellular
messenger systems. In (b), typical ASIC currents obtained from homomers of ASIC subunits transfected in Chinese hamster ovary (CHO)
cells [229]. It is worth to note the sustained component of ASIC3 current. In (c), ASIC currents elicited by different pHs in isolated
neurons from the rat spiral ganglion [11]. In (d), every subunit has a typical half-activation pH. The various isoforms of ASIC confer the
heteromeric channels a larger span of pH responsiveness. Calibration of currents is in nanoampere (nA) versus time in seconds (s).

2 Mediators of Inflammation



ASICs typically generate transient inward currents that
mostly desensitize, although specific channels show some
level of sustained acid-dependent current (Figures 1(b) and
1(c)) [17, 26]. Mild or slow acidification may result in
steady-state desensitization, even at pH 7.4, and a significant
channel population becomes desensitized [27].

The precise concentration of protons required to
induce channel activation varies between subunits. Typi-
cally, in homomeric channels, the most sensitive subunit
is ASIC3, which has a half-activation pH (pH50) of 6.4,
and ASIC1b, which has a pH50 of 6.1. ASIC2a is less sen-
sitive and has a pH50 of 4.5, although its pH sensitivity
could change because it is subject to endogenous neuro-
modulators [17, 28]. The set of different ASIC subunit
sensitivities allows to discriminate extracellular pH
changes from a very acidic pH (approximately 4.0) to a
pH of up to 7.8 [17, 29], thus covering a significant
range of pH that are relevant for biological processes
(Figure 1(d)).

Amiloride, di- and trivalent cations (Pb2+ and Gd3+) and
toxins from anemones, tarantulas, and snakes are examples
of molecules that act on ASICs that have become the focus

of intensive pharmacological research (see Tables 2 and 3
for a summary of ASIC modulator molecules).

2. ASICs in Neurodegenerative Disease

2.1. Multiple Sclerosis. Multiple sclerosis (MS) is a chronic
autoimmune inflammatory disease of the CNS, whose patho-
physiological process involves demyelination and axonal
degeneration [30].

In experimental autoimmune encephalomyelitis (EAE), a
mouse model of MS, it was found that the ASIC1 knockout
mice showed reduced clinical deficits and axonal degenera-
tion compared with wild-type mice. Furthermore, amiloride
produced significant protection in animals with EAE [31].

ASIC1a activation triggers the intracellular accumulation
of Na+ and Ca2+, and previous studies have shown that exces-
sive accumulation of these ions is involved in neuronal
degeneration and inflammatory processes in MS [31]. ASIC1
was found to be upregulated in axons and oligodendrocytes
in EAE animals, and coincidently, in patients with active
MS, a correlation was demonstrated between increased
ASIC1 expression and axon injury markers [32]. Moreover,

Table 1: Distribution and functions of ASICs.

Subunit Distribution Physiology Pathophysiology

1a

Brain [29], spinal cord [117], DRG [3], TG [128],
NG [132], cochlear and vestibular neurons
[9, 11, 162], retina [8], astrocytes [163], lung
epithelial cells [164], vascular smooth muscle
cells [165], microglia [84], bone [166], taste

receptor cells [167]

Synaptic plasticity [168], learning and
memory [168], fear conditioning [169],

visual transduction [8], visceral
mechanoperception, primary muscle
hyperalgesia [143], apoptosis [170],

chondroprotection and bone
resorption [171]

Pain [88], inflammation [172],
migraine [124], epilepsy [46], hepatic
fibrosis [173], multiple sclerosis [32],
Parkinson [174], Huntington [175],
anxiety [176], depression [177],
growth and migration of gliomas

[178], excitotoxicity [179]

1b
DRG [3], immune cells [31], taste receptor
cells [180], carotid body [181], and cochlear

hair cells (stereocilia) [182]

Pain [118], inflammation [31, 143],
cancer [78]

2a

Brain [117], DRG [3], NG [183], spinal cord
[117], retina [8], cochlear and vestibular neurons
[9, 11], astrocytes [163], microglia [84], bone

[166], lung epithelial cells [164], vascular smooth
cells [165], taste receptor cells [167], carotid

body [181]

Visual transduction [8], detection of
sour taste [184], mechanosensation

[185], arterial baroreceptor reflex [186]

Inflammation [84], ischemia [187],
migration of gliomas [75]

2b
Brain [29], spinal cord [188], DRG [3], NG
[183], JG [183], cochlear neurons [11],
retina [189], and taste receptors [190]

Integrity of retina [8], modulator
of ASIC1a, ASIC1b, ASIC2a, and

ASIC3 [23]

Inflammation [84], gastrointestinal
pain [128]

3

DRG [3], TG [128], cochlear and vestibular
neurons [9, 11], vagal and glossopharyngeal
ganglia [183], brain [29], spinal cord [188],
retina [191], taste receptors [167], astrocytes,
microglia [84], testis [192], chondrocytes and
synoviocytes [115], adipocytes [163], immune
cells [31], lung epithelial cells [164], bone [166],
cartilage [166], teeth [193], vascular smooth

muscle [165], and carotid body [181]

Chemoreception [181], skin
mechanosensory [139], auditory
and visual processing [191],

mechanosensory of the intestinal
tract [128]

Pain [85], inflammation [85], epilepsy
[47], migraine [122], gastrointestinal

pain [128], cardiac pain [63],
postoperatory pain [109], secondary

mechanical hyperalgesia [142]

4
Brain [194], spinal cord [117], pituitary
gland [195], immune cells [31], and

retina [196]

A possible function is to decrease the
amount of functional ASICs in the
plasma membrane and as a regulator

of pain [197]

Pain [197]

DRG: dorsal root ganglia; TG: trigeminal ganglia; NG: nodal ganglia; SG: spiral ganglia; JG: jugular ganglia.
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Table 2: Exogenous modulators.

