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BACKGROUND Junctional ectopic tachycardia (JET) is a prevalent
life-threatening arrhythmia in children with congenital heart dis-
ease. It has a marked resemblance to normal sinus rhythm, often
leading to delay in diagnosis and management.

OBJECTIVE The study sought to develop a novel multimodal auto-
mated arrhythmia detection tool that outperforms existing JET
detection tools.

METHODS This is a cohort study performed on 40 patients with
congenital heart disease at Texas Children’s Hospital. Electrocardio-
gram and central venous pressure waveform data produced by
bedside monitors are captured by the Sickbay platform. Convolu-
tional neural networks (CNNs) were trained to classify each heart-
beat as either normal sinus rhythm or JET based only on raw
electrocardiogram signals.

RESULTS Our best model improved the area under the curve from
0.948 to 0.952 and the true positive rate at 5% false positive rate
from 71.8% to 80.6%. Using a 3-model ensemble further improved
1Drs Patel and Jain contributed equally to this work. Address reprint re-
quests and correspondence:Dr Parag N. Jain, Division of Pediatric Critical
Care, Texas Children’s Hospital, MC E1420, 6651Main Street, Houston, TX
77030. E-mail address: drparagjain@gmail.com.

2666-5018/© 2024 Published by Elsevier Inc. on behalf of Heart Rhythm Society. T
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses
the area under the curve to 0.953 and the true positive rate at 5%
false positive rate to 85.2%. Results on a subset of data show that
adding central venous pressure can significantly improve area under
the receiver-operating characteristic curve from 0.646 to 0.825.

CONCLUSION This study validates the efficacy of deep neural net-
works to notably improve JET detection accuracy. We have built a
performant and reliable model that can be used to create a bedside
alarm that diagnoses JET, allowing for precise diagnosis of this life-
threatening postoperative arrhythmia and prompt intervention.
Future validation of the model in a larger cohort is needed.
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Explainable AI; Junctional ectopic tachycardia

(Heart Rhythm O2 2024;5:452–459) © 2024 Published by Elsevier
Inc. on behalf of Heart Rhythm Society. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.
org/licenses/by-nc-nd/4.0/).
Introduction
Patients with congenital heart disease (CHD) routinely expe-
rience life-threatening arrhythmias, especially during the
early postoperative period, with junctional ectopic tachy-
cardia (JET) shown to be the most common.1,2 The occur-
rence of JET not only extends intensive care unit stay, but
also increases postoperative morbidity and mortality.3 JET
is a narrow QRS complex tachyarrhythmia, with electrical
activity originating around the atrioventricular node.4 The
distinctive electrocardiographic (ECG) feature of JET is the
disappearance of P waves or retrograde P waves.5 JET often
mimics sinus tachycardia, which results in delay in diagnosis
and intervention. Hence, there is a need for an accurate, real-
time monitoring system dedicated to JET detection.

Waugh and colleagues6 developed a logistic regression
model that takes ECG features as input and predicts the likeli-
hood of JET on a per-cardiac-cycle basis. However, this
linear algorithm exhibited a high false positive rate, leading
to false alarms and consequent potential alarm fatigue for
healthcare providers. Additionally, extracting ECG features
required significant time and expertise from medical profes-
sionals. Neural networks, on the other hand, are known for
their ability to approximate a wide variety of functions and
to learn characteristic features automatically from data.7

Therefore, in this work, we hypothesized an automated
approach that leverages recent advances of deep learning
(DL) could yield improved performance in JET detection.
his is an open
/by-nc-nd/4.0/).
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KEY FINDINGS

- Deep learning models can be used to build a highly
sensitive and specific algorithm for automated detec-
tion of postoperative junctional ectopic tachycardia in
children with congenital heart disease.

- Use of an ensemble technique allows convoluted neural
networks to diagnose and predict postoperative junc-
tional ectopic tachycardia using single heartbeat.

- Explainable artificial intelligence techniques, like LIME
(local interpretable model-agnostic explanations), can
enable clinicians to understand the decisions made by
deep learning models, thus increasing reliability in the
model.
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Recent work has shown that deep neural networks
(DNNs) can be effectively applied to various cardiac
dysfunction and arrhythmia detection problems. Attia and
colleagues8 trained a convolutional neural network (CNN)
to identify asymptomatic left ventricular dysfunction using
paired 12-lead ECG and echocardiogram data.9 Hannun
and colleagues10 applied their CNN to classify 12 rhythm
classes using a 30-second single-lead ECG signal sampled
at 200 Hz.10 Hughes and colleagues11 trained a CNN to
detect the presence of 39 diagnostic classes spanning 5 cate-
gories from 10 seconds of 12-lead ECG data sampled at 250
Hz. More related work can be found in the review article by
Siontis and colleagues.12 However, despite the growing body
of literature on this topic, the black-box nature of neural net-
works remains a significant barrier to their clinical adop-
tion.13–15 The decision-making process of a neural network
model needs to be elucidated using explainable artificial in-
telligence (XAI) techniques, not only to enhance its trustwor-
thiness, but also to verify and/or expand our understanding of
the diagnosis. For example, local interpretable model-
agnostic explanations (LIME) provides local, interpretable
explanations for a complex model by approximating it locally
with a simpler model, while SHAP (SHapley Additive exPla-
nations) explains the model outputs by computing the feature
contribution based on game theory.16,17

