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Mast cells and influenza A virus: 
association with allergic responses 
and beyond
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Influenza A virus (IAV) is a widespread infectious agent commonly found in mammalian 
and avian species. In humans, IAV is a respiratory pathogen that causes seasonal infec-
tions associated with significant morbidity in young and elderly populations, and has a 
large economic impact. Moreover, IAV has the potential to cause both zoonotic spillover 
infection and global pandemics, which have significantly greater morbidity and mortality 
across all ages. The pathology associated with these pandemic and spillover infections 
appear to be the result of an excessive inflammatory response leading to severe lung 
damage, which likely predisposes the lungs for secondary bacterial infections. The lung 
is protected from pathogens by alveolar epithelial cells, endothelial cells, tissue resident 
alveolar macrophages, dendritic cells, and mast cells. The importance of mast cells 
during bacterial and parasitic infections has been extensively studied; yet, the role of 
these hematopoietic cells during viral infections is only beginning to emerge. Recently, 
it has been shown that mast cells can be directly activated in response to IAV, releasing 
mediators such histamine, proteases, leukotrienes, inflammatory cytokines, and antiviral 
chemokines, which participate in the excessive inflammatory and pathological response 
observed during IAV infections. In this review, we will examine the relationship between 
mast cells and IAV, and discuss the role of mast cells as a potential drug target during 
highly pathological IAV infections. Finally, we proposed an emerging role for mast cells in 
other viral infections associated with significant host pathology.

Keywords: mast cell, mast cell activation, influenza A virus, dengue virus, inflammation, degranulation, viral 
infection, viral immunology

introduction

Influenza A virus (IAV) is a common human respiratory pathogen, which causes annual seasonal 
infections with a low frequency of morbidity and mortality, usually limited to the young (<5 years) 
and the elderly (>65 years) populations. Importantly, IAV has the potential to cause global pandemics, 
which can significantly increase morbidity and mortality throughout the entire population (1). In 
the past century, there have been four major IAV pandemics: the 1918 H1N1 “Spanish” influenza, 
the H2N2 “Asian” influenza in 1957, the H3N2 “Hong Kong” influenza in 1968, and more recently, the 
reemergence of a pandemic H1N1 (H1N1pdm) influenza in 2009 (2). Moreover, significant spillover 
infections from the zoonotic avian reservoir of IAV continue to have an impact on the human popula-
tion, including the current avian H5N1 and H7N9 IAV outbreaks in Southeast Asia (3). To date, these 
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H5N1 and H7N9 outbreaks have remained a spillover event, but 
the potential of these novel avian IAV strains to develop the ability 
to efficiently transmit human-to-human through aerosol droplets 
exists (3–5); thus, increasing the threat of new global pandemics.

As an RNA virus that lacks proofreading capabilities, IAV has 
a high mutation rate, resulting in significant antigenic drift in the 
immunodominant hemagglutinin (HA) and neuraminidase (NA) 
proteins. Furthermore, owing to its segmented genome, IAV can 
undergo genetic reassortment (antigenic shifts), resulting in novel 
IAV strains with the potential to rapidly transmit between humans 
to cause a new pandemic. Given these factors, the next pandemic 
IAV strain is nearly impossible to predict, leading to many chal-
lenges in vaccine development. Current vaccine strategies take 
approximately 6 months for production. During the 2009 H1N1 
pandemic, this delay resulted in no effective vaccine being available 
for the first wave of the pandemic (2). Thus, it is necessary to find 
alternative ways to alleviate and treat IAV-induced disease during 
the early wave(s) of a novel pandemic IAV outbreak.

Antiviral drugs are an obvious front line of defense against the 
emergence of novel IAV strains. Currently, two main classes of 
antiviral drugs are approved to treat IAV-infected patients. The first 
class of antiviral drugs targets the M2 ion channel (amantadanes), 
which is important for virus uncoating. However, amantadanes are 
no longer recommended for prophylaxis or treatment of IAV due 
to widespread resistance among current human seasonal H1N1 
and H3N2 isolates (6–8). The second class of antiviral drugs 
targets the enzymatic active site of the viral NA. The viral NA is a 
sialidase capable of hydrolyzing terminal sialic acid residues from 
glycoproteins and glycolipids. The NA is crucial in allowing the 
IAV to traverse the glycan rich soluble mucins in the respiratory 
tract, as well as allowing newly formed virions to be released from 
host cells, to be shed into the extracellular space for dissemination 
within a host and transmission between hosts. NA inhibitors are 
becoming of limited efficacy as well, due to emerging resistance 
among IAV isolates found in humans and the requirement for early 
administration (within 48 h of the presentation of symptoms) for 
maximal effectiveness (2, 7, 9–12). Therefore, additional antiviral 
drugs are required to limit IAV-induced disease and fight the spread 
of IAV. Numerous drugs are currently in development, which target 
viral entry, viral transcription, or host factors necessary for IAV 
replication (9). However, the effectiveness of these drugs against 
IAV in the clinical setting is unknown.