Compound Effect Subunit

Toxins from
venoms

PcTx1
↑ the affinity of the proton, desensitizes the

channel [198]
ASIC1a, 1a-2b

Hi1a
Stabilizes the close state of the channel, impeding

the transition into a conducting state [199]
ASIC1a

APTx2 ↓ ASIC3 and ASIC3 heteromers [200] ASIC3

MitTx
↑ increase the sensitivity of ASIC2a to protons

and activate ASIC1a, 1b, and 3 [92]
ASIC1a, 1b, 2a, and 3

Mambalgins
↓ potent, rapid, and reversible inhibitor

of ASICs [86].
ASIC1a, 1b, 1a-2a,
1a-2b, and 1a-1b

Ugr 9-1
↓ ASIC3 current, including sustained

component [201]
ASIC3

PhcrTx1 ↓ ASICs in nDRG [202] All subunits

α-Dendrotoxin ↓ ASICs in nDRG [203] ?

Vegetal
compounds

Thalassiolin B ↓ ASICs in nDRG [204]
Currents with

desensitization< 400ms

Sevanol
↓ ASIC1a and 3 (including sustained

component) [205]
ASIC1a and 3

Gastrodin ↓ ASICs in nDRG [206] All subunits

Puerarin
↓ ASICs in rat hippocampal neurons and

homomers [67]
ASIC1a

Chlorogenic acid ↓ ASICs in nDRG [207] All subunits

Morphine ↓ ASICs in nDRG [208] All subunits

Paeoniflorin ↓ ASICs in PC12 cell line [38] ASIC1a

Ligustrazine ↓ ASICs in nDRG and ASIC heteromers [134] ASIC1a, 1b, 2a, and 3

Cannabinoids ↓ ASICs in nDRG [209] All subunits

NSAIDs
Salicylic acid, aspirin, diclofenac,

fluribuprofen, ibuprofen, peroxicam
↓ homomers and heteromers of ASIC1a,

2a, and 3 [210]
ASIC1a, 2a, and 3

CHF5074 ↓ ASICs in CA1 pyramidal neurons [211] ASIC1a

Anesthetics

Tetracaine ↓ homomeric ASICs and ASICs in nDRG [212] ASIC1a, 1b, and 3

Lidocaine ↓ ASIC1a and heteromers [213] ASIC1a and heteromers

Propofol ↓ ASICs in nDRG [214] All subunits

Aminoglycosides Streptomicyn, neomicyn, gentamicyn ↓ ASICs in nDRG [87] All subunits

Monoamines

9-Aminoacridine (9AA)
↓ ASICs in rat hippocampal neurons and

homomers [215]
ASIC1a and ASIC3

Memantine
↓ ASICs in hippocampal neurons and

homomers [215]
ASIC1a, 2a, and 3

IEM1921
↑ ASICs in rat hippocampal neurons, ↓ ASIC3
current and potentiated the steady state [215]

ASIC1a, ASIC3

IEM2117
↑ ASICs in hippocampal neurons and

homomers [215]
ASIC1a, 2a

Others

Amiloride ↓ unspecific inhibitor of ASIC subunits [13] All subunits

4-Chlorophenylguanidine
Activating the channel and increasing

proton sensitivity [216]
ASIC3

GMQ ↑ ASIC3 homomers at neutral pH [82] ASIC3

Tetraethylammonium (TEA) ↓ heteromeric ASIC currents [23] ASIC1a-2b

4-Aminopyridine (4AP) ↓ heteromeric ASIC currents [217] ASIC1a-2a and 1a-2b

A-317567 ↓ ASICs in nDRG [93] All subunits

Nafamostat mesilate ↓ ASIC currents [218] ASIC1a, 2a, and 3

Diarylamidines
↓ ASICs in hippocampal neurons and

heteromers [219]
ASIC1a, 1b, 2a, and 3
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amiloride administration (ASIC-unspecific blocker) attenu-
ated myelin and neuronal damage in animal models as well
as in a cohort of MS patients, indicating that amiloride is
neuroprotective and could be added to the pharmacological
scheme in patients with MS [33].

2.2. Parkinson’s Disease. Parkinson’s disease (PD) is a dis-
abling disease that is characterized by motor impairment,
development of Lewy bodies (a pathological hallmark), and

progressive loss of dopaminergic neurons in the substantia
nigra [34].

Neurons in the substantia nigra express at least ASIC1a
[35, 36]. In a mouse model of PD induced by 1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine (MPTP), amiloride and
psalmotoxin-1 (PcTx1; see Table 2) protect neurons from
degeneration [36].

Furthermore, mutations of the Parkin gene or a lack
of endogenous Parkin protein produces abnormal ASIC

Table 2: Continued.

