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Abstract

Complex networks are frequently characterized by metrics for which particular

subgraphs are counted. One statistic from this category, which we refer to as motif-

role fingerprints, differs from global subgraph counts in that the number of

subgraphs in which each node participates is counted. As with global subgraph

counts, it can be important to distinguish between motif-role fingerprints that are

‘structural’ (induced subgraphs) and ‘functional’ (partial subgraphs). Here we show

mathematically that a vector of all functional motif-role fingerprints can readily be

obtained from an arbitrary directed adjacency matrix, and then converted to

structural motif-role fingerprints by multiplying that vector by a specific invertible

conversion matrix. This result demonstrates that a unique structural motif-role

fingerprint exists for any given functional motif-role fingerprint. We demonstrate a

similar result for the cases of functional and structural motif-fingerprints without

node roles, and global subgraph counts that form the basis of standard motif

analysis. We also explicitly highlight that motif-role fingerprints are elemental to

several popular metrics for quantifying the subgraph structure of directed complex

networks, including motif distributions, directed clustering coefficient, and

transitivity. The relationships between each of these metrics and motif-role

fingerprints also suggest new subtypes of directed clustering coefficients and

transitivities. Our results have potential utility in analyzing directed synaptic

networks constructed from neuronal connectome data, such as in terms of

centrality. Other potential applications include anomaly detection in networks,

identification of similar networks and identification of similar nodes within networks.
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Matlab code for calculating all stated metrics following calculation of functional

motif-role fingerprints is provided as S1 Matlab File.

Introduction

Complex relational systems from different domains, such as biology, sociology or

economics, can be systematically analyzed using their network representations. A

network (also known as a graph) is composed of nodes and edges, where nodes

represent the entities in the system and edges represent the relationships between

these entities. Depending on the type of represented relations, the node pairs that

form the edges can have a certain ordering, in which case the resulting network is

called directed. For example, in networks of biological neurons and synapses (also

known as neuronal connectomes [1]), the nodes correspond to individual neurons,

while directed edges between the nodes (typically) represent the existence of

chemical synapses that enable communications between neurons [2]. The wiring

patterns of networks cast light on the functional mechanisms of the analyzed

complex systems, and therefore, network structure analysis is gaining increasing

interest from different disciplines.

However, many network analysis problems are computationally intractable [3].

Therefore, the only available solutions are based on approximations to the exact

solutions of these problems. Network properties that describe different wiring

characteristics of networks are used for this purpose. For example, given two

networks without any labeling on the nodes, the problem of finding all the node

pairs that have identical wiring patterns in the two networks is a computationally

intractable problem. However, this problem can be simplified by computing the

degrees (i.e., the number of neighbors a node has) of all nodes and using the

degree statistics to compare the nodes. Even if the resulting matches are not

guaranteed to have identical wiring patterns, these matches would extensively

reduce the size of the search space. The search space can be reduced even further

by computing other network properties that capture different types of interaction

patterns; e.g., using the similarities of clustering coefficients that measure the

tendency of nodes to form triangular interactions [4].

Different subgraphs of a network can be obtained from different subsets of its

nodes and edges. Many of the network properties are indeed dependent on the

subgraph properties of the networks; e.g., clustering coefficient is defined based on

three-node subgraphs of a network in which all nodes are connected with each

other forming a triangle. In a connected subgraph, all nodes are reachable from any

of the other nodes in the subgraph. A subgraph is induced (also known as node

induced) if it is enforced that all the edges between the chosen subset of nodes are

included in the subgraph. The subgraphs that do not carry the induced property

are called partial (also known as edge induced) subgraphs. For example, a 3-node

clique contains 3 different two-path subgraphs (two-path subgraphs are those that
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contain 3 nodes and 2 edges) when partial subgraph properties are considered.

However, such a graph does not contain any two-path subgraphs when induced

subgraph properties are considered.

Triangular patterns in networks are commonly utilized to analyze the network

topology. In undirected networks, the clustering coefficient of a node is calculated

by dividing the number of triangles around the node by the number of different

pairs of its neighbors [5]. Average clustering coefficient explains the clustering

(triangulation) within a network by averaging the clustering coefficients of all its

nodes. Extension of clustering coefficient to directed networks is not trivial since

there are two different types of triangular directed subgraphs; one being a cyclic

subgraph (m55 in Figs. 1 and 2) and the other being an acyclic subgraph (m59

in Figs. 1 and 2). Based on the counts of the four distinct node roles on these two

subgraphs (i.e., r~11,14,17 and 18 in Figs. 1 and 2), the definition of clustering

coefficient has been extended to the directed case [4, 6]. A different metric for

quantifying network clustering known as transitivity is calculated by considering

every possible combination of three nodes in a network, and counting how many

of these triads are mutually connected by three edges, normalized by the number

of triads with at least two edges [7]. It is similar to clustering coefficient but unlike

that metric, it is not an average of local node-specific clustering. Transitivity is

typically used for undirected networks rather than directed ones, but an

expression for directed transitivity is given in [8].