An alternative front line defense against the emergence of novel 
IAV strains is to target the inflammatory pathways that lead to 
lung damage and loss of function (13, 14). Alveolar epithelial cells, 
endothelial cells, tissue-resident alveolar macrophages, dendritic 
cells, and mast cells protect the lungs, as these cells are readily 
able to respond to invading pathogens. Pandemic strains of IAV, 
including the 1918 “Spanish” influenza and the 2009 H1N1pdm 
influenza, and spillover infections with avian IAV isolates can 
produce excessive tissue damage and pathological changes to 
the lung architecture (1, 15, 16). Current evidence suggests the 
lung injury induced during IAV infection is the result of excessive 
leukocyte infiltration and an exaggerated inflammatory cytokine 
response that is disproportionately high relative to the level of viral 
replication, which has been termed a “cytokine storm” (16–21). 
Selectively dampening the inflammatory response in mice has 

been shown to increase survival following IAV infection without 
impairing viral clearance (16, 17, 19–22). Thus, understanding 
the inflammatory cascade responsible for the immunopathology 
observed following IAV infection is imperative for the develop-
ment of novel immunotherapeutics aimed at limiting IAV-induced 
disease and pathology.

Macrophages and neutrophils are recruited at excessive levels 
following infection with the 1918 or H5N1 influenza strains (16). 
More recently, it has been demonstrated that mast cells play a piv-
otal role in initiating and/or amplifying the immunopathological 
“cytokine storm” and inflammatory leukocyte recruitment in the 
respiratory tract during IAV infection (23–25). Mice infected with 
either H1N1 or H5N1 IAV demonstrated elevated levels of inflam-
matory cytokines and chemokines during infection. Conversely, 
mice lacking mast cells or treated with mast cell stabilizing agents 
show a reduction in the levels of these inflammatory mediators that 
correlates with a decrease in the recruitment of inflammatory cells 
to the lungs during infection (23, 24). Therefore, it is crucial that 
the individual and collective roles of these inflammatory cells, with 
each other and with the epithelial and endothelial compartments, 
during pathological IAV and other pathological viral infection, be 
more thoroughly examined.

Mast Cell Biology
Mast cells are tissue resident, granule-containing cells capable of 
regulating both the innate and adaptive immune response (26). 
Enrichment of mast cells at environmental interfaces allows these 
cells to be among the first to respond during pathogen invasion, 
along with dendritic cells and epithelial cells (27). Moreover, 
mast cells are typically situated near blood vessels, lymphatics, 
and nerve endings, enabling them to have long range effects on 
the host response to pathogens (27, 28). As such, mast cells are 
critical to immune surveillance, eliciting an immediate reaction 
to invading pathogens and initiating an appropriate innate and 
adaptive immune response.

Phases of the Mast Cell Response
Mast cells have two distinct phases of activation: immediate 
degranulation, resulting in the release of pre-synthesized mediators, 
and delayed secretion of secondary de novo synthesized mediators 
(27, 29, 30). The delayed secretion of secondary de novo effector 
molecules produced by mast cells can be further segregated into 
two classes: (1) prostaglandins and eicosanoids released within 
minutes of activation, and (2) cytokines, chemokines, and growth 
factors that are released within hours of stimulation (Figure 1). 
Together, these mast cell outputs can increase epithelial and 
endothelial cell permeability and activation state, which together 
with chemotactic molecules, result in increased inflammatory cell 
recruitment to infected tissues (Figure 2).

Mast cell granules contain histamine, TNF-α, amines, 
β-hexosaminidase, serotonin, antimicrobial peptides, and 
proteases (tryptases and chymases) bound to either heparin 
or chondroitin sulfate through electrostatic interactions (29, 
31–33). Upon stimulation, the granules are released from the 
cell via a calcium-dependent exocytosis process. Once expelled, 
the granules can either discharge the stored mediators into the 
immediate environment or intact granules can travel through the 
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IL-17, and VEGF (32, 52). These mediators activate tissue-resident 
cells, while recruiting additional effector leukocytes and lympho-
cytes to maintain the inflammatory state for a prolonged time. 
In conclusion, through the release of numerous chemotactic 
factors and vasodilators, mast cells are optimized for the rapid 
initiation and propagation of an acute inflammatory response 
through degranulation, production of bioactive lipids, and secre-
tion of cytokines and chemokines. The resulting leukocyte and 
lymphocyte infiltrate can then help to maintain the inflammatory 
state if the infection persists (Figure 2).