To evaluate our hypothesis, we developed CNNs that take a
single heartbeat as input and predict the probability that it is
JET. Then, we examined whether the predictions were correct
and whether the CNNs had used human-interpretable ECG
features for their predictions. Both evaluations are essential
to achieving an accurate and trustworthy JET detection model.

In addition, an important feature of JET is the increase in
atrial pressures due to the discordant simultaneous contrac-
tion of atria and ventricles, resulting in distinctive changes
in central venous pressure (CVP) waveforms.18 Xin and col-
leagues19 previously extracted distinctive features of CVP to
diagnose JET. In our study, we also investigated whether a
multimodal approach that combines ECG and CVP will
result in improved performance of JET detection.
Methods
Design
We performed a retrospective single-center cohort study of
all postoperative patients with CHD admitted to the cardiac
intensive care unit at Texas Children’s Hospital, a large ter-
tiary care children’s hospital. The Institutional Review Board
of Baylor College of Medicine approved the study and
waived the need for informed consent, as this was an obser-
vational study performed on aggregated de-identified patient
information.

Patient cohort selection and data collection are described
in Waugh and colleagues.6 In brief, patients in the cardiac
intensive care unit at Texas Children’s Hospital are continu-
ously monitored using standard bedside monitoring equip-
ment. The Sickbay platform (Medical Informatics Corp.) is
enabled on all beds at Texas Children’s Hospital to capture
and time-synchronize all physiologic data produced by all pa-
tient monitoring devices at their native resolution.

The ECG dataset comprising 40 patients was partitioned
into 3 subsets. Specifically, 15 patients were randomly
selected for the training set, while the remaining 25 patients
were assigned to the held-out test set. To fine-tune the model
hyperparameters, 3 patients were randomly selected from the
training set to create a validation set. These partitions yielded
training, validation, and test sets composed of 317,545,
44,723, and 114,412 ECG heartbeat cycles, derived from
12, 3, and 25 patients, respectively. The train-validation split
ratio in terms of the number of heartbeats (w88/12) was
slightly different from the typical 80/20, as we performed
an 80/20 on the patients, not on the heartbeats. Because we
observed that the heartbeats within a patient are very similar
to each other, we argue that the ratio in terms of the number of
patients matters more. One supporting evidence was that dur-
ing our preliminary experiments, subsampling the training
data resulted in near zero performance degradation.

To probe the value of CVP data in enhancing the JET
detection performance, a specialized subdataset was curated,
which only contained those segments of ECG data that were
accompanied by temporally aligned CVP signals. We call
this dataset the CVP subset. Using the same patient-based
partition, the CVP subset was divided into training, valida-
tion, and test sets comprising 299,201, 29,988, and 82,583
ECG-CVP cycles, respectively. Similarly, the split ratio in
terms of the number of patients was 80/20 here.
ECG signal processing
We followed Waugh and colleagues’6 approach for ECG
signal processing but skipped the feature extraction steps
because CNNs require only raw ECG signals. Specifically,
we focused on lead II and excluded segments exhibiting
movement artifacts or nonphysiological data. The retained
ECG segments were then filtered to remove frequencies
outside the range of 5 to 50 Hz. Following a normalization
based on the segment median and interquartile range, R-
wave peaks were identified using MATLAB’s findpeaks
function with adaptively adjusted parameters.
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ECG data augmentation
Data augmentation is a technique widely used in DL to
improve model performance. By transforming the original
data in various ways that simulate natural variations, DNNs
are able to learn how to deal with slightly distorted data
and become robust to these variations. We found 11 transfor-
mations for data augmentation described in the literature.20,21

