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Abstract: In our study, the comparison of the automatically detected precipitates in L-PBF Inconel
625, with experimentally detected phases and with the results of the thermodynamic modeling
was used to test their compliance. The combination of the complementary electron microscopy
techniques with the microanalysis of chemical composition allowed us to examine the structure and
chemical composition of related features. The possibility of automatic detection and identification
of precipitated phases based on the STEM-EDS data was presented and discussed. The automatic
segmentation of images and identifying of distinguishing regions are based on the processing of
STEM-EDS data as multispectral images. Image processing methods and statistical tools are applied
to maximize an information gain from data with low signal-to-noise ratio, keeping human interactions
on a minimal level. The proposed algorithm allowed for automatic detection of precipitates and
identification of interesting regions in the Inconel 625, while significantly reducing the processing
time with acceptable quality of results.

Keywords: inconel 625; additive manufacturing; EDS microanalysis; automatic image analysis

1. Introduction

Recent advances in additive manufacturing (AM) of metals and alloys require inten-
sification of the research of their microstructure, which should be precisely controlled to
assure the good quality of the manufactured products. Moreover, the evolution of the
microstructure in the working conditions should be recognized. It is especially important
due to the growing application of AM technology to produce parts made of superalloys
for aerospace, energy, automotive, and chemical industries. From the perspective of mate-
rials science, significant challenges remain in the field of understanding the effect of the
build process from metal powder experiencing rapid melting and solidification on the
microstructure and its development during high temperature exposure.

Due to the elimination of difficulties with subtractive machining and the possibility of
making parts with complex geometry, the additive manufacturing of nickel-based superal-
loy components by laser powder fusion (L-PBF) has recently attracted great interest [1].
One of the superalloys most widely applied for L-PBF manufacturing is Inconel 625, which
exhibits high temperature strength and exceptional corrosion resistance in harmful envi-
ronments. High cooling rate and repeated heating and cooling cycles during the L-PBF
process shape a distinctly different microstructure of Inconel 625 than in other methods. In
as-built condition, it consists of paths resulting from the bonding of powder particles by
the laser beam, in which the rapidly solidified melt pools are distinguished. Inside them,
fine grains with a very fine cellular-dendritic structure are present. The non-equilibrium
solidification conditions promote the microsegregation of alloying elements and formation
of nano-precipitates, as well as the substructure of dislocation cells [2–7].
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One of the important phenomena that require careful study is the examination of the
precipitates present in L-PBF Inconel 625 and their evolution after prolonged exposure at
high temperature.

1.1. Microstructural and Compositional Characterization of Precipitates in Additively
Manufactured Inconel 625 Superalloy

The literature data concerning nano-sized precipitates in L-PBF Inconel 625 are mostly
related to as-built and stress-relief annealed condition [2–6], in which the occurrence of
the γ” phase and δ phase, as well as MC, M6C, and M23C6 carbides, was established. The
presence of the Laves phase and P phase is also reported [8]. In addition, nanometric oxide
inclusions, which are formed by the oxidation of the feed powder and/or phenomena oc-
curring during additive manufacturing, are observed [9,10]. These particles were detected
on the basis of different methods, such as SEM and TEM imaging, X-ray, and electron
diffraction, as well as EDS microanalysis of chemical composition. However, there is lim-
ited data concerning the evolution of precipitates after high temperature exposure of L-PBF
Inconel 625. Examination of the evolution of the microstructure and the local changes in
chemical composition caused by annealing can be performed by scanning transmission
electron microscopy (STEM) imaging, combined with energy dispersive X-ray (EDS) ele-
mental mapping, which allows for both microstructure observation and determination of
elemental distribution within nanoareas. This technique requires the use of thin specimens
transparent to the electron beam. In the STEM mode, a focused electron beam scans the
sample. Due to the interaction of electrons with the sample, different signals are excited
and collected at each scanned point by appropriate detectors. The collected signals can be
used to create various types of images. High-angle annular dark-field (HAADF) images
show the intensity distribution of electrons scattered near the atomic nuclei of the atoms in
the sample. The intensity of the images depends on the square of the atomic number (Z)
and the thickness of the sample, so a mass-thickness contrast is obtained. The contrast in
STEM-HAADF mode is also influenced by the deformation fields around structural defects,
e.g., dislocations [11]. In turn, EDS spectral images, showing maps of the distribution of
chemical elements, are obtained by collecting EDS spectra at each point of the scanned
sample (Figure 1). The information obtained from the compositional maps is influenced by
many factors related to the instrument configuration, the specimen, and the settings of the
data analysis software [12].

1.2. Automatic Detection of Particles in Metal Alloys Produced by Additive Manufacturing

Interpretation of micrographs, including EDS spectral images, is a tedious and time-
consuming work. It is even more challenging if the results do not offer high quality
(meaning sufficient number of X-ray counts per pixel). Analyzing of acquired data requires
precise processing by an experience human researcher. Since this work is frequently based
on trial-and-error approach, mainly, while adjusting the background level, it is not only
time-consuming but may lead to incorrect or only partially correct results. Automatic
analysis of images cannot replace a skilled human researcher (at least not today) but
might save a lot of most cumbersome work and provide a good starting point for in-depth
manual investigation.