De Novo Mast Cell Recruitment During Inflammation
In addition to tissue-resident mast cells, mast cell progenitors 
can be recruited to sites of acute or chronic inflammation. How 
the recruitment of these mast cell progenitors is regulated is just 
now beginning to be understood. Mucosal mast cells (MMC), the 
dominant type of mast cell in the lung, develop from the bone 
marrow as mast cell progenitors (53). In an asthma model, follow-
ing aerosolized challenge with ovalbumin, mast cell progenitors 
are rapidly recruited into the lungs, peaking day 1 after challenge 
(54). In this ovalbumin-induced allergic airway inflammatory 
disease, multiple pathways are critical for mast cell progenitor 
accumulation in the lungs. Integrins α4β1 and α4β7 regulate the 
migration of mast cell progenitors to the lungs through VCAM-1 
interactions (55). Moreover, CXCR2 expression in a radio-resistant 
cell population is important in regulating mast cell progenitor 
recruitment to the lungs, likely through its regulation of VCAM-1 
on the pulmonary endothelium (56). NKT cells are also able to 
induce mast cell progenitor accumulation in the lungs through 
an IL-9 dependent pathway (57). Finally, both prostaglandin E2 
and leukotriene B4 (LTB4), which can be highly produced by mast 
cells, have been shown to enhance chemotaxis of mast cell progeni-
tors (58, 59). In addition to their well-elucidated role in allergic 
airway disease, there is strong evidence for an accumulation of 
mast cells in the intestinal tract during helminth infections (60). 
Furthermore, mast cell precursors appear to accumulate at sites 
of viral infection including IAV, Sendai virus, infectious bursal 
disease virus (IBDV), and Newcastle disease virus (NDV) (61–65). 
Accumulation of mast cell progenitors occurs either in a mast cell 
degranulation-dependent (24, 62–65) or -independent manner 
(61, 66). Therefore, mast cell activation can result in the local 
accumulation of mast cells in infected tissue, further augmenting 
the role these cells can play during infection (Figure 2).

Expression of Pattern-Recognition Receptors by Mast 
Cells for Sensing Invading Microbes
Mast cells express a large array of innate cell surface and cytosolic 
receptors that mediate their activation, and as such are integral cells 
in initiating appropriate immune responses to infectious agents. 
Notably, mast cells express a large array of Fc receptors including 
FcϵRI, FcγRI, and FcγRIII (67). Mast cells are also able to respond 
through a wide variety of pattern-recognition receptors (PRR), 
including toll-like receptors (TLR), nod-like receptors (NLR), 
retinoic-acid inducible gene 1-like receptors (RLR), and C-type 
lectin receptors (CLR), each of which play an essential role in innate 
immunity by detecting conserved molecular patterns expressed 
by pathogens (68–82). Mast cells can also be activated through 

bloodstream and lymphatics, acting as a signaling mechanism 
to activate and recruit other cells to the infected tissue (34, 35). 
Histamine is a potent inflammatory molecule, which increases 
vascular permeability, induces vasodilation, and stimulates 
bronchial smooth muscle contraction. The inflammatory cytokine 
TNF-α promotes local and systemic inflammation while enhancing 
neutrophil recruitment to the site of infection. Granule proteases 
are capable of increasing vascular permeability and enhancing the 
recruitment of neutrophils to the site of inflammation (36–39), or 
can act directly to detoxify toxic proteins (40–43). Interestingly, 
the local homeostatic cytokine milieu of a tissue modulates the 
precise granule components, allowing mast cells to adapt to their 
local environment to mount a tissue appropriate inflammatory 
response (44, 45). Following activation, mast cells are unique in 
that they replenish their granules, usually within weeks of activa-
tion (46, 47). This ability to regranulate allows mast cells to tailor 
the composition of their granules, and thus be more prepared for 
reinfection (Figure 2) (27).

After the immediate mast cell degranulation response, the 
arachidonic acid-dependent inflammatory mediators, such as 
leukotrienes and prostaglandins, are rapidly produced and released 
from mast cells due to enzymatic, rather than transcriptional, 
changes within the mast cell (48). These lipid mediators contribute 
to local vascular permeability, tissue edema, and the recruitment 
of neutrophils and other inflammatory cells (49–51).

Finally, de novo synthesized cytokines, chemokines, and 
growth factors are released, hours following activation through 
transcriptional and translational up-regulation. The multitude 
of cytokines, chemokines, and growth factors released by mast 
cells include de novo synthesized TNF-α, IL-4, IL-5, IL-6, IL-13, 

FiguRe 1 | Mast cell activation in response to viral infection. Mast cells 
are classically known for their response to polyvalent cross-linking of IgE in 
the FcϵR1 receptor, which is important in protective immunity to helminth 
worm infection and pathologically associated with allergic disease. However, 
mast cells also are important tissue sentinel cells for initiating inflammatory 
response to pathogens. Mast cells can recognize and respond to viruses 
through several different receptors. These receptors include TLR signaling, 
such as TLR3 detection of dsRNA, sphingosin-1-phosphate (S1P) binding to 
its receptor S1PR, and RIG-I recognition of uncapped vRNA. Engagement of 
these receptors results in mast cell activation leading to immediate 
degranulation, the de novo synthesis of eicosanoids within minutes of 
activation, and the de novo synthesis of numerous cytokines, chemokines, 
and growth factors within hours of activation.
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FiguRe 2 | The effects of mast cell activation on the inflammatory 
environment induced by viruses. Within the tissues, mast cells can be 
activated by viruses (i) resulting in the secretion of effector molecules (ii). Mast 
cell-derived effector molecules act within the local tissue environment or at 
distal site to mediate the accumulation of mast cell progenitors (iii) and 
leukocytes (iv) to the site of infection. Mast cell accumulation in the infected 
tissues could be due to either the recruitment and differentiation of mast cell 