Compound Effect Subunit

Chloroquine
↓ ASICs in retinal ganglion neurons and

CHO cells [220]
ASIC1a

NS383
↓ homomeric and heteromeric

channels [221]
ASIC1a, 3, and
heteromers

Omeprazole
↑ the expression of ASIC1a in

Caco-2 cells [222]
ASIC1a

Corticosterone
↑ ASIC1a current in hippocampal

neurons [223]
ASIC1a

Insulin
Regulator of ASIC1a membrane surface

expression [224]
ASIC1a, 2a, and 3

Sulfhydryl compounds
↑ peak current and slow-down channel

desensitization [158]
ASIC1a, 1b, 2a, and 3

↓: inhibits; ↑: increases; nDGR: neurons of dorsal root ganglia; NSAIDs: nonsteroidal anti-inflammatory drugs.

Table 3: Endogenous modulators.

Compound Effect Subunit

Neuropeptides
Dynorphin A, big dinorphin

↓ decrease proton sensitivity of steady-state
inactivation [65]

ASIC1a

FMRFamide and related mammalian
FF amide peptides.

↑ enhance the sustained current and slow down
inactivation [225]

ASIC1a, ASIC1b,
and ASIC3

Inflamatory
mediators

Nerve grow factor (NGF) ↑ ASIC3 expression associated with hyperalgesia [81] ASIC3

Bradiquinine ↑ ASIC mRNA levels [81] ASIC1a, 1b, 2b, and 3

Serotonin ↑ ASIC3 sustained current [101]

Interleucine ↑ ASIC mRNA [81] ASIC1a, 1b, 2b, and 3

Arachidonic acid ↑ peak current [106]

Nitric oxide (NO donors) ↑ increase ASIC1a, 1b, and 3 current [55, 107]

Cations

Ca2+, Mg2+, Cd2+, Cu2+, Gd3+,
Ni2+, Pb2+, Ba2+

↓ decrease the ASIC conductance [160] All subunits

Zn2+
↓↑ dual effect: at low concentration ↓ the current and

high concentration ↑ the current [226]
ASIC1a, 1a-2a,
and ASIC2a

NH4
+ ↑ activate ASIC current at

extracellular pH 7.4 [35]
ASIC1a

Polyamines
Spermine

↑ activity of ASICs by shifting the steady-state
inactivation to more acid values [66]

ASIC1a and 1b

Agmantine and arcaine ↑ activate ASIC3 current [82, 83] ASIC3

Others

Lactate ↑ ASIC current [63] ASIC1a and 3

ATP ↑ pH sensitivity of ASIC3 [105] ASIC3

Cl−
↑ slow down the rapid desensitization of ASIC1a and

maintains tachyphylaxis [227]
ASIC1a

H2O2 ↓ ASIC1a current [228] ASIC1a
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currents and dopaminergic neuronal injury, suggesting
that ASIC activity may play a significant role in PD phys-
iopathology [37].

Additionally, paeoniflorin, the principal active ingredient
extracted from the root of Paeoniae alba, a natural product
used in traditional medicine for the treatment of neurode-
generative disorders, blocks ASIC current and also has a neu-
roprotective effect in PD patients. Paeoniflorin reduces
acidosis-induced accumulation of α-synuclein (the major
component of Lewy bodies); this latter effect could be linked
to the inhibition of ASICs, most likely ASIC1a [38].

2.3. Epileptic Seizure Activity. During and following seizures,
great quantities of lactic acid and glutamic acid are released
into the extracellular space, causing a significant fall in pH
that activates ASICs [39–41]. In animals treated with pilocar-
pine to induce a status epilepticus, a decrease of ASIC2b
mRNA in all hippocampal areas and of ASIC1a mRNA in
the CA1-2 was found [42].

Other studies showed that amiloride has anticonvulsant
effects in vivo, suggesting that ASICs activation might have
a proconvulsant potential [43–45]. Amiloride also blocks
other ion channels (such as ENaC and T-type Ca2+ channels)
and membrane exchangers; thus, the action of amiloride is
not directly attributable to ASICs blockade.

By contrast, Ziemann and colleagues found that ASIC1a
expression is higher in GABAergic interneurons than in
excitatory neurons and showed that kainate-induced seizures
were longer and more severe in ASIC1 knockout mice,
although it did not affect the seizure threshold [46]. Consis-
tent with the proposal that ASICs participate in ending sei-
zures, the loss of ASIC1a reduced postictal depression [46].

Although ASIC3 expression in the brain is considered to
be low or null, some reports described its expression in inhib-
itory GABAergic interneurons and glial cells [47]. Blocking
ASIC3 with its specific antagonist APETx2 in pilocarpine-
induced or pentylenetetrazole- (PTZ-) induced seizures
shortened the latency to seizure and increased the incidence
of generalized tonic-clonic seizures compared to the control
group, indicating, as suggested for ASIC1a, that ASIC3 could
participate in seizure ending [47].

Evidence also indicates that seizure-induced oxidative
stress enhanced expression of the ASIC2a-containing chan-
nels that contribute to hyperexcitability, excitotoxicity, and
eventually spontaneous seizures. Inhibition of ASICs was
neuroprotective in the acute phase after seizure activity [48].

2.4. Ischemic Neuronal Injury.During a stroke, the disruption
of blood flow to the brain deprives cells of energy and dis-
turbs the cell’s ionic homeostasis. Under these conditions,
hypoxia enhances anaerobic glycolysis, resulting in the
buildup of lactic acid and subsequent tissue acidosis [49,
50]. The extracellular pH in the brain typically drops to
values below 6.5 or less during ischemia under normoglyce-
mic conditions, activating ASIC currents [51, 52].