There are several domains, where automatic image/data processing could be useful,
from the most typical (denoising) to the ones requiring domain-specific knowledge, such
as supporting phases identification. The phases’ identification is in fact a form of clustering
of data, and many types of data science are applicable.
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Figure 1. Schematic layout of the Spectrum Imaging (SI) method in STEM mode. The STEM probe is
rastered over the specimen (x, y), and local information is retrieved by mapping the HAADF and
EDX signals against to the position of the probe (x, y, E). The EDX spectrum shows the characteristic
EDX peaks above the background signal. The obtained STEM-HAADF structural images can be
complemented by elemental information extracted slice-by-slice, while sampling the EDS spectrum
energy space I with an energy corresponding to the ∆E range of the EDS characteristic peaks.

1.3. Denoising

STEM imaging and EDS mapping require considerable time to acquire a single image.
The need of reducing that time introduces artifacts, which are generally described as a
noise. Many techniques have been developed to deal with this issue. Some are general
methods of image processing; others are focused on processing microscope images. Often,
simple general purpose filters, such as a Gaussian blur, median filter, frequency space
low-pass, or Wiener filters, are applied [13–15]. More advanced techniques consider
specificity of imaged materials character/features. In metal alloys, a periodicity of a
structure is usually used. An example of employing this approach for high-resolution
STEM is presented, i.e., in Reference [16]. The most successful image denoising algorithm
employing recognition of similar features rely on non-local detection and averaging of
self-similar image regions. The first algorithm based on this strategy is the non-local means
filter (NLM) in Reference [17]. Due to the richness in self-similarity of electron micrographs
of crystals, NLM is, in principle, very well suited for denoising such micrographs [18,19].
Recently, Mevenkamp et al. [20] proposed a multi-modal and multi-scale non-local means
(M3S-NLM) method to extract atomically resolved spectroscopic maps. Their approach
joins NLM approach with a multimodality based on searching on similarities not only
between different features recorded with a single method and spread spatially on image
but also considering several bound signals. The method is limited to periodic structures.
Results presented by Mevenkamp et al. are based on a synthetic structure, generated from
a single real image. Such approaches based on a cyclicity and NLM works very well if
an imaged object exhibits cyclic structure or at least features on the image are strongly
similar. However, none of these requirements is fulfilled in case of imaging of cellular
microstructure in L-PBF Inconel 625.

The most common, classical, and widely used tools for automatic denoising are bin-
ning and smearing methods. The binning is based on replacing of a set (usually a rectangle
or a square) of pixels with a single one, with a signal being a sum of signals from replaced
pixels. The main disadvantage of this approach is significant loss of spatial resolution. The
smearing is based on averaging (unweighted, linear or nonlinear weighted) of adjacent
pixels. This approach reduces noise and might be very efficient; however, it usually requires
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manual fitting of weighting function parameters. Improperly chosen values lead to ineffec-
tive denoising or losing important information. Since classical denoising methods have
reduced application in automatic processing of highly noised and non-uniform images,
recently, in material science, most attention is paid to Machine Learning techniques. Ede
presented a neural network trained to remove noise from micrographs. The presented case
studies show significant improve of image quality [21]. The author claims that once trained
network can be successfully used for a wide range of types of images, including STEM
images. However, the level of noise present on the exemplary images was never high
enough to hinder automatic identification of features. Other examples of ML algorithms
for noise removal in microscopy are presented in References [22,23].

While ML techniques can be effective, they are burdened with two important draw-
backs. At first, the most of ML techniques is based on a black-box approach. Hence, while
it is possible to get an answer for the question of what is the prediction, it is not possible
to explain the prediction (black-box approach). Second, ML techniques require manually
labeled data (supervised ML) or huge datasets (unsupervised ML). Due to those important
issues, other techniques useful in automatic analysis of micrographs are also investigated.
One of the most promising is Principal Component Analysis (PCA). Potapov et al. and
Potapov and Lubk [24,25] presented an application of PCA to enhance quality of highly
noised EDS images. Combination of several classical filtering methods with PCA are pre-
sented. Processed images have much better quality, but several manually fitted coefficients
were necessary.

Some reviews describing various advanced denoising methods of microscope images
(e.g., modified Rudin-Osher-Fatemi model, the adaptive Total variation method or Pois-
son Unbiased Risk Estimation—Linear Expansion of Thresholds) might be found also in
References [26,27].

1.4. Segmentation

Other relatively common use of image processing techniques in micrographs’ anal-
ysis is segmentation. One of the primary purposes of microstructural analysis of metal
alloys is examination of grain size and morphology, as well as identification of structural
compounds, phases, and other features. Traditionally, this job is performed by a human
researcher on the ground of his knowledge of investigated material and with the use
of microscopy techniques. If a metal alloy is fabricated using additive manufacturing,
this task gets somewhat complicated because of a combinatorial explosion of possible
microstructural features to identify. Hence, any support which might be provided by
computational techniques is very welcome. The first step in computer aided image analysis
is distinguishing of present features. The problem of segmentation of images is well known
and important in many disciplines, such as in i.a. autonomous driving. A review of seg-
mentation techniques for general applications including traditional and modern ML-based
approaches might be found in Reference [28].