progenitors to the infected tissue and/or proliferation of the tissue-resident 
mast cell population. Mast cell activation can participate in limiting viral 
replication in the local tissue and viral dissemination, but if left unchecked can 
cause significant tissue damage, vascular leakage, and tissue edema. Finally, 
activated mast cells can survive the pathogenic insult and replenish mast cell 
granules to return the mast cell to a basal state to survey the tissue for future 
pathogenic insults (v).
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engagement of complement receptors (28), CD48 (83, 84), and 
integrins (85). Lastly, mast cells can respond to pathogens indirectly 
through the IL-33 signaling pathway (48). Thus, mast cells are 
capable of responding to a broad range of pathogen-derived or 
pathogen-induced stimuli (Figure 1). Interestingly, mast cells do 
not respond uniformly to all input stimuli (86). For example, signal-
ing through TLR4 leads to a strong pro-inflammatory cytokine 
response, but limited mast cell degranulation. Conversely, signaling 
through TLR2 induces both an inflammatory cytokine response 
and mast cell degranulation (87). Mast cell activation therefore is 
an important rheostat for the immune system, which will likely 
modulate to the appropriate response. However, aberrant activation 
or prolonged activation may elicit tissue immunopathology.

Role of Mast Cells in Allergies and Asthma
Mast cells are most frequently recognized for their detrimental 
role during an allergic response. Following an initial exposure 
to antigen (Ag), activated B cells can undergo class switching, 
resulting in the secretion of IgE. The high-affinity IgE receptor, 
FcϵRI, expressed on the surface of mast cells binds to the Fc por-
tion of IgE, sensitizing the mast cells. Upon subsequent exposures, 
polyvalent Ag cross-links the surface bound IgE resulting in mast 
cell degranulation and the production of bioactive lipids and 
cytokines and chemokines (67, 88, 89).

Mast cells have also been recognized for their role in asthma. 
Asthma is a pleomorphic disease characterized by recurrent airway 
restriction, shortness of breath, wheezing, and coughing. Within 
asthma patients, including both atopic (allergic) and non-atopic 
(intrinsic), the number, localization, and phenotype of mast cells 
are altered. Repeated activation of the pulmonary mast cells by the 

allergen results in mast cells, which are more likely to degranulate 
compared to non-asthmatic patients (90, 91). Overall, the mast 
cell response contributes to the bronchial constriction, chronic 
inflammation, and tissue remodeling typical of asthma patients.

It is now well-documented that infection with respiratory 
viruses, including IAV, rhinovirus, and respiratory syncytial virus 
(RSV), often exacerbates asthma (92–96). These upper respiratory 
tract infections frequently lead to hospital admission for asthma 
patients (97). Interestingly, asthma was the most common comor-
bidity among hospitalized patients during the 2009 H1N1pdm 
IAV pandemic (98–101). A state of hyperresponsiveness in the 
asthmatic patients, as well as increased levels of inflammatory 
molecules (e.g., histamine, IL-6, and leukotriene), are believed to 
contribute to asthmatic exacerbation from viral infection (102). 
Thus, it is critical we understand the interactions of mast cells with 
viruses in both naïve hosts and those with chronic inflammatory 
conditions, which alter mast cell numbers and function.

is There a Role for Mast Cell Activation 
and Mediators During Pathological viral 
infections?

Numerous highly pathological viral infections cause significant 
disease through immune-mediated pathology to tissue and/or 
induction of vascular permeability. For example, during dengue 
virus infections there is significant vascular permeability, which 
is associated with severe disease and mast cell activity (51, 103). 
Additionally, severe respiratory virus infection can induce acute 
respiratory disease syndrome (ARDS), which is associated with 
significant epithelial–endothelial dysfunction and excessive 

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org


May 2015 | Volume 6 | Article 2385

Graham et al. Mast cell response to viruses

Frontiers in Immunology | www.frontiersin.org

activation of macrophages and neutrophils (104). ARDS has been 
observed during experimental IAV infection of animal models, 
as well as in people naturally infected with highly pathological 
IAV isolates, such as the 1918 H1N1 “Spanish” influenza strain 
and the recent zoonotic outbreaks of avian H5N1 and H7N9 
IAV strains (105–107). An eloquent transcriptome analysis by 
Josset et al., which compared highly pathological versus seasonal 
IAV infections, detected a strong transcriptional signature of 
macrophages and neutrophils in the lungs of mice with severe 
IAV infection (108), which fits with prior histological observations 
(16). Intriguingly, Josset et al. also saw a strong transcriptional 
contribution of mast cells during these severe IAV infections (108); 
however, these authors did not explore the role this cell population 
might play in the observed disease. We propose that, in addition 
to macrophages and neutrophils, mast cells may contribute to the 
excessive inflammatory response and vascular problems observed 
not only during highly pathogenic IAV but also in a range of highly 
pathogenic viral infections as further discussed below.

influenza virus
Pandemic isolates and the emerging highly pathogenic avian 
strains of IAV are capable of inducing a robust inflammatory 
response, which causes significant damage within the lungs 
and the ultimate restructuring of the lung architecture (1). In 
humans experimentally infected with IAV, detection of hista-
mine metabolites correlates with clinical symptoms (109, 110). 
Moreover, emerging data in the murine model of IAV suggests 
a link between mast cell recruitment and activation with lung 
immunopathology. Following inoculation with a mouse adapted 
strain of the 2009 H1N1pdm IAV (A/California/04/2009), mice 
develop significant pathology and inflammation, recapitulating 
clinical observations from the 2009 pandemic in humans, while 
mice infected with a non-adapted strain do not (108, 111). In those 
mice inoculated with the mouse-adapted 2009 H1N1pdm IAV, an 
enrichment of genes for activated macrophages, neutrophils, and 
mast cells was observed when compared to mice inoculated with 
the non-pathogenic strain (108). Moreover, this same observation 
was made during infection with recombinant 1918 H1N1 (108). 
Thus, it appears that early accumulation of activated macrophages, 
neutrophils, and mast cells correlates with the immunopathology 
associated with pandemic IAV infections.

