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dDepartment of Applied Informatics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Mlynská dolina, Bratislava, Slovak Republic

ABSTRACT Saprochaete fungicola is an arthroconidial yeast classified in the Mag-
nusiomyces/Saprochaete clade of the subphylum Saccharomycotina. Here, we report
the genome sequence of holotype strain CBS 625.85, assembled to five putative
chromosomes. The genome sequence is 20.2 Mbp long and codes for 6,138 pre-
dicted proteins.

Saprochaete fungicola is an anamorphic yeast reproducing by fragmentation of
hyphae into asexual spores dubbed arthroconidia (1). Arthoconidia facilitate

dissemination, and in some pathogenic fungi, their formation contributes to viru-
lence (2). To provide a resource to study genetic control of arthroconidiogenesis, we
determined the genome sequence of the strain CBS 625.85, originally isolated from
ascocarps of Nectria cinnabarina, a plant pathogenic fungus causing coral spots (1).
Genomic DNA sequencing was performed using a combination of HiSeq 2000
(Illumina) and MinION (Oxford Nanopore Technologies) platforms. DNA was isolated
using a standard protocol (3), and total cellular RNA was prepared from a culture
grown in yeast extract-peptone-galactose (YPGal) medium (1% [wt/vol] yeast ex-
tract, 2% [wt/vol] peptone, and 2% [wt/vol] galactose) at 28°C using hot phenol
extraction (4) and an RNeasy minikit (Qiagen).

In total, 3.0 Gbp (�148� genome coverage) were sequenced in 309,350 long reads
(mean, 9.7 kbp; longest read, 251 kbp) using a MinION Mk-1B device with an R9.4.1 flow
cell and SQK-LSK109 kit. The paired-end (2 � 101 nucleotides [nt]) TruSeq PCR-free DNA
library was sequenced on a HiSeq 2000 instrument at Macrogen Korea, yielding
40,313,550 short reads (4.1 Gbp; coverage, �203�). Finally, 38,086,316 transcriptome
sequencing (RNA-Seq) reads were generated from a TruSeq nonstranded mRNA paired-
end (2 � 101 nt) library using a NovaSeq 6000 instrument at Macrogen Korea.

Assembly with SPAdes v. 3.12.0 (5) resulted in 367 contigs (N50 value, 0.4 Mbp), and
long-read assembly with miniasm v. 0.3-r179 (6) and minimap2 v. 2.13-r852 (7) polished
by racon v. 1.3.1 (8) yielded 10 contigs (N50 value, 5.1 Mbp). Two contigs contained
mitochondrial DNA (mtDNA), of which one complete copy (circular 33-kbp contig) was
retained for the final assembly. Two contigs not supported by Illumina reads were
discarded as contamination. One ribosomal DNA (rDNA) contig was discarded, and
eight copies of the rDNA cluster were retained elsewhere. To further correct the
long-read assembly, the rDNA cluster was polished separately by two iterations of pilon
v. 1.21 (9) with BWA-MEM v. 0.7.17-r1188 (10), and four contig ends were extended
using SPAdes contigs. Identified by a significant decrease in long-read coverage, five
local misassemblies were corrected, also using SPAdes assembly. All changes were
based on reliable long-range overlaps and supported by multiple long reads. The final
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assembly contains five nuclear contigs of lengths 5.4, 5.1, 4.4, 3.2, and 2.1 Mbp, with an
overall G�C content of 40.6%. These likely correspond to full-length chromosomes
since they terminate on both ends by putative telomeric repeats ([AACAG]0 –1A2– 6

G0 –1A0 –1G4 –7) with the predominating motif A2GAG6.
RNA-Seq reads, processed by Trimmomatic v. 0.36 (11), were assembled into tran-

scripts by Trinity v. 2.8.4 (12) and aligned to the genome by blat v. 36 � 2 (13). Augustus
v. 3.2.3 (14) trained on the related Magnusiomyces capitatus genome (15) with RNA-Seq
evidence was used for initial gene predictions. Of these genes, 4,785 best supported by
RNA-Seq transcripts (99% identity on 99% of length as identified by blat) were used to
retrain Augustus parameters for S. fungicola and, together with the RNA-Seq evidence,
to predict the final set of 6,138 protein-coding genes. The high-contiguity genome
sequence of S. fungicola will be instrumental in comparative and functional studies
focused on biology and evolution of arthroconidial yeasts.

Data availability. The genome assembly has been deposited in ENA under the
accession number CAACAH010000000, and the Illumina, MinION, and RNA-Seq reads
were deposited in SRA under the accession numbers ERR3046939, ERR3046967, and
ERR3046965, respectively. The genome annotations are available through a genome
browser at http://genome.compbio.fmph.uniba.sk/ and are also archived through Ze-
nodo (16).
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