Segmentation of microscope images has been a subject of many publications [29–31].
Recently, a consistent framework for segmentation was proposed in the study of Ref-
erence [32], which presents a thorough review of possible techniques. However, rapid
progress in this discipline meets some important obstacles against spreading into aiding
of STEM images and EDS compositional maps analysis. One obstacle is that ML-based
approaches require large sets of labeled training data, while, in conventional STEM-EDS
imaging, only several SI can be collected within a reasonable period of experimental time,
mainly due to relatively low efficiency for X-ray signal collection. Examples of successful
segmentation of images are presented by Uusimaeki et al. [33]. The software called AutoEM
is presented with some examples of particles identifying from TEM images. Several well-
established image processing methods (for filtering and segmentation) are used. Excellent
results were obtained; however, it has to be emphasized that the input images had also
excellent quality (very high contrast and noise-to-signal ratio). In daily routine, STEM-EDS
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images have much worse quality, and such traditional approaches, based on filtering and
thresholding, suffer from very low signal-to-noise ratio.

An alternative approach is based on employing primary additional knowledge, rather
than only image processing algorithms. One feasible solution is an image decomposing
on the ground of local features. Jany et al. [34] proposed application of FFT within local
window moving over a micrograph and later application of blind decomposition of the
data via Non-Negative Matrix Factorization. Their approach is sensitive to the local
features of the image such as symmetry, orientation, and characteristic spacing. It is worth
mentioning is that the method does not require a learning process. The other approach
to include a domain-knowledge was presented in Reference [35], based on including an
expert knowledge in the algorithm. Mirzaei and Rafsanjani [36] presented an application
of image processing methods, including nonlinear denoising, edge sharpening filtering,
and segmentation to identify nanoparticles from TEM images. The algorithm is dedicated
for particles with circular cross-section. With this assumption, computational efficiency
and particles’ identification quality were significantly improved, at the expense of loss
of generality.

The common drawback of all methods presented above is neglecting a part of initially
available specimen knowledge, e.g., chemical composition and repartition of elements.
Combination of STEM imaging with compositional imaging by simultaneous acquisition
of EDS signal gives the possibility to use information obtained from these complementary
methods. Mevenkamp et al. [20] applied this approach into filtering of an image, but
only in the context of NLM filtering. Furthermore, a synthetic EDS dataset was used. In
this paper, we present an approach extending this concept and applying a multispectral
signal analysis for the whole process of automated recognition of cellular structure from
denoising to segmentation.

1.5. Multispectral Images

If data includes more than one type of information (multi- or hyperspectral images),
the problem of distinguishing specific regions of a sample is a clustering problem. There
are several approaches available, such as Gaussian mixture clustering [37], SVM [38], the
k-means [35], or decision-tree [39]. Very recently, Georget et al. presented a paper focused
on identifying phases with combination of BSE and SEM-EDS images [40]. They presented
a comprehensive approach to process multispectral data consist of denoising, researcher-
defined clustering and visualization. The results are very promising; however, a share of a
manual work is significant.

Automation of phases identification with SEM images is a core of Automated Mineralo-
gy—a range of analytical solutions for quantitative analysis of minerals, rocks, and ceramic
materials. Schulz et al. presented applied summation of low-counts spectra characteristic
for predefined minerals to increase image quality. It has been proved that this approach is
very promising for investigated rare earth element ores [41]. Iglesias et al. presented an
application of image processing algorithms for automated identification of phases in iron
ores. A complex scripts were applied, with several manually fitted coefficients [42]. Pre-
sented results are promising; however, it should be emphasized that the processed samples
were relatively easier to analyze than typical STEM images of additively manufactured
Inconel 625 samples. Moreover, effectiveness of the method was presented only for limited
number of cases

1.6. Metal Alloys and Additive Manufacturing

Automatization of microscopic images of additively manufactured metal alloys are
rather rare. Snow et al. presented an application of Neural Network for detecting flaws
in layerwise images of a build. Analyzed images were acquired with X-ray computed
tomography (XCT). Obtained accuracy is high but, as other NN-based works, large number
of labeled training examples were necessary [43].
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Applications of ML for analyzing of microstructures of additively manufactured
materials are reviewed by Wang et al. [44]. Several important works are discussed, but
the most important conclusion is that character ML algorithms require labeled data or, in
the case of algorithms with ability to extract representative features automatically, large
number of training images (thousands). Johnson et al. presented another wide review of
applications of ML in image analysis application in AM materials [45]. Examples include
classification of grain structures, measurements of grain size, pore size calculations, and
more. Miyazaki et al. [46] presented an application of a complex set of ML techniques of
image processing to classify a and b phases in Ti–6Al–4V AM alloy, basing on SEM data.
The presented results confirm ability to automatically distinguish these two phases.

Gupta et al. [47] presented an approach to identify phases in steels, based on SEM
images processing. Local binary pattern, random forest, and Otsu operators are used for
extracting features, classification, and segmentation of microstructure images. The SEM
images had been denoised with Gabor filter with coefficient manually fitted. Denoising had
been followed with histogram equalization. The Local Binary Pattern algorithm had been
used to describe 72 SEM microstructures with a set of properties, which, in turn, had been
used to develop the classifier by random forest technique. All 72 images had been manually
labeled prior to the process. The images had been segmented with Otsu algorithm, and
distinguished phases had been assigned to predefined ones on the ground of the type of
steel. The presented results confirm high accuracy of quantifying phases fractions.