As this prior transcriptomic study suggested (108), increased 
mast cell density was observed in the nasal mucosa, trachea, 
lung parenchyma, and mediastinal lymph node following 
infection with a highly pathological H5N1 isolate (A/chicken/
Henan/1/2004) (24). While these data demonstrated that mast 
cells are increased in the lungs of mice during highly pathological 
IAV infection, their role in the inflammatory response induced by 
IAV remained elusive. In this regard, recent data demonstrates 
that mast cells can play a detrimental role during IAV infection 
in a strain specific manner. Specifically, following infection with 
A/WSN/1933, B6.Cg-KitW-sh mice, which lack mast cells (112), 
exhibit a reduction in weight loss, lung pathology, and pulmonary 
inflammation compared to wild-type mice (23). Importantly, when 
mast cells are reconstituted into B6.Cg-KitW-sh mice, the weight 
loss and inflammatory response are restored to wild-type levels 
(23). In studies using a highly pathogenic H5N1 virus (A/chicken/

Henan/1/2004), mice administered ketotifen, a mast cell stabilizing 
agent, demonstrate reduced lung inflammation and epithelial cell 
apoptosis than untreated mice (24). Furthermore, combination 
therapy with ketotifen and oseltamivir (an NA inhibitor) improves 
survival better than either drug alone (24). Taken together, these 
data show mast cells can contribute to the pathology observed 
during IAV infection in mice. The newly emerging zoonotic strains 
of highly pathogenic IAV, such as H7N2, are also presenting with 
high cellular infiltrate and damage within the lungs of mice, sug-
gestive of mast cell activation (25, 107). If mast cells participate 
in the immunopathology elicited by these emerging zoonotic IAV 
isolates remains to be seen.

Dengue virus
Human infection with dengue virus can result in a wide range 
of pathologies. In its most severe forms, dengue virus induces 
dengue hemorrhagic fever and dengue shock syndrome, both of 
which are characterized by increased vascular permeability. The 
production of cross-reactive antibodies during a primary infection 
can lead to more severe disease upon secondary infection with a 
heterologous serotype (113, 114). The urine and blood of infected 
patients display elevated levels of histamine (115, 116), the pres-
ence of vasoactive factors (117, 118) and increased serum levels 
of chymase, a mast cell specific enzyme (103). As each of these 
mediators is released by mast cells, numerous studies have exam-
ined the role mast cells play during dengue virus infection. Upon 
exposure, dengue virus induces both degranulation and cytokine 
production by mast cells (82, 103, 119, 120). Mast cell derived 
LTB4 and granule proteases increase vascular permeability (82, 
103), while the synthesis and release of TNF-α, IL-6, IFN-α, CCL2, 
CCL3, CCL5, and CX3CL1 recruit NK cells and T cells to the site of 
infection (82, 121–123). Mast cell deficient mice show a reduction 
in symptoms, demonstrating that mast cells play an important 
role in dengue virus-induced immunopathology (103). Moreover, 
administration of the mast cell stabilizing drugs, cromolyn and 
ketotifen, or the LTB4 antagonist montelukast results in reduced 
vascular leakage compared to untreated mice (103). Current data 
suggests that early after infection, mast cell activation by dengue 
virus is beneficial, as it recruits NK and T cells to promote viral 
clearance (82, 122, 123). However, widespread mast cell activa-
tion is detrimental, as it increases vascular leakage, leading to the 
more severe forms of dengue-induced disease (103). In a murine 
model, the presence of non-neutralizing IgG enhances mast cell 
degranulation during dengue infections through interactions with 
FcγRIII (124). Therefore, dengue virus can activate mast cells both 
directly, through an as yet unidentified mechanism, or indirectly 
through FcγRIII.

Hantavirus
The zoonotic transmission of hantavirus to humans can result 
in hemorrhagic fever with renal syndrome or hantavirus car-
diopulmonary syndrome, both of which are characterized by 
increased vascular permeability and thrombocytopenia (125). 
Patients with hemorrhagic fever with renal syndrome exhibit 
significantly elevated histamine levels, indicating a possible role 
for mast cells in potentiating this syndrome (125). Endothelial 
cells, epithelial cells, and dendritic cells are all permissive to 
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hantavirus infection in vitro (125–127), and recent evidence sug-
gests mast cells are also susceptible to this virus (125). Inoculation 
of in vivo differentiated mast cells results in productive infection 
and mast cell activation, though the ability of hantavirus to 
directly induce degranulation is not known (125). Furthermore, 
the ability of various strains of hantavirus to infect and replicate 
within mast cells directly correlates with the pathogenicity of the 
strains (125). Thus, mast cells may be an important factor during 
hantavirus-induced disease.