ASICs activation seems to play a fundamental role in
acidosis-mediated neuronal injury. ASIC1a activation may
trigger membrane depolarization, driving Ca2+ influx via

ASIC1a homomers or ASIC1a-ASIC2b heteromers, voltage-
gated Ca2+ channels, and NMDA receptors [21, 22, 53–57].

In cultured mouse and human cortical neurons, activa-
tion of ASICs induces glutamate receptor-independent neu-
ronal injury that is inhibited by specific ASIC1a blockade
and by ASIC1 gene knockout [21, 57]. Intracerebroventricu-
lar injection of PcTx1 (ASIC1a blocker/inhibitor) in animal
models of brain ischemia reduced the infarct volume by up
to 60%. Protection by an ASIC1a blockade has an efficacy
time window of approximately 5 hours, and the protection
persists for at least 7 days [21, 54].

Furthermore, an ASIC1 gene knockout leads to signifi-
cant neuroprotection in mice, and the reduction of ASIC1a
expression contributes to neuroprotection as elicited by
ischemic preconditioning and postconditioning in rats
[21, 58]. Increasing ASIC1a surface expression, for example,
through inhibition of ASIC1a internalization, exacerbates
acidosis-induced neuronal injury [59]. In a model of global
ischemia, the ASICs inhibitor amiloride, but not the NMDA
receptor blocker memantine, reduced brain damage indi-
cating that in some models of brain ischemia, ASICs
may play a larger role than glutamatergic NMDA recep-
tors in the mediation of neuronal injury [60]. The protec-
tive effect of ASICs inhibition is additive to that of NMDA
receptor inhibition, thus indicating that they take place by
different mechanisms [61].

After an ischemic insult, AMPA receptor plasticity exac-
erbates excitotoxic damage in the hippocampal region, par-
ticularly the increased expression of Ca2+ permeable
GluA2-lacking AMPA receptors (CP-AMPAR), which may
play a significant role in postischemic neuronal cell death.
In hippocampal slice cultures exposed to oxygen-glucose
deprivation and in hippocampal pyramidal neuron cultures
exposed to acidosis, it was found that ASIC1a activity pro-
motes the expression of CP-AMPAR and of anoxic long-
term potentiation, but ASIC1a inhibition confers neuropro-
tection [62]. In contrast, an opposite effect indicating that
the ASIC1a deletion increases CP-AMPAR expression in
the nucleus accumbens of the ventral striatum was also
reported [5]. This discrepancy may be because ASIC1a could
differentially regulate the expression of CP-AMPAR in a spe-
cific tissue manner.

Other ischemia-associated factors, such as arachidonic
acid and lactate, endogenous polyamines, large dynorphin,
and nitric oxide, also exacerbate acidosis-mediated neuronal
injury and ischemic damage [56, 63–65]. These factors may
act by enhancing the ASIC current or slowing its desensi-
tization. For example, spermine, which is an endogenous
polyamine found at high concentrations in the brain, shifts
the steady-state inactivation of ASIC1a and potentiates
ischemia-induced injury in the brain during stroke [66],
showing that steady-state desensitization is a critical factor
that can affect the degree of acid-evoked neuronal damage
through ASIC1.

Interestingly, three compounds, puerarin, sophocarpine,
and ginsenoside-Rd (found in several traditional Chinese
preparations), as well as the flavonoid quercetin, protect
against damage caused by middle cerebral artery occlusion.
These compounds were found to reduce the current
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amplitude of ASIC1a, increase channel desensitization, or
decrease ASIC1a expression [67–69].

Altogether, these findings support the participation of
ASICs in excitotoxic neuronal injury and suggest a new path-
ophysiological model for ischemic brain injury in which
extracellular acidification produces an over activation of the
ASIC current. Thus, ASICs constitute a new therapeutic tar-
get for the treatment of ischemia-induced neuronal damage.

2.5. Spinocerebellar Ataxia. Spinocerebellar ataxias (SCAs)
are a group of autosomal dominant progressive neurodegen-
erative disorders that display complex clinical and genetic
heterogeneity. Spinocerebellar type 1 ataxia (SCA1) primar-
ily affects the brainstem, spinocerebellar tracts, and cerebellar
Purkinje cells (PC). Patients with SCA1 develop progressive
ataxia accompanied by bulbar and pyramidal symptoms
[70]. Mutations of the ataxin-1 gene are responsible for the
disease, and induction of the mutation in mice produces
many of the clinical features observed in SCA1 patients.
The exact mechanism of PC and of spinocerebellar tract cell
loss remains unclear. Currently, there are no specific treat-
ments for SCA1.

Excitingly, ataxin-1 transgenic mice induced in an
ASIC1a knockout mouse background demonstrated that
deletion of the ASIC1a gene suppresses the SCA1 disease
phenotype, improving the motor deficit and decreasing PC
degeneration. This shows that ASIC1a may be a mediator
of SCA1 pathogenesis and that targeting ASIC1a could be a
novel approach to treat SCA1 [71].

SCA3 ataxia (the most common one) results from a
CAG-trinucleotide expansion in the coding region of the
ATXN3 gene, leading to an expanded polyglutamine (polyQ)
sequence within the Ataxin-3 protein. Using the fruit fly
D. melanogaster as a model, it was demonstrated that down-
regulating the Nach gene (an ortholog of ASICs in the fly)
mitigates SCA3 pathogenesis, indicating that ASICs may
be involved in the pathophysiology of SCA3 [72].