From this short state-of the-art review, several conclusions might be drawn. A lot of
efforts are put on denoising, segmentation, and phase identification with ML techniques.
However, the need of labeled data or abundant training sets limits their practical applica-
tions. Classical denoising and segmentation algorithms might be very effective, as well, but
they generally require a significant manual fitting to particular conditions and materials.
Multispectral analysis is an efficient tool in automatized processing of data, including EDS
images, but its applications in identification of phases in metal alloys are very rare. Hence,
the efficient at highly automatized way to identify phases in metal alloys, particularly
additively manufactured samples, must be still investigated.

Phases identification process in its assumptions is straightforward. The measurements
(usually an electron microscopy analysis) provide data, which is processed to maximize
information gain. None of the currently available techniques can identify phases directly.
Hence, additional step of data interpretation is necessary. The interpretation might be
generally based on three approaches: (i) researcher’s intuition and experience, (ii) compu-
tational modeling, and (iii) comparative analysis. Currently, the researcher’s interpretation
is inevitable—as we showed in the literature review, none of currently available methods
can specify the microstructure fully automatically. On the other hand, raw measurements
are far too complex to be directly interpreted by human. The goal of the presented research
has been not to fully automatize the process of phase identification but to design a solution,
maximally decreasing the amount of human-researcher work while keeping reliability on a
such high level as it is possible. Hence, if human researcher assistance might ensure high
reliability with minimal involvement required, it was decided to not replace them with a
fully automatic one.

Another approach to phase analysis is to perform thermodynamic modeling for
the average chemical compositions of automatically detected particles, that show the
theoretically possible phases in equilibrium conditions. This allows for the creation of a
reference system for real results obtained by experimental method. In addition, it enables
determination of the influence of temperature on the occurrence of individual equilibrium
phases. This information is valuable when interpreting the evolution of identified phases
during high temperature exposure.

Therefore, the aim of this work is to demonstrate the novel approach for automated
recognition of precipitates in compositional EDS maps and to verify the results with the
microstructural analysis and thermodynamic modeling.
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2. Material and Methods
2.1. Material

Specimens of additively manufactured Inconel 625 were delivered by Bibus Menos
Sp. z o.o. (Gdańsk, Poland). The chemical composition of the alloy is given in Table 1.
Specimens fabricated by Direct Metal Laser Sintering® (DMLS), the commercially available
L-PBF process of EOS GmbH (Krailling, Germany), were post-build annealed at a tempera-
ture of 980 ◦C for 1 h and slowly cooled in an argon atmosphere. Detailed characterization
of the microstructure in the stress-relieved condition can be found in Reference [7]. Subse-
quently, the specimens were isothermally annealed at a temperature of 800 ◦C for 5, 100,
and 500 h, and cooled in air. This temperature was selected because it is typical for the use
of Inconel 625 for prolonged exposure in aerospace, and energy industry applications.

Table 1. Nominal chemical composition of the Inconel 625 (wt. %).

Ni Cr Fe Mo Nb C Mn Si Al Ti Co

58.00 22.00 5.00 9.00 3.50 0.10 0.40 0.40 0.30 0.30 1.00

2.2. Microstructural Analysis

The TEM microstructural investigation was performed using JEM-2010 ARP micro-
scope (Jeol, Tokio, Japan). Thin foils for TEM were prepared by electropolishing. STEM
investigation was carried out using a Tecnai Osiris microscope (FEI, Hillsboro, OR, USA)
operating at 200 kV, equipped with a ChemiSTEMTM system. STEM imaging was per-
formed by applying the high angle annular dark-field (HAADF) mode. Microanalysis
of the chemical composition was performed using energy-dispersive X-ray spectrometry
(EDS) with the use of Esprit (Bruker, Billerica, MA, USA) software. The distribution of the
specific chemical elements was determined using STEM images coupled with EDS maps.
The beam current was low to avoid sample damage; thus, the acquisition time was long
enough to achieve the signal-to-background ratio minimum of 3:1 for every peak/pixel in
the EDS spectrum selected for the collection of elemental maps. The EDS spectra contained
Cu peaks generated by the copper support grid of the specimens. To exclude the Cu from
quantification, this element was chosen for deconvolution only and was not included in
quantitative analysis, as well as in the subsequent automatic detection of microstructural
features. The standardless Cliff-Lorimer quantification model was used, as it is convenient
for quantitative EDS measurements of thin specimens with relatively high accuracy. EDS
spectra recorded at every pixel in the elemental maps allowed us to reconstruct the quanti-
tative EDS maps and linescans, which were used to determine the mean concentrations of
chemical elements in the analyzed phases. The indexing of the electron diffraction patterns
was performed with the use of JEMS software (version 4.4131U2016, JEMS-SWISS, Jongny,
Switzerland) by P. Stadelmann [48]. The crystallographic data of analyzed phases available
in Atom Work software (NIMS, Tsukuba, Japan) [49] were used.

2.3. Thermodynamic Modeling

The equilibrium phase stability of the Inconel 625 was calculated using the FactSage™
7.2 program in conjunction with the SGTE 2017. The calculations were carried out in the
temperature range 200–1000 ◦C using a 10 ◦C temperature step and the alloy nominal
composition given in Table 1. Moreover, the relative amounts of equilibrium phases that
can exist at a temperature of 800 ◦C for the measured compositions of the matrix and
precipitates were calculated.