Sendai virus
Sendai virus is a respiratory parainfluenza virus that is highly trans-
missible in both rodents and swine. In neonatal rats, Sendai virus 
causes viral bronchiolitis and airway hyperresponsiveness, which 
are associated with elevated levels of bronchiolar mast cells and 
eosinophils (66, 128–130). The elevated numbers of bronchiolar 
mast cells observed after Sendai virus infection result from both 
the proliferation of tissue-resident mast cells and recruitment of 
mast cell progenitors to the airways (61). Sendai virus can also 
infect human mast cells, resulting in their activation (131). While 
the release of β-hexosaminidase (a major granule component) has 
not been detected from human mast cells, both histamine release 
in rats and tryptase release in pigs have been detected following 
Sendai virus challenge (131–133). Following Sendai virus infection, 
human mast cells produce type I and III interferon (131), which 
have been implicated in asthma exacerbations (134). Interestingly, 
in the rat model, animals previously infected with Sendai virus 
subsequently sensitized to ovalbumin 1-month later display 
heightened allergic airway inflammatory cell reactions (66). Thus, 
mast cells are important contributors to the inflammatory response 
to parainfluenza viruses, and participate in their pathological role 
during allergic airway disease.

infectious Bursal Disease virus (iBDv)
IBDV is a contagious disease with a high mortality rate, which 
impacts the poultry industry worldwide. IBDV infected chickens 
have increased inflammatory lesions, which lead to susceptibility to 
secondary infections (135–137). Mast cell numbers are increased 
at the site of infection during IBDV. Moreover, these mast cells 
are activated, as mast cell tryptase accumulates in the infected 
tissue (64). Treatment with ketotifen not only decreases mast 
cell numbers in infected birds but also correlates with reduced 
injury during infection without altering expression of IBDV Ags 
(65). Thus, by reducing the release of mast cell mediators, one 
can decrease mast cell accumulation in the infected tissue, and 
ultimately decrease tissue damage, and increase survival during 
IBDV infection.

Newcastle Disease virus (NDv)
NDV is another highly contagious poultry disease, which infects 
the gastrointestinal tract, resulting in high mortality and economic 
losses (138). Similar to IBDV, mast cells are found in and around 
NDV lesions during infection, correlating with an increase of 
mast cell tryptase levels in the tissues (63). Chickens pretreated 
with ketotifen show a reduction in tissue damage during NDV 
infection (62). Thus, similar to IBDV, inhibition of mast cell 
mediators reduces mast cell accumulation in the infected tissue 

and decreases tissue damage, increasing survival following NDV 
infection.

Porcine Reproductive and Respiratory 
Syndrome virus
Porcine reproductive and respiratory syndrome virus (PRRSV) is 
associated with high mortality in pigs. Infection with low patho-
genic PRRSV (LP-PRRSV) results in minimal histopathological 
changes with no mortality. In contrast, infection with a high patho-
genic strain of PRRSV (HP-PRRSV) results in significant mortality 
associated with extensive tissue damage within the lungs (139, 
140). Pigs infected with HP-PRRSV display significant respiratory 
distress, which is associated with pulmonary lesions characterized 
by inflammatory cell infiltrates, interstitial and alveolar edema, 
and hemorrhaging, which is not observed following LP-PPRSV 
infection. Infection with the HP-PRRSV results in higher virus 
titers and higher levels of pro-inflammatory cytokines and immune 
cell infiltrate, including neutrophils, mononuclear phagocytes, and 
mast cells. Both histamine and LTB4 are significantly increased 
in the serum of HP-PRRSV infected pigs (141). Because, these 
mediators play an important role increasing blood vessel perme-
ability and disease severity during dengue virus infection (51), it is 
likely they contribute to the increased lung edema and hemorrhage 
observed during HP-PRRSV (141).

How are Mast Cells Activated by viruses?

Are virus entry and Replication in Mast Cell 
Required for Activation?
Both pathogenic and non-pathogenic hantavirus nucleoprotein 
can be detected in mast cells (125). In addition, the human mast 
cell lines KU812 and HMC-1 are permissive to dengue virus in 
the presence of human dengue virus immune sera (119). This 
data demonstrate that these highly pathogenic viruses can infect 
mast cells. RSV activates mast cells resulting in the production of 
cytokines and chemokines including CXCL10, CCL4, CCL5, and 
type I interferons (142). RSV Ag can be detected in both primary 
cord blood mast cells and the human mast cell lines following 
infection (142). However, similar to many other pathogenic 
viruses, mast cell infection does not result in the release of infec-
tious progeny virions (142).