2.6. Malignant Glioma. Malignant gliomas, the most com-
mon subtype of primary brain tumors, are aggressive, highly
invasive, and neurologically destructive tumors that are con-
sidered to be among the deadliest of human cancers [73].
ASIC1a is extensively expressed in malignant glial cells.
Amiloride- and PcTx1-sensitive cation currents in human
glioblastoma are produced by mixed ASIC and ENaC com-
ponents, including ASIC1 and ASIC2. Inhibition of ASIC1
conductance by PcTx1 and by the amiloride analog, benza-
mil, decreases the glioma growth rate and cell migration as
well as arrests the cell cycle [74–78]. ASIC1a knockdown
models show a significant inhibition of glioblastoma cell
migration [77].

By contrast, increasing surface expression of the ASIC2
subunit suppressed the proliferation and migration of glio-
blastoma cells [75]. This last result suggests that the role of
ASIC subunits in the pathophysiology of glial cancer is com-
plex and that no straightforward intervention seems to be
feasible; thus, further knowledge of the role of ASICs in neo-
plastic development is required to develop a translational use
of ASIC blockers or enhancers in this pathology.

3. ASICs in Inflammatory Processes and Pain

The inflammatory process implies activation of immune cells
and release of a cocktail of chemical mediator known as
“inflammatory soup.” The inflammatory reactions are self-
limited by the elimination of the cause [79, 80]. ASICs may
be modulated by various components of the inflammatory
soup, including NGF, 5-HT, and bradykinin, among others
[81, 82]. In addition, the natural polyamines agmatine and
arcaine may activate the ASIC3 subunit (the concentration
of polyamines can increase to up to 1mM in inflamed tis-
sues) [83], while spermine enhances ASIC1a activity by slow-
ing its inactivation and accelerating its recovery from
desensitization [66]. Indeed, intraplantar injections of 2-gua-
nidine-4-methylquinazoline (GMQ) in wild-type mice cause
marked pain-related behaviors that are abolished in ASIC3
knockout mice [82].

It has been proposed that during inflammation, activa-
tion of ASICs is essential in nociception transduction and
production of painful sensations. In sensory neurons, inflam-
mation induces an increase in the ASIC current and its
expression in the cell membrane, leading to an increase in
neuronal excitability [82].

Microglia have been found to express ASICs, and stimu-
lation of microglia with lipopolysaccharides leads to an
increase in ASIC1 and ASIC2a expression as well as the
release of inflammatory cytokines [84], demonstrating the
role that ASICs play in neural sensitization during inflamma-
tory processes.

3.1. Primary Inflammatory Pain. The role of ASICs in pri-
mary inflammatory pain has been investigated using various
in vitro and in vivo experimental models [66, 85–88]. Most of
the ASIC subtypes are expressed on nociceptive primary sen-
sory neurons, where they seem to play a significant role in
pain transduction [3, 89]. Cutaneous pain produced by low
pH solutions (at least over pH 6.0) is likely due to ASIC acti-
vation [90, 91].

Compounds inhibiting ASICs display an analgesic effect
in animal models of pain [92], whereas those activating
ASICs elicit pain behavior [85, 86, 88, 93], supporting a role
for ASICs in the transduction of cutaneous pain.

During inflammation, the pH value of the local area is
always lower than the physiological pH, ranging from pH
5.5 to 7 [94]; this pH drop is sufficient to activate ASICs.
Indeed, inflammation induces a marked increase of ASICs
expression in primary sensory neurons, and nonsteroidal
anti-inflammatory drugs (NSAIDs) attenuate the ASIC cur-
rent [95]. Furthermore, in isolated dorsal root ganglion
(DRG) neurons, a mixture of proinflammatory mediators,
such as nerve growth factor, serotonin, interleukin-1, and
bradykinin, increases the number of neurons expressing
ASIC as well as their current density [82]. Bradykinin and
serotonin act on ASICs through an indirect intracellular
signaling pathway involving protein kinase C. Bradykinin
activates bradykinin B1 and B2 G protein-coupled receptors
(GPCR) [96], while serotonin acts on the GPCR 5-HT2
[97]. B1, B2, and 5-HT2 receptors are constitutively
expressed in sensory neurons, and their activation has been
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associated with inflammatory hyperalgesia. The binding of
bradykinin and serotonin to their receptors induces phos-
pholipase C (PLC) stimulation through heterotrimeric G
proteins (Gq/11) [96, 98, 99]. PLC cleaves phospholipid phos-
phatidylinositol 4,5-bisphosphate (PIP2) into diacyl glycerol
(DAG) and inositol 1,4,5-trisphosphate (IP3). IP3 releases
Ca2+ from the internal Ca2+ stores in the endoplasmic retic-
ulum, and DAG activates PKC. ASICs have a PDZ-binding
domain at their C-termini; its interaction with PDZ-
containing proteins regulates surface expression and activity
of ASICs [37, 99]. The protein C-kinase (PICK1) colocalizes
with ASICs, interacting directly through the PDZ-binding
domain [100]. Therefore, the PKC signaling pathway may
be involved in the enhancement of the ASICs mediated by
inflammatory mediators.

Serotonin also directly binds to the extracellular domain
of ASIC3 to increase its current [101]. The enhancing action
of serotonin occurs in the sustained component of the ASIC3
current, which is particularly important for its pain-
mediating effect [102–104]. Interestingly, serotonin acts not
only on ASIC3 homomeric channels but also on heteromeric
channels composed of ASIC3-ASIC1a or ASIC3-ASIC1b
subunits [101].