2.4. Automatic Detection of Precipitates

The first part of the proposed approach is processing measurements. In our research,
the raw data are STEM-EDS data.

We also assume that the chemical composition of an investigated sample is known
with high level of certainty. A classical way of EDS data analysis is based on prior iden-



Materials 2021, 14, 4507 8 of 20

tification of chemical elements. In our work, we choose a different approach. We treat
measurements analogously to a data-science approach, without assigning a physical or
chemical knowledge to data. Instead, for the majority of the data processing steps, we rely
on statistical tools.

EDS data for a single 2D measurements are large 3D datasets. A raw measurement
in our case would be arrays of 1024 × 1024 × 4096 integer values representing a num-
ber of registered electrons of particular energy (4096 levels) for each ‘pixel’ of analyzed
region (1024 × 1024). EDS maps usually suffer from low signal-to-noise ratio, which is
caused by an urge to shorten a measurement duration. To maximize information’s gain
from data, several operations must be performed—summarization of measurements over
domains for particular energy peaks (this step results in generating single, 2D map for
each peak) and improving quality of obtained images. While the goal of our research
is automatization, identification of energy peaks is performed manually. This is caused
by significant disadvantages of automatic peaks’ finding (relatively high probability of
incorrectness of solution) and easiness of manual solution—since the chemical composition
is known, it is straightforward to define all possible peaks. Other steps, on the other hand,
is fully automatized.

The procedure starts with a raw STEM-EDS datafile readout followed by the EDS
peak identification. The raw data of a Spectrum Image (SI) is represented as a 3D matrix of
integral values (x, y, E), where (x, y) correspond to a 2D image pixel coordinates, and E
consists of a column-by-column EDS spectral information. HyperSpy library was used to
process EDS data [50]. With the tools provided by this library, energy ranges defined for
particular peaks were converted to the ranges of counts (∆E). For each recognized peak, all
counts are summed in particular energy range of ∆E channels (keV) (separately for each (x,
y) pixel). A depth of the data structure is reduced from a number of energy channels (4096
in analyzed cases) into a number of recognized peaks, keeping width and height of the
peaks unchanged. For each (x, y) pixel of an image, a vector of integral numbers represents
the number of X-ray counts in a particular energy range ∆E that corresponds with detected
EDS characteristic peak (i) Equation (1).

intensities =
[
intensity(∆E)1, intensity(∆E)2, . . . intensity(∆E)N

]
. (1)

The next step deals with a common problem with the thickness of the wedge-shaped
sample in STEM, resulted from a thin foil preparation by electropolishing. The wedge shape
sample thickness may lead to a different electron beam interaction volume in the sample,
thus altering the emerging X-rays and subsequently detected EDS signal intensities. To
compensate for the sample thickness correlated EDS peak intensities, a semi-empirical nor-
malization procedure was applied, based on a linear regression. The detailed unwedging
algorithm for 2D (x, y) image is presented in Figure 2.
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Digitally unwedged images are smoothed with Gaussian filter with a small standard
deviation for Gaussian kernel (default value for 1024 × 1024 image is 3) and normalized
to the range (0,1). Gaussian filtering was performed with the gaussian method from scikit-
image library [51]. Next, the correlation matrix between images is computed. First, all
data is converted to the form of DataFrame from pandas library [52]. Then, the corr method
from this library is applied. This method returns a correlation matrix. If any of images’
pair have Pearson correlation coefficient above 0.5, the images are summed (a ‘layer’ with
index indicated by a row number in correlation matrix is algebraically summed with a
‘layer’ with index indicated by a column number) and renormalized to the range (0,1). Both
original layers are removed from data and replaced by the new layer. These two steps are
repeated till none of the images’ pairs have Pearson correlation coefficient above 0.5.

The pre-prepared image is processed with a set of operations. First, the image is
binarized with threshold value computed with triangle algorithm [53]. For this purpose,
a set of methods provided by scikit-images.filters module is used. First, each image is
smoothed with gaussian method. Then, the method thresholding.threshold_triangle is used.
Positive values (“bright pixels”) indicates pixels with a number of counts higher than
the threshold. Since the input images are relatively noisy, the result includes numerous
defects (small dark patches in generally light areas and opposite). These “small” objects
are removed. Some might be an effect of noise, and others might be a real feature, but with
size significantly smaller than the size of objects to be identified. The “size” is understood
as an area of directly connected pixels with the same value. This step consists of diluting
(morphology.dilute method), binary closing (morphology.binary_closing method), and eroding
(morphology.erosion method).

After the presented above operation, the 3D SEM dataset is replaced with a set of
binary images, each representing regions with elevated intensity, computed for combina-
tions of correlated maps of intensities for predefined energy ranges. The quality of images
is additionally improved due to application of described above graphical filters. Further,
all these images are logically summed (OR operator) to represent all regions, indicating
‘uncommon’ composition. For all logical operation on images, NumPy library was used.