While respiratory epithelial cells are the primary target for 
IAV replication, IAV can infect a wide range of cells, including 
endothelial cells (21), macrophages (143), dendritic cells (144), 
and mast cells (23, 121, 145). In mast cells, IAV is able to mediate 
viral entry, but largely appears to undergo an abortive infection. 
Inoculation of murine bone marrow derived mast cells (BMDMC) 
with A/WSN/1933 results in de novo expression of the viral NS-1 
protein, but does not produce any new infectious particles (23). 
Interestingly, treatment of murine BMDMC with another H1N1 
isolate, A/PR/8/1934, does not result in detectable NS-1 expres-
sion (23). On the other hand, infection of the human mast cell 
line LAD and human cord blood derived mast cells with the  
A/PR/8/1934 strain results in viral mRNA and protein synthesis, 
but does not produce de novo infectious particles (145). In con-
trast, recent data demonstrate the murine mastocytoma cell line 
P815 can be productively infected with A/WSN/1933 (H1N1),  
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A/Chicken/Henan/1/2004 (H5N1), and A/Chicken/Hebai/2/2002 
(H7N2), producing infectious virus over the first 24 h of infection, 
as measured by qRT-PCR, hemagglutination assay, and plaque 
forming assay (25). These differences likely reflect the different 
types of mast cells used for these studies and the infectious dose of 
the virus. Overall, these data demonstrate that IAV, dengue virus, 
RSV, and hantavirus can at least bind to and enter mast cells, which 
is likely important for mast cell activation. More studies are needed 
to understand the fine specificity of these viruses, and specifically 
the different IAV isolates for distinct mast cell populations, and the 
cellular factors that may be present in some of these populations 
that limit IAV propagation.

How are viral Particles Recognized by Mast 
Cells?
Mast cells express a wide range of PRR which allows these cells 
to respond to a variety of stimuli, including bacteria, parasites, 
fungi, and viruses (Figure 1) (86). RIG-I is a cytosolic receptor 
that can detect IAV RNA and many other single stranded RNA 
viruses (73, 80). Once RIG-I detects vRNA, it signals through the 
mitochondrial adaptor MAVS resulting in an antiviral response. 
In mast cells, signaling through the RIG-I/MAVS pathway is 
important for the secondary response to IAV, but not for the 
immediate degranulation of mast cells (23). Virus recognition 
through RIG-I by mast cells is also important during dengue virus 
and vesicular stomatitis virus (VSV) infections (82, 121, 146). 
However, our studies suggest the RIG-I dependent responses 
in mast cells do not significantly contribute to the pulmonary 
immunopathology associated with IAV infection (Graham and 
Obar, unpublished observation); rather, mast cell degranulation 
appears to be the dominant mediator of immunopathology 
(24). In addition to RIG-I detection, TLR3 is also important 
for the recognition of IAV, type I reovirus, RSV, VSV, and NDV 
by murine BMDMC for the production of secondary mast cell 
mediators (79, 147, 148). Moreover, viral recognition by both 
Mda5 and 2′-5 oligoadenylate synthase (OAS) can participate 
in the initiation of the secondary response of mast cells induced 
by VSV (148). Thus, detection of viral nucleic acids appears 
to be central for production of de novo synthesized mast cell 
mediators following viral infection. Alternatively, infection can 
be detected indirectly by mast cells, as occurs with herpes simplex 
virus (HSV). Infected epithelial cells secrete IL-33, which is in 
turn detected by mast cells, resulting in the secretion of IL-6 and 
TNF-α without degranulation (149).

Mast cell degranulation not only appears to play a critical role 
in regulating mast cell dependent inflammation following IAV 
infection (23, 24) but also in a number of other viral systems (62, 
65, 103). The mast cell degranulation inhibitor, ketotifen, reduces 
inflammation in response to H5N1 IAV infection of mice (24), 
and the inflammation associated with IBDV and NDV in poultry 
(62, 65). Additionally, mast cell stabilization using cromolyn limits 
dengue virus induced immunopathology (103). Together, these 
data strongly support a role for mast cell degranulation in the 
mast cell-dependent inflammatory response to highly virulent viral 
infections. Thus, it appears critical we understand how viruses 
drive mast cell degranulation to appropriately target these cells 
pharmacology.

How mast cells degranulate in response to viral infections 
remains largely unknown. Degranulation still occurs in response 
to A/WSN/1933 infection in RIG-I-deficient BMDMC, demon-
strating that degranulation is a RIG-I-independent response (23). 
As degranulation occurs within 30 min following treatment with 
IAV, other PRR and/or early signaling events necessary for the 
virus attachment and/or entry processes are likely important in 
regulating mast cell degranulation. With dengue virus, degranual-
tion of mast cells occurs prior to RIG-I signaling (82). Moreover, 
UV-inactivated dengue virus (82) and IAV (147) retain the ability 
to activate mast cells, suggesting this occurs early in the viral 
replication cycle. While FcγIII-deficient mast cells are able to 
degranulate in response to dengue virus, mast cells pre-treated 
with anti-dengue IgG demonstrate enhanced degranulation 
in response to all four serotypes of dengue virus compared to 
dengue virus alone, suggesting that antibody binding enhances 
degranulation in response to dengue virus (124). Although mast 
cell degranulation appears to be pivotal for the immunopathology 
associated with highly pathological IAV (24) and dengue virus 
infections (103), we do not understand how degranulation is 
initiated. To date, the only virus for which the mechanism of mast 
cell degranulation has been well elucidated is vaccinia virus. The 
activating event is fusion of the viral envelope with the mast cell 
plasma membrane (31). Specifically, the vaccinia virus envelope 
contains sphingomyelin (150), which is converted to sphingosin-
1-phosphate (S1P) and signals through the S1PR2 G-coupled 
receptor to cause degranulation (31). Signaling through the S1PR2 
has also been shown to regulate mast cell responses in general 
(31, 151–154). However, the role of S1P receptor signaling in 
other viral infections remains unknown. Further understanding 
the molecular signals necessary for mast cell degranulation could 
lead to novel therapeutic avenues for these highly virulent viral 
infections.