However, these were proposed for different arrhythmia
detection problems. To determine the most effective transfor-
mations for JET vs normal sinus rhythm (NSR) classification,
we performed preliminary experiments in which only 1 trans-
formation was applied at a time. Based on the most common
false positives and false negatives that we have seen, we
selected 4 of them that simulate the errors during training
and improve the results: adding Gaussian noise, baseline
wandering, temporal warping, and temporal displacement
(see Supplemental Figure A.1 for details). We also found
that the best number of transformations to apply equaled
1.25 (see Supplemental Figure A.2 for details).
CVP signal processing
Example CVP (and ECG) morphology is shown in Figure 1,
in which distinctive patterns in CVP can be seen to corre-
spond to specific rhythms. In NSR heartbeats, the CVP has
a trough at the location of the P-wave in the ECG, while
for JET heartbeats, the CVP instead has a peak at the typical
location of the P-wave, consistent with electromechanical
dissociation observed in JET. This observation indicates
that CVP signals contain valuable information that may
contribute to improving classification performance.
Main outcome measures
Given that our goal was to develop a clinical bedside JET
alarm, reducing alarm fatigue was of utmost importance. We
Figure 1 Electrocardiogram (ECG) and corresponding CVP morphology. We ra
tom) beats from our data for visualization. ECG signals are shown in solid lines and
are shown for ECG and important ECG features are labeled.
used the area under the receiver-operating characteristic curve
(AUROC) and the true positive rate (TPR) at the 5% false pos-
itive rate (FPR) level (TPR@ 5% FPR), on a held-out test da-
taset as the 2 main outcomemeasures of this study. AUROC is
the overall classification performance, for each threshold used
to distinguish between the 2 classes.22
Classification models
We used a 5-layer CNN adopted from Kiyasseh and col-
leagues (see Supplemental Table A.1 for architecture).21

Each input to the CNN is a single heartbeat of ECG samples
(240 Hz), segmented between 2 consecutive QRS peaks and
resampled to a 1-dimensional vector of length 300. When
CVP data is available, we resample it to the same shape
and concatenate it to the ECG vector, forming a 2 ! 300
input. See Supplemental Appendix A for our hyperparameter
choices.
Explaining model decisions
We employ LIME to explain the decisions that the CNN
makes.16 LIME works as follows: Suppose that we would
like to understand why the CNN classifies a given heartbeat
x as JET.We perturb x by replacing a segment of the heartbeat
with themean signal strength, repeat this actionmultiple times,
and collect these perturbed heartbeats as Xy. We then feed Xy

into the CNN and obtain the corresponding predictions Yy.
Then, a linear model predicting Yy on Xy is fitted, which
well approximates the CNN in the vicinity of x. By interpreting
the coefficients of the linear model, we can then understand
how important each segment is to predicting x as JET.
Ensembles
One major source of error is that the CNN is sometimes not
confident in its predictions. One way to mitigate this issue
ndomly sample 2 sinus (top) and 2 junctional ectopic tachycardia (JET) (bot-
central venous pressure (CVP) signals are in dashed lines. The R-R intervals
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is to use ensembles, in which instead of using a single CNN to
make predictions, we average the predicted probability made
by multiple CNNs for the final decision.23 This can improve
performance and, more importantly, provide us a reliable un-
certainty metric. When the uncertainty is high, the CNN may
abstain from making risky predictions and ask for human
assistance.
Results
In Figure 2, the proposed model development process with
human feedback is illustrated. Sickbay is used to continu-
ously and passively collect all bedside data. After preprocess-
ing, heartbeat by heartbeat of labeled ECG data are fed into a
DNN, which predicts whether each beat is NSR or JET. In
addition to evaluating the model performance, a root cause
error analysis is performed by applying an XAImethod to un-
Figure 2 An overview of the model development process with human feedback
false positive rate; JET 5 junctional ectopic tachycardia; TPR 5 true positive rate
derstand how the CNN makes its predictions. Errors are then
categorized based on the LIME visualization, by electrophys-
iologists. Finally, the model is updated to improve perfor-
mance using tools such as data augmentation focusing on
variations in the morphology of the identified error examples,
and applying ensembles. This process is repeated until no sig-
nificant gain is obtained.
Classification performance
Table 1 reports the classification performance of the 4
selected trained models. AUROC and TPR @ 5% FPR
were calculated on the held-out test dataset. The logistic
regression model (LRM) from Waugh and colleagues was
used as a baseline. It is evident that the DNNs significantly
improve TPR @ 5% FPR. The best CNN ensemble model
achieved a TPR of 85.2%, outperforming the 71.8% TPR
. CNN 5 convolutional neural network; ECG 5 electrocardiogram; FPR 5

.



Table 1 Classification performance of the models on the held-out
test dataset.