Further steps are focused on identification of phases for each ‘uncommon’ region. The
first step requires some human-provided knowledge. Original images (before summing
correlated ones), believed to represent peaks coming from different bands of a single
chemical element, are summed and renormalized. The mask defined with ‘uncommon
regions’ indicator is applied (AND logical operator applied on mask and images for
chemical components maps). From the obtained images, regions with intensities in upper
quartile are identified. Resulting binary images might be described as maps of regions with
high share of particular components and being uncommon. Coherence of the images is
improved with some image-processing procedures (applying naming after scikit-image
numerical library, dilation, binary closing, and erosion).

The last step, based on STEM-EDS data, is an attempt to bind ‘uncommon’ regions with
particular phases. Since quantitative analysis with low signal-to-nose ratio is unreliable, we
define phases in qualitative mode. A phase is constituted by combination of binary logical
values, indicating “increased” or “not increased” share of particular chemical component.
Furthermore, “groups of phases” might also be defined. Such a group is defined with
trinary logic, as a combination of values indicating “increased”, “not increased”, and “not
relevant” shares. The problem of attaching phases to specimen regions might be treated
as a multicriteria optimization function. The objective functions depend on number of
used phases, number of used groups of shapes, and area of regions not assigned to any
phase or groups of phases. Unfortunately, solving such defined problem is complex, and,
currently, it is not automatized. Instead, a researcher must fulfill this step with an “educated
guess”, supported by his/her materials science knowledge and computational procedure
identifying coverage of “uncommon” regions with a given combination of available phases
or phases’ groups.
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3. Results and Discussion
3.1. Microstructural Analysis and Thermodynamic Modeling

Equilibrium phases possible to occur for the overall composition of the alloy given
in Table 1 were determined using the thermodynamic calculation by means of FactSage
software and SGTE database. Figure 3 shows the graph of equilibrium phases in IN625
alloy as a function of temperature. The graph is hypothetical, assuming that the alloy with
the nominal composition is under equilibrium conditions. The equilibrium phases that
occur at a temperature above 700 ◦C are the γ solid solution (FCC1#1 and FCC2#1), and
intermetallic phases σ (SIGM#1), δ (NI31), and P (P_PH), as well as M23C6 carbide (not
visible at this scale with the content less than 2 wt.%). These results make it possible to
predict the phase composition in Inconel 625 subjected to long-term annealing.
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Figure 3. Calculated relative amounts of equilibrium phases in Inconel 625 alloy as a function
of temperature.

Figure 4 shows the TEM, STEM-HAADF, and EDS spectral images of the L-PBF Inconel
625 post-build annealed at a temperature of 980 ◦C for 1 h. The micrograph shows the
cellular structure with fine particles at cell wall regions, as well as inside the cells. EDS
spectral images, showing distribution maps of constituent chemical elements, reveal the
microsegregation of niobium, molybdenum, and silicon to the cell walls. Moreover, it can
be seen that nanoparticles with dark contrast due to the content of lighter elements contain
aluminum and oxygen, so they are aluminum oxide inclusions. In the further part of the
study, inclusions of oxides were also observed in the samples after annealing at 80 ◦C, but
the analysis concerned only precipitates.
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The use of electron diffraction in TEM allowed for phase analysis of such tiny particles.
Phase identification of the precipitates showed the presence of the Laves phase particles
rich in Ni, Cr, Mo, Nb, and Si. Meanwhile, the particles rich in Nb were identified as MC
carbides. This finding is in agreement with literature data which state that, in superalloys,
Nb segregates strongly during solidification to the liquid phase and that the Nb-rich MC
carbides and the Laves phase precipitates can be formed in eutectic reactions [7].

After annealing at a temperature of 800 ◦C for 5–500 h, the microstructure was sig-
nificantly modified (Figure 5). Densely distributed plate-like precipitates were formed
inside the grains and along grain boundaries. Diffraction analyses revealed that they are
precipitates of the Ni3Nb-based δ phase. Moreover, the particles with granular morphology
identified as the Laves phase contained Mo, Nb, and Si. The exemplary diffraction patterns,
together with their solutions for the δ phase and the Laves phase, are given in Figure 5d,e.
The SAED pattern along the [001]γ matrix zone axis is superimposed with the [332] pattern
of the δ phase (Figure 5d). In turn, the [011]γ pattern in Figure 5e is superimposed with the
[131] pattern of the Laves phase.
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Figure 5. TEM and STEM-HAADF micrographs of the L-PBF Inconel 625 stress-relieved and sub-
sequently annealed at (a) 800 ◦c for 5 h, (b) 800 ◦C for 100 h, and (c) 800 ◦C for 500 h, (d,e) SAED
patterns of the exemplary δ and Laves phase particles shown in the inserts, together with their
solutions; the areas covered by the selective aperture are marked by circles.