Other inflammatory stimuli, such as ATP, lactic acid, ara-
chidonic acid, nitric oxide (NO), agmatine, and hypertonic-
ity, are able to enhance the proton-induced ASIC current.
ATP can increase the pH sensitivity of ASIC3, and it has been
proposed that this phenomenon of “sensitization” involves a
protein assembly of P2X purinergic receptor and ASICs [57,
63, 85, 105, 106].

NO can potentiate the activity of ASICs in DRG neurons
and Chinese hamster ovary (CHO) cells expressing ASIC
subunits; this potentiation is probably due to the oxidation
of cysteine residues of the channels. Additionally, topical
application of the NO donor glyceryl trinitrate significantly
increased acid-evoked pain in human volunteers without
affecting their heat or mechanical pain threshold [107]. In
the central nervous system, ASIC potentiation by NO
aggravates acid-induced cell death during mild or moderate
acidosis [55].

Histamine and histamine agonists were shown to potenti-
ateASIC currents in transfectedCHOcells, apparently by spe-
cifically binding to the acid pocket of ASIC1a subunits [108].
Our research group found that histamine also potentiates
ASIC currents in DRG neurons isolated from the rat, thus
contributing to hypersensitivity in inflammatory conditions.

The ASIC currents in rat DRG neurons are produced by
ASIC1 and ASIC3 [85, 109, 110]. The anemone toxin
APETx2, which blocks ASIC3-containing channels, has
potent analgesic effects after local application in rodent cuta-
neous acidic and inflammatory pain [111, 112].

ASIC3 also participates in the maintenance of subacute
primary hyperalgesia (an increased response to noxious
stimuli at the site of injury) in the case of cutaneous
inflammation [113]. ASIC3 knockout mice fail to develop
secondary hyperalgesia (an increased response to noxious
stimuli outside the site of injury) induced by either repetitive
acid injections into muscle [114], muscle inflammation
[114], or knee inflammation [115].

Intrathecal injection of the ASIC1a blocker PcTx1 atten-
uates acute pain responses as well as pain behaviors in
chronic inflammatory and neuropathic models. This is prob-
ably due to activation of the encephalinergic system second-
ary to ASIC1a blockade, but the precise mechanism has not
yet been defined [88]. Additionally, a recently identified
blocker of ASIC1a from the venom of the black mamba
(Dendroapsis polylepis) named mambalgin-1 attenuated a
variety of pain behaviors when administered centrally [86].

Injection of coral snake toxin MitTx, a potent activator of
ASIC1 into the skin of the hind paw of a mouse produces a
nociceptive behavior that is missing in ASIC1a knockout
mice [92]. Similarly, mambalgin-1 (the ASIC1 and ASIC2
blockers) administered via intraplantar injection in mice
attenuates both acute thermal nociception and inflammatory
hyperalgesia, an effect that is lost in ASIC1b knockdown [86].
Finally, two clinical studies successfully used amiloride or a
nonsteroidal anti-inflammatory drug to inhibit acid-evoked
pain in human skin [91, 92].

Additionally, the aminoglycosides streptomycin and neo-
mycin, which were shown to inhibit proton-gated currents in
rat DRG neurons and reduce their action potential response
to an acidic stimulus, have a significant analgesic action
when administered locally in a model of inflammatory pain
[87, 116]. Streptomycin also reduces the GMQ-induced noci-
ceptive behavior, indicating that aminoglycoside antibiotics
produce analgesia due in part to the inhibition of ASICs
activation in sensory neurons [116].

Although diverse evidence attests to the role of
ASICs in nociception, conflicting results from studies of
knockout and transgenic mice exist. In acute pain paradigms,
ASIC3−/− mice were hyperalgesic to high-intensity thermal,
mechanical, and acid stimuli [117, 118]. Similar results were
found in transgenic mice overexpressing dominant-negative
ASIC3 [119].

3.2. Migraine. Migraine is one of the most common neuro-
logical disorders and a chronic pain condition that is usually
accompanied by a variety of symptoms, including aura, nau-
sea, vomiting, photophobia, and phonophobia. Although the
exact pathophysiology of migraine headaches is still partially
unknown, activation of the meningeal sensory neurons is
likely required [120, 121].

In 80% of trigeminal afferent neurons originating from
meninges, ASIC-like currents can be evoked at pH 6.0, and
over 50% are also responsive to pH 7.0 [121]. In animal
models of migraine where low pH stimuli (from 5 to 6.4)
were applied directly to the dura mater of awake animals,
the acidic pH produced headache-like behavior that was
blocked by amiloride or APETx2 (pH 6.0) [122].

Cortical spreading depression (CSD) is a neuronal pro-
cess that linked to migraine and consists of brief neuronal
excitation followed by a longer-lasting depression of activity.
A CSD event propagates across the cortex in a wave-like
mode. CDS is thought to be linked to migraine with aura
because during this phase, changes in vision, particularly
the movement/expansion of geometric shapes or scintillating
scotomas, occur and can be mapped as electrical changes in
the visual cortex consistent with CSD propagation. Whether
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CSD participates in other phases of migraine is unclear
[40, 123]. Amiloride and PcTx1 block CSD and inhibit tri-
geminal activation in migraine models in vivo [124]. Intrigu-
ingly, there was no effect of ASIC blockers against CSD
evoked by high K+, suggesting that ASICs may not contribute
to all types of CSD. In a small clinical study, amiloride
reduced both the aura frequency and headache severity [124].