Mast Cells as Drug Targets for Limiting 
virus-induced immunopathology

Predicting the next pandemic IAV strain is nearly impossible, 
as IAV has a high mutation rate resulting in significant yearly 
antigenic drift and can randomly reassort resulting in antigenic 
shift. Even deciding which IAV strains to produce for the yearly 
vaccine is difficult, as the strains must be chosen months ahead 
of the yearly influenza season. If these predictions are inaccurate 
or the seasonal IAV strains drift significantly, then the vaccine 
will not be highly effective resulting in a high incidence of IAV-
induced disease (2). The current antiviral treatments against IAV 
are becoming increasingly ineffective due to the emergence of 
resistant strains. Therefore, alternative therapeutics avenues are 
needed. Targeting host-derived factors necessary for viral replica-
tion or host factors participating in the excessive pathological 
inflammatory response during highly pathogenic IAV are promis-
ing alternatives (2).

The literature review presented here shows the strong correla-
tion between mast cell accumulation and degranulation at local 
sites of infection with the observed tissue damage and pathology, 
not only during highly pathological IAV infections but many other 
pathogenic viral infections of humans and animals. Additional 
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studies examining other highly pathological viruses that are 
known to cause ARDS and/or vascular leakage are thus warranted, 
which would include the emerging coronaviruses, SARS-CoV, and 
MERS-CoV, and hemorrhagic viruses such as Marburg and Ebola. 
Overall, we hypothesize that excessive mast cell activation may 
be a common feature of highly pathological viral infections that 
cause ARDS and/or vascular leakage. This novel pathway could be 
pharmacologically targeted to limit the morbidity and mortality 
associated with these infections. Additionally, understanding 
how mast cells accumulate in the infected tissues, through mast 
cell proliferation and/or mast cell progenitor recruitment, could 
provide additional therapeutic targets (Figure 3).

Because mast cells and their products are known to play a 
dominant role in both allergic and asthmatic reactions, many 
drugs that stabilize and neutralize mast cells are already approved 
for human use (Figure 3). The mast cell stabilizing drugs, which 
inhibit the release of granules following mast cell activation, have 
proven effective at reducing vascular leakage and limit inflamma-
tory cellular recruitment, thus increasing survival in the murine 
dengue virus and IAV models (24, 103, 155). Furthermore, these 
compounds have proven very effective at limiting lung pathol-
ogy following IBDV and NDV in poultry (62, 65). Compounds 
are also available which block the activity of specific mast cell 
products including TNF-α, histamine, mast cell proteases, and 
leukotrienes (Figure 3). Many anti-TNF-α compounds are already 
approved for the treatment of inflammatory arthritis. Numerous 
anti-histamines, including hydroxyzine, desloratadine, diphenhy-
dramine, fexofenadine, and loratadine, are approved to treat allergy 

symptoms. Drugs are currently in development, which target the 
mast cell proteases, especially the mast cell derived chymase which 
has been implicated in cardiovascular disease. Finally, there are 
two classes of leukotriene antagonists, the leukotriene-receptor 
antagonists (zafirlukast and montelukast) and the leukotriene 
synthesis inhibitors (zileuton).

In addition to stand alone treatments targeting mast cell activa-
tion and mediators, adjunct therapies utilizing both antiviral and 
mast cell targeting compounds might be fruitful. Earlier studies 
using human peripheral blood leukocytes exposed to NAs or 
IAV at the time of IgE stimulation resulted in significantly greater 
histamine release (156–158). These data suggest the presence of 
multiple stimuli may result in an additive or synergistic effect. 
Therefore, mast cell targeting drugs could be used in parallel with 
antiviral drugs for greatest efficacy. Following infection with a 
highly pathogenic H5N1 IAV strain, the only cohort of mice which 
survived infection were those treated with both antiviral and mast 
cell stabilizing compounds (24). This approach may prove especially 
beneficial during asthmatic exacerbations following viral infection.

Concluding Remarks

Mast cells are important players in pathogen defense. Their loca-
tion at environmental barriers allows them to quickly respond to 
invading pathogens. In parasitic and bacterial infections, mast 
cells are essential in preventing the spread of infection (26–28). 
While in certain viral infections mast cells can be protective (31, 
122, 123, 149), in highly pathogenic viral infections, such as IAV 
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or systemic dengue infections the data demonstrate that mast cells 
are more detrimental than beneficial (23, 24, 103). If the role of 
mast cells during IAV infections, and other highly pathogenic viral 
infections, can be elucidated, these cells may serve as a lucrative 
target for new therapeutics. Activation and release of mediators 
from mast cells in response to these viruses correlates with severity 
of disease in mice. Application of existing allergy medications that 
target mast cells may decrease the severity of IAV infections, limit-
ing the morbidity and mortality associated with future pandemics.
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