Since this work focused on the automatic analysis of the precipitates based on EDS
maps, the results of the analysis of the microstructure and chemical composition were
used to select groups of precipitates in terms of similar chemical composition. The results
for one case, a sample annealed at 800 ◦C for 500 h, are provided. Figure 6 shows the
STEM-HAADF image and EDS maps of the chemical elements of this specimen. Based on
EDS maps, four groups of precipitates were distinguished: group 1 containing mainly Ni
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and Nb (δ phase), and group 2 rich in Mo and Si (Laves phase), as well as the groups of
precipitates, which were not identified as different phases by electron diffraction, namely
group 3 containing Ti, Ni, and Cr, and group 4 containing Ti, Cr, Ni, and C. Chemical
composition of the matrix and particular groups of precipitates determined on the basis
of the quantitative EDS microanalysis are given in Table 2. Subsequently, using FactSage,
calculations of the mass fraction of hypothetical equilibrium phases that could be formed
with such compositions were performed. The results of the thermodynamic modeling are
given in Table 3.
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Figure 6. STEM-HAADF image together with EDS maps of chemical elements distribution in the L-
PBF Inconel 625 stress-relieved and subsequently annealed at 800 ◦C for 500 h; exemplary precipitates
of groups 1–4 are marked.

Table 2. Average chemical composition ± standard deviation (in wt. %) of the matrix and designated
groups of precipitates in L-PBF Inconel 625 annealed at 800 ◦C for 500 h.

Average Chemical Composition
± Standard Deviation (in wt. %)

O C Fe Ti Nb Al Cr Mo Ni Si Mn Co

matrix
0.2 5.2 1.2 0.1 1.4 0.2 22.4 7.8 60.8 0.4 0.2 0.1

0.2 5.8 0.4 0.1 1.0 0.2 1.5 2.0 4.3 0.2 0.2 0.1

Group 1
Ni, Nb

0.4 10.9 1.1 0.4 5.3 0.4 18.8 5.6 55.9 0.3 0.5 0.4

0.4 10.0 1.0 0.4 4.2 0.4 5.5 4.6 8.1 0.3 0.5 0.4

Group 2
Mo, Si

0.2 9.3 0.8 0.5 6.5 0.2 17.2 19.2 44.7 0.9 0.4 0.1

0.2 5.2 0.4 0.5 5.2 0.2 3.8 12.4 14.1 0.7 0.4 0.1

Group 3
Ti, Ni, Cr

1.6 3.2 0.7 5.4 7.9 1.8 15.9 12 50.6 0.7 0.1 0.1

1.6 3.0 0.4 2.7 3.0 1.8 3.0 9.2 6.6 0.4 0.1 0.1

Group 4
Ti, Cr, Ni, C

0.3 11.3 0.9 3.1 3.4 0.3 17.6 7.5 54.2 0.3 0.2 0.9

0.3 11.2 0.9 3.0 3.2 0.3 2.6 5.1 7.3 0.3 0.2 0.9
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Table 3. Calculated relative amounts of phases that can be formed at equilibrium conditions at
temperature 800 ◦C for the chemical compositions of the matrix and designated groups of precipitates
in the specimen annealed at 800 ◦C for 500 h given in Table 2.

SGTE
Notation

FCC
A1#1

FCC
A1#2

HCP
A3#1

FCC
L12#1 M23C6 M7C3 C_

Graphite

phase γ phase ε phase γ′ phase M23C6 M7C3 graphite

Relative amount (wt. %)

Matrix 68.2 29.4 2.4

Group 1
Ni, Nb 63.4 5.7 19.4 3.5 8.0

Group 2
Mo, Si 49.5 9.0 36.3 5.2

Group 3
Ti, Ni, Cr 23.2 15.8 10.8 45.5 4.7

Group 4
Ti, Cr, Ni, C 61.7 10.5 20.1 7.7

For the compositions of the matrix and distinguished groups of precipitates, the
discrepancies between the observed and predicted phases were noticed. In particular, for
the composition of matrix, the predicted to be in equilibrium is the γ phase and the ε phase,
being the M2C carbide, with a minor fraction of graphite. For group 1, which was identified
as the δ phase, calculated equilibrium phases are the γ, ε, M7C3, and graphite. For the
measured composition of group 2, identified as the Laves phase, as well as for group 4,
the predicted phases are the same as for the composition of the matrix, whereas, for the
composition of group 3, the equilibrium phase that is predicted to be present at the highest
mass fraction is the Ni3 (Ti, Al)-based intermetallic γ′ phase, and the remaining possible
phases are γ, ε, and M23C6. Generally, the results of the thermodynamic modeling confirm
that, for compositions given for calculations, a reasonable agreement between existing and
predicted phases was only achieved for the matrix. However, such results were expected
since the microstructure of the L-PBF Inconel 625 was far from equilibrium, and such a state
was not achieved after annealing at 800 ◦C for 500 h. Another reason for the differences in
the thermodynamically observed and predicted phase composition may be the fact that
the chemical composition was determined by means of STEM-EDS using specimens in
the form of thin foils, in which the precipitates are surrounded by a matrix. This causes
inaccuracy in determining the composition; therefore, the method used does not allow for
automatic detection and recognition of phases. The STEM-EDS method was purposefully
selected to obtain information about the chemical composition in the form of a dataset
from the analyzed area of the sample by means of automated measurement. However,
the results showed that the accuracy is unsatisfactory, and, to obtain greater precision,
EDS point analysis should be performed. However, in many EDS setups, this method is
not automatic and is performed interactively in the areas selected by the researcher while
performing the experiment. To be able to extract the EDS point analysis during the data
post-processing, it has to be acquired in a Spectrum Imaging (SI) mode at the first place.