Recent work on network properties use the statistics of all observable connected

subgraph configurations as detailed descriptors of the wiring in networks [9, 10].

Network motifs were originally defined as the partial subgraph patterns of a

network that appears more frequently than expected from a ’null-hypothesis’

network model that preserve the input network’s degree distribution, or other

statistical properties [9, 11–15]. Network motifs are defined for both directed and

undirected networks, covering all observable subgraphs patterns on sets of nodes

ranging in dimension from 2 to n. Network motifs have been used to analyze

network structures of a wide-range of networks, such as those of the neuronal

connectome of C. elegans [16–20]. Practically, network motif analyses are

performed with 3-node subgraph patterns due to the high computational cost of

null model generation step for larger subgraphs; all directed 3-node subgraph

patterns are illustrated in Fig. 1.

Another group of network properties that are based on subgraph counts have

been studied in the context of graphlets—these are small, connected, non-

isomorphic and induced subgraphs of a large network [10]. There are three major

differences between network motifs and graphlets:

1. network motifs account for partial subgraphs while graphlets are based on

induced subgraphs;

2. network motifs are dependent on a given null network model while graphlets

are completely independent from any null hypotheses; and

3. graphlets are defined only for undirected graphs while network motifs are

defined also for directed graphs.

Motif-Role-Fingerprints in Directed Networks

PLOS ONE | DOI:10.1371/journal.pone.0114503 December 8, 2014 3 / 25



The number of times that each graphlet appears in a network describes the

network’s topology [10]. Currently, the most advanced method for describing the

topology of an undirected network is based on the dependencies between different

graphlets [21].

Subgraph properties are not only useful for describing the topology of

networks, but they can also be utilized for describing the local wiring around

nodes. For instance, degree describes the wiring around a node by counting the

number of edges touching the node. Replacing edges with subgraphs of each kind

in this definition, the local wiring around a node can be described by the number

of subgraph patterns that the node participates in. While these subgraph statistics

on nodes can be computed without imposing any orientations on the subgraphs

[8, 22], a node’s role in the network can be characterized more accurately by

introducing such orientation constraints based on the symmetries within the

subgraphs [23–25]. For example, as illustrated in Figure 1 of [23], and Fig. 1 here,

there are 30 unique motif-roles on the 3-node directed subgraph configurations.

Przulj [25] identifies the orbits (i.e., the nodes that have identical wiring patterns

within graphlets) of all 2- to 5-node graphlets and uses these orbits to describe the

wiring around a node by defining graphlet degree, which is the number of

graphlets that touch a node at an orbit. Furthermore, the vector containing the

graphlet degrees of all 73 orbits of 2- to 5-node graphlets is termed the graphlet

degree vector and successfully applied for identifying the wiring similarities

between the nodes of a network, and also, between the nodes of different networks

[26, 27]. It has been argued that analysis of neuronal connectome data will need to

take into account node-referenced heterogeneity [28–30], such as measured by

Fig. 1. All 13 three-node connected motifs and all 30 three-node connected motif-roles. A directed
network is assumed. The numerical label for each motif (denoted with the label m) is identical to that used in
[9]. Each distinct motif-role within each motif is denoted by different colours, and the numerical label next to
each node. The numerical label provided for each motif-role is represented by the label r in the text and in Fig.
2, where r~1, . . . ,30.

doi:10.1371/journal.pone.0114503.g001
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Fig. 2. Formulae for counting the three-node motif-role fingerprints. The first column depicts the 9 distinct
roles on functional motifs. Each row shows each three-node motif in which the corresponding role appears
(indexed by m~1, . . . 13), and the plurality dr with which motif-role r appears within motif m (see Methods).
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graphlet degree. Another possible application is in the analysis of genetic networks

[31].

The terminology on subgraph properties is not well-defined, with some studies

using the terms ‘‘subgraphs’’, ‘‘network motifs’’ and ‘‘graphlets’’ interchangeably.

In order to avoid confusion, we use the term ‘‘functional motifs’’ to represent the

partial subgraph properties (e.g., network motif properties defined in [9]), and

‘‘structural motifs’’ to represent the induced subgraph properties (e.g., graphlet

properties defined in [10, 25]) in a consistent manner with [8]. Structural motifs

quantify anatomical building blocks, whereas functional motifs represent

elementary processing modes of the networks [22]. This distinction between

structural and functional subgraph properties have different implications for

neuronal networks: structural motifs describe all synapses amongst a specific

subset of neurons. In contrast, functional motifs can describe, for example,

potential patterns of actual synaptic activations occurring (near) simultaneously