Model AUROC TPR at 5% FPR

Logistic regression6 0.948 71.8%
CNN 0.952 80.6%
CNN (3-model ensemble) 0.953 85.2%
CNN (5-model ensemble) 0.950 84.0%

AUROC5 area under the receiver-operating characteristic curve; CNN5
convolutional neural network; FPR5 false positive rate; TPR5 true positive
rate.
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of the LRM. It is worth noting that during development, we
did not aim for an improvement in the TPR at a specific
FPR, but rather we focused only on improving the AUROC,
as, in general, a higher AUROC leads to a higher TPR at any
FPR level. On the CVP subset, we also found that using CVP
in addition to ECG improves the test AUROC from 0.645 to
0.825, compared with using just ECG.
Error analysis
To understand where the LRM fails, we examined heartbeats
predicted incorrectly and categorized the major types of er-
ror. We show an example of each type in Figure 3. In the first
row, for false positives (NSR predicted as JET), the top 3 er-
ror types are (1) P-wave falsely detected as T-wave, in which
P waves are falsely detected as T waves by the peak feature
extraction (PFE) algorithm used in Waugh and colleagues,6

which leads to no P waves detected; (2) slanted baseline of
P-wave, in which the slanted baseline is not identified by
the PFE, resulting in an incorrect estimate of peak promi-
nence; and (3) inverted P/T waves, which also confused the
PFE and led to feature values that do not make sense. The
Figure 3 Logistic regressionmodel error types.We show one representative exam
colleagues.6 We also label the peaks with the peak-finding algorithm used in the
subfigure. Top row: Normal sinus rhythm (NSR) predicted as junctional ectopic ta
gram.
second row in Figure 3 shows the top error types for false
negatives (JET predicted as NSR): (1) other peaks detected
as P-wave, which again caused the PFE to extract features
from an incorrect location; (2) mislabeled heartbeats, which
can happen if, for example, a few JET heartbeats are inside
a big chunk of NSR-labeled heartbeats; and (3) abnormal
morphology, due to patient movement, incorrect detection
of the QRS complex, etc.

We observed these error types during evaluation, even
though the PFE had been iterated upon a number of times.
This suggests that there are too many factors to consider
for a manually designed PFE to be perfect. One solution
is building an end-to-end DNN that does not require an
explicit PFE. Hence, we augment the training data with
transformations accounting for the majority of variation
which causes the observed error (see Supplemental
Figure A.3 for examples of transformed heartbeats). We
applied baseline wandering, which tilts the baseline of
the heartbeat, so that the CNN learns to detect peaks
with slanted baselines. Adding random temporal warping
and displacement enables the CNN to detect T/P waves at
slightly abnormal locations. We also added Gaussian
noise so that the CNN is robust to local fluctuations.
We then fed the original and transformed heartbeats
into the CNN and obtained the models reported in
Table 1.

Explanation of neural network predictions
After training the CNNs, we again performed an error anal-
ysis. Because CNNs are black boxes, we employed LIME
to analyze which heartbeat segments contribute to the final
prediction. In Figure 4, the contribution of each segment is
shown in green/red masks. The darker the green/red, the
ple for each type of error made by the logistic regressionmodel inWaugh and
same work. The specific reason for each error is shown in the title of each
chycardia (JET). Bottom row: JET predicted as NSR. ECG 5 electrocardio-



Figure 4 Explaining convolutional neural networks’ (CNNs’) decision making with local interpretable model-agnostic explanations (LIME). The LIMEmasks
show that the CNN focuses on the typical P-wave area, where the presence of a P-wave contributes negatively to junctional ectopic tachycardia (JET) prediction
and its absence contributes positively. The predicted probability is show for each class. A threshold of 0.38 is used, which corresponds to 5% false positive rate
(FPR) in the validation set. Left: Examples of correct predictions. Right: Examples of errors. LIME enables us to understand why these errors occur –whether the
convolutional neural network (CNN) fails to identify the key P-wave feature, the patient has a unique JET/normal sinus rhythm (NSR) electrocardiogram (ECG)
morphology (e.g., due to pacing spikes), or there is an abnormal beat.
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greater the impact the segment has on predicting the heart-
beat as JET/NSR. The probabilities of NSR and JET pre-
dicted by the CNN are also shown at the top of each
heartbeat. On the left side of Figure 4, interestingly, the
LIME masks focus on the P waves: the presence of P waves
contributes to a prediction of NSR, while their absence con-
tributes to a prediction of JET. This indicates that the CNN
may have learned to use P-wave features during its
decision-making process. On the right side of Figure 4,
we categorize the major error types made by the single
CNN (80.6% TPR) with the help of LIME. For example,
one source of FPs is that although the CNN pays attention
to the P-wave, the P prominence is not large enough to be
considered “present” and result in a prediction of NSR. In
fact, upon inspecting other heartbeats from this specific pa-
tient, we found that all P prominences were smaller than
average (compared with other patients). Thus, this is a
patient-specific issue, and one possible resolution is to
develop an automated pipeline to fine-tune a patient-
specific model. As for the cause of FNs, abnormal
morphology is still a factor, which could potentially be
resolved by introducing more training data. This is left as
future work. We include a number of additional LIME
mask visualizations in Supplemental Figures A.4 to A.6,
to more exhaustively illustrate how the CNN makes predic-
tions.