3.2. Application of the Elaborated Algorithm for the Automatic Detection of Precipitates in L-PBF
Inconel 625

The algorithm presented in the Section 2.4 was verified with analysis of L-PBF Inconel
625 sample annealed at 800 ◦C for 500 h. STEM-HAADF image of the microstructure
together with acquired EDS sum spectrum (number of X-ray counts summed over all 2D
image pixels), and cropped EDS spectrum with background removed are shown in Figure 7.
Defined peaks are ‘OKα’, ‘NiLα’, ‘CrKα’, ‘CrKβ’, ‘NiKα’, ‘NiKβ’, ‘NbLα’, ‘MoLα’, ‘NbKα’,
‘MoKα’, ‘SiKα’, ‘TiKα’, ‘AlKα’, ‘NKα’, with energy ranges, respectively, (0.3759, 0.676),
(0.7015, 1.0015), (5.2647, 5.5647), (5.7967, 6.0967), (7.3109, 7.6109), (8.1146, 8.4146), (2.07,



Materials 2021, 14, 4507 14 of 20

2.25), (2.25, 2.55), (16.465, 16.7650), (17.330, 17.63), (1.59, 1.89), (4.362, 4.662), (1.33, 1.63),
(0.292, 0.402) (all values in keV).
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Figure 7. STEM-HAADF image of a microstructure of the L-PBF Inconel 625 post-build annealed at a
temperature of 800 ◦C for 500 h (a), and EDS sum spectrum with removed background (b).

Three-dimensional results of EDS are flattened with summing in ranges connected
to particular peaks, transforming a 1024 × 1024 × 4096 matrix to a 1024 × 1024 × 14 one.
Exemplary results are shown in Figure 8. Further, correction of wedging and Gaussian
smoothing are applied. Results are shown in Figure 9. In the next step, correlation table is
computed for the data treated as 14 separate images. As it was described in the previous
section, images with correlation coefficient above 0.5 are summed, and these steps are
repeated till none of the coefficients are above this threshold. The first and last correlation
tables are shown in Table 4.
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From this step, images have no binding to real physical values; they must be treated as
a form of abstract representation of inhomogeneity of a sample microstructure. Normalized
results are shown in Figure 10. Identifying of regions, where values are within the fourth
quartile for any of images (7 in the presented case), and a map of ‘distinctive’ regions is
obtained (shown in Figure 11). These regions are compared to images showing intensities
for chemical components, present in the analyzed sample (if more than one spectrum
is measured for a particular component, images are summarized). Exemplary images
showing increased values of O, N, Cr, and Al are shown in Figure 12.
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As it was discussed in the previous section, automatic procedure for phases identifica-
tion is still to be developed. Manual investigation led to identifying of 5 phases groups,
presented in Table 5 and in Figure 13.

Table 5. Phases groups. Sign ‘-’ indicates “not increased”, no sign indicates “increased”, and ‘*’ sign
indicates “not relevant”.
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Phase 3 *O *Ni Cr Nb Mo Si *Ti Al *N

Phase 4 *O *Ni -Cr *Nb Mo Si *Ti Al *N

Phase 5 O -Ni -Cr *Nb -Mo -Si Ti Al N
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marked in red (a−e), and regions identified as any phase group marked in violet-blue (f). 
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The microstructural and compositional analysis by means of TEM, STEM, and EDS 

were employed to investigate the precipitates in the L-PBF Inconel 625 subjected to high 
temperature annealing. The thermodynamic modeling was used to calculate the stable 
phases for compositions of experimentally detected phases. The discrepancy between the 
predicted and observed phases showed that the microstructure of the L-PBF Inconel 625 
after annealing at 800 °C for 500 h is far from equilibrium conditions.  

The application of the elaborated algorithm for the automatic detection of precipitates 
in L-PBF Inconel 625 provides results clearly worse than those which might be provided by 
a human researcher. However, the goal of the presented work was not to replace a human 
but to significantly decrease the amount of work needed to analyze images. The presented 
algorithm is able to identify interesting (“uncommon”) regions within minutes (on a per-
sonal computer), proving digital masks of those domains. From that point, a researcher 
might start a more thorough analysis. Analysis of a coverage of precipitates with manually 
defined phases’ groups (presented above) is one of the possible paths. Other choice is man-
ual fitting of the algorithm’s parameters to improve the segmentation quality.  
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4. Summary

The microstructural and compositional analysis by means of TEM, STEM, and EDS
were employed to investigate the precipitates in the L-PBF Inconel 625 subjected to high
temperature annealing. The thermodynamic modeling was used to calculate the stable
phases for compositions of experimentally detected phases. The discrepancy between the
predicted and observed phases showed that the microstructure of the L-PBF Inconel 625
after annealing at 800 ◦C for 500 h is far from equilibrium conditions.

The application of the elaborated algorithm for the automatic detection of precipitates
in L-PBF Inconel 625 provides results clearly worse than those which might be provided
by a human researcher. However, the goal of the presented work was not to replace a
human but to significantly decrease the amount of work needed to analyze images. The
presented algorithm is able to identify interesting (“uncommon”) regions within minutes
(on a personal computer), proving digital masks of those domains. From that point, a
researcher might start a more thorough analysis. Analysis of a coverage of precipitates
with manually defined phases’ groups (presented above) is one of the possible paths. Other
choice is manual fitting of the algorithm’s parameters to improve the segmentation quality.
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