3.3. Gastrointestinal Pain. ASICs (ASIC1, ASIC2, and
ASIC3) are expressed by the peripheral axons of vagal and
spinal afferent neurons. Retrograde tracing studies indicate
that 75% of the nodose ganglion neurons and 82% of the
DRG neurons projecting to the rat stomach express ASIC3-
like immunoreactivity [125]. In mouse thoracolumbar
DRGs, ASIC3 is expressed in 73%, ASIC2 in 47%, and ASIC1
in 30% of the neurons projecting to the mouse colon [126].

ASIC3 plays a major role in inflammatory hyperre-
sponsiveness to gastric acid as it may occur in gastritis and
peptic ulcer disease. Disruption of the ASIC3 gene abolished
the effect of gastritis and enhanced gastric acid-evoked
expression of c-Fos in the brainstem. Conversely, ASIC2 gene
knockout does not alter inflammatory hyperresponsiveness
but enhances the medullary c-Fos response to the gastric
acid challenge of the stomach [127]. ASIC3−/− mice have
markedly reduced visceral mechanosensitivity compared to
control animals and ASIC1−/− or ASIC2−/− mice [128],
thus indicating the significant role of ASIC3 in gastrointes-
tinal nociception.

The nonselective ASICs blocker benzamil produces a
partial attenuation of the mechanosensitivity of gastroesoph-
ageal afferents, but its effect is more significant in colonic
afferents [128]. The differential role of ASIC3 in the upper
and lower GI tract indicates that this channel may serve as
a key target for modulating GI nociception.

It is worth noting that dietary intake and bacterial metab-
olism may generate high concentrations of polyamines in the
gut that may potentiate at low concentrations or directly acti-
vate ASIC currents [129]. Noteworthy also, some intestinal
parasites, such as Echinococcus granulosus, produce and
release peptides that may inhibit ASIC currents [130], thus
producing an antinociceptive action and also probably an
action modulating the dendritic cell response activated by
acid which requires ASICs activation [131] Thence, the ASIC
inhibition may constitute a mechanism by which parasites
mitigate the nociception and immune response from the
host, facilitating parasite infestation.

3.4. Cardiac Pain. Cardiac afferent neurons express ASIC3
that are activated by mild acidification during ischemia
[132, 133]. The acid-gated currents from ASIC3−/− cardiac
afferents match the properties of ASIC2a, and currents from
ASIC2−/− cardiac afferents match the properties of ASIC3
[133], thus demonstrating that ASIC currents in myocardial
afferents are due to ASIC3-ASIC2 heteromers. ASIC3 seems
to be the sensor of myocardial acidity that triggers cardiac
pain, thus constituting a potential pharmaceutical target for
treating angina pectoris [133].

Regrettably, not all ASIC-blocking drugs are useful for
treating cardiac pain during ischemic attacks; it has been

shown that amiloride, although, reducing the peak ASIC
current in cardiac sensory neurons, is also able to increase
the sustained component [104], which is predominantly
expressed in ASIC3 and important for the transduction
of chemical stimuli and nociception (Figure 1(b)). In con-
trast, ligustrazine, a compound extracted from the roots of
Ligusticum chuanxiong, attenuated ASIC currents in DRG
neurons and in CHO cells transfected with ASIC cDNAs
[134]. In a rat model of angina, ligustrazine and ASICs
inhibitor A-317567 also reduced the cardiac ischemia-
induced electrical dysfunction and infarct size. Thus, inhi-
bition of ASICs by ligustrazine may explain the beneficial
effects of the drug in patients with ischemic heart disease
and angina [134].

3.5. Postoperatory Pain. Postoperative pain is a common
clinical condition produced by multiple processes, includ-
ing tissue damage, secondary inflammation, and nerve
damage caused by tissue manipulation during surgery
[135]. Pain can be acute or chronic and produces a series
of physiological consequences, including activation of the
“stress response,” which broadly affects various tissues in
patients [136].

In a rat model of postoperative pain, high levels of ASIC-
type currents (~77%) were found in sensory neurons inner-
vating the hind paw muscles, with a high prevalence of
ASIC3-like currents. Pharmacological inhibition of ASIC3
with APETx2, or in vivo knockdown of ASIC3 by interfering
RNA, led to a significant reduction of postoperative sponta-
neous, thermal, and postural pain behavior. A single intra-
operative application of APETx2 was an effective analgesic
for 24 hours after surgery [111].

3.6. Muscular Pain. The role of ASICs in muscle pain has
been studied in inflammatory and noninflammatory
models [137, 138]. In noninflammatory pain, an intramus-
cular acidic saline injection produces nociceptive behavior
[139, 140]. Intramuscular acid-induced pain was seen in
ASIC1−/−, but not in ASIC3−/− mice, although ASIC1−/−
mice developed secondary mechanical hyperalgesia of the
paw; however, this response was completely abolished in
ASIC3−/− mice [114]. Similarly, blockade of ASICs with
amiloride or with the ASIC3 antagonist APETx2 prevents
the development of hyperalgesia [112, 140]. ASICs inhibition
24 hours after a second intramuscular acid injection, at a time
when hyperalgesia is well established, had no effect on muscle
or cutaneous hyperalgesia. In patch clamp recordings from
DRG neurons 24h after the second acid injection, neurons
show no changes in responsiveness to acidic pH stimuli,
suggesting that long-lasting hyperalgesia is independent
of ASICs activation [137].