Discussion
Our primary objective was to enhance the diagnosis of JET
in postoperative patients with CHD using CNNs. Our re-
sults demonstrate a substantial improvement in the TPR
of automated JET detection. In addition, by using LIME
for model interpretation, we were able to validate that the
CNN correctly learned the characteristic features of JET,
namely the absence of P waves, thereby substantiating the
reliability and effectiveness of our DL approach in a clinical
setting.

Compared with previous arrhythmia detection work, our
model is designed to analyze a single heartbeat cycle re-
sampled to only 300 samples, opposed to an extended
period oof heartbeats (tens of seconds) consisting of thou-
sands of samples.8,10,11 This leads to a more cost-efficient
model capable of a finer-grained level of JET detection.
Leveraging the per-cardiac-cycle prediction, we can archi-
tect higher-order JET diagnostic strategies for improved
robustness—for instance, diagnosing JET only when m
out of n consecutive heartbeats are classified as JET, where
m and n are calibrated based on specific performance
criteria.

Also, by using the ensemble method, we are not only
able to further improve the prediction performance, but
also obtain a high-quality uncertainty estimation. By using
the variance of the 5 predicted JET probabilities made by
the 5-model ensemble as the uncertainty metric, we are
able to identify (see details in Supplemental Figure A.7)
that heartbeats that are the most uncertain to the ensemble
are those with high volatility, many peaks, or even incorrect
QRS segmentation; the heartbeats that are the most
“certain” to the ensemble are those with very simple
morphology and clear T/P waves. These findings not only
enhance our understanding and enable automatic abstention,
but also suggest pathways to improving the algorithm’s
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performance, specifically, by making the algorithm more
robust against noise, atypical peaks, and segmentation er-
rors. Possible strategies include adding a denoising step in
data processing, augmenting data with pacing spikes, and
training the model using inputs that comprise 2 or more
heartbeats.
Limitations
This study’s generalizability is currently circumscribed to a
similar clinical setting due to the single-center data source
and the specific patient demographic from postoperative pe-
diatric CHD patients. The external validity of these findings
to a broader population or to different clinical environments
remains a subject of further investigation. Additionally, as we
plan to deploy the algorithm prospectively, the real-time per-
formance of the model remains to be evaluated. While 5%
FPR is relatively low, it can still generate high rates of false
alarms based on how frequently a classification is made.
However, there is no current gold standard of clinically
acceptable FPR related to critical alarms.. To give a rough es-
timate, there are 114,412 heartbeats from 25 patients in the
test set, which leads to 114,412 ! 5% / 25 z 229 false
alarms per patient. The average ECG recording duration for
these patients is 39 minutes. Hence, on average, we have
about 6 false alarms per minute. While this is still not perfect,
we could use the aforementioned higher-order diagnostic
strategies to alleviate it.

Although our approach can be generally applicable to any
number of classes, we focused on a binary classification prob-
lem and did not verify the model performance in multiclass
settings. As for the effectiveness of LIME, while we can verify
with it that the CNN is indeed using the P-wave as an impor-
tant feature, it also sometimes generates uninterpretable masks
around the T-wave, potentially causing more confusions. One
possible explanation is that as LIME may not capture global
model behavior, it sometimes can be very sensitive to local
behavior and show spurious masks around nonimportant fea-
tures.24 Therefore, future studies including multicenter data,
diverse patient demographics, and varied clinical settings are
essential to ascertain the broader applicability and generaliz-
ability of our CNN-based approach to the detection of JET,
as well as other arrhythmias. More advanced XAI techniques
also need to be applied for better understanding.
Conclusion
This study aimed to enhance the diagnosis of JET on a per-
cardiac-cycle basis in postoperative pediatric patients using
CNNs. The results show a significant improvement in the
JET detection TPR, and the features learned by the CNNs
were verified to be human-interpretable, underscoring the
reliability and potential of the proposed DL approach for clin-
ical applications. The added value of CVP in the diagnosis of
JET is also demonstrated. This work lays the foundation for
the development of a bedside alarm system for precise JET
diagnosis and prompt intervention.
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