In human subjects, infusion of an acidic buffer into the
anterior tibialis muscle results in local pain at the injection
zone and also produces a referred pain at the ankle; addition-
ally, subjects report hyperalgesia to pressure pain at the site of
infusion and at the ankle (secondary hyperalgesia) [141].

In adult mice, knockdown of ASIC3 in DRG innervating
muscle with microRNA (miRNA) prevents the development
of both paw and muscle hyperalgesia in mice with muscle
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inflammation [142]. Twenty-four hours after carrageenan-
induced muscle inflammation in mice, the mRNA of ASIC2
and ASIC3 (but not ASIC1) in lumbar DRG neurons
increases bilaterally [143]. Additionally, in DRG neurons that
innervate muscle, there are enhanced ASIC-like currents
under an acidic pH [139]. The study also shows that the non-
selective ASIC inhibitor A-317567 can reverse both primary
and secondary hyperalgesia.

Rescuing ASIC3 expression in primary afferent fibers
that innervate muscle in ASIC3 knockout mice restores
the mechanical hyperalgesia of the paw [115], whereas
downregulation of ASIC3 in muscular sensory fibers in
wild-type animals prevents the development of inflamma-
tory hyperalgesia [142].

ASIC3 was involved in the transition from acute to
chronic pain in a mouse model of fibromyalgia induced by
intramuscular acid injections. Inhibition of ASIC3 with
APETx2 abolished hyperalgesia at the time of the first acid
injection and prevented the induction of chronic hyperalge-
sia by a subsequent acid injection (five days later). It was also
shown that ASIC3−/− mice did not develop mechanical
hyperalgesia after repeated acid injections [144, 145].

4. Conclusion

The etiology of neurodegenerative diseases is varied and
probably multifactorial, but these diseases share common
processes, such as accumulation of misfolded proteins or
metabolic alterations leading to damage to specific neuronal
populations as well as chronic inflammation; therefore, two
seemingly distant processes, such as neurodegeneration and
neuroinflammation, can be causally related and share one
or more similar pharmacological targets [146].

Neurodegenerative disorders are associated with different
processes such as neurovascular disintegration, defective
blood-brain barrier function, and microvascular dysfunction
[147]; these processes cause a decrease in brain flow that
leads to a reduction in the oxygen and nutrient supply to
the brain, in addition to causing a decrease in the extracellu-
lar pH that may lead to apoptosis [148], protein misfolding
[149, 150], excitotoxicity [151, 152], and neurodegeneration
[153, 154]. In this context, several noninvasive methods
have been developed to measure pH with high spatial
and temporal resolution in both clinical and preclinical
studies of neurodegenerative disorders. In fact, it has been
suggested to use pH measurements by means of magnetic
resonance spectroscopy as a potential biomarker of neuro-
degeneration [155–157].

Several studies have shown that ASICs play a significant
role in inflammatory processes, as well as in neurodegenera-
tive diseases, such as Parkinson’s disease, multiple sclerosis,
and cerebrospinal ataxia, among others. The use of several
techniques, including electrophysiology, molecular biology,
genetics, biochemistry, and in silico analysis, has produced
a large amount of knowledge indicating the salient role of
ASICs in the physiology and pathophysiology of inflamma-
tory and degenerative diseases.

Because the ASICs show a significant desensitization to
pH stimuli, they cannot remain activated during long-term

pH changes, or in any case, it remains a sustained component
of the current, but its magnitude is low and in the long term
must probably completely cancelled; thus explaining why
sustained acidosis is necessary but not sufficient to damage
the SNC. So, as in many other physiological and patholog-
ical processes, a combination of factors is essential for its
development. Thence, ASICs activation seems necessary
but not a sufficient cause to produce neurodegeneration.
The production of ASICs modulator agents such as
sulfhydryl-containing molecules dithiothreitol (DTT) and
glutathione [158], among others, may shift the pH of ASICs
toward more neutral pH and slow channel desensitization,
thus significantly increasing the inward sodium current pass-
ing through the ASICs and contributing to enhance the acid-
induced tissue damage.

Inflammation is a necessary and evolutionarily conserved
response to harmful stimuli that produce tissue damage or
degeneration as well as to various pathogens that invade the
host. The inflammatory process leads to the release of
numerous mediators, including purines, prostaglandins, bra-
dykinins, histamine, serotonin, nerve growth factor (NGF),
cytokines, and protons (among others) [159]. The low pH
levels found in inflamed tissue led to the hypothesis that local
acidosis may contribute to pain and hyperalgesia. ASICs are
involved in nociceptive transduction and DRG neuronal
sensitization, thus constituting a new, potentially signifi-
cant target for the treatment of pain and hyperalgesia in
diseases associated with inflammation.

Pharmacologically, the substances that modulate ASICs
have grown significantly and now include many synthetic
inhibitors as well as various organic molecules obtained from
animals, vegetables, and even endogenous ones [160]. The
increase in pharmacological, physiological, and pathophysio-
logical processes that are mediated by ASICs opens new per-
spectives for the synthesis of pharmacological tools that may
contribute to the armamentarium against neuroinflamma-
tory diseases, some of the most challenging health problems
faced in modern times. Furthermore, there is a trend to
search for multitarget molecules that may reach an efficient
neuroprotective effect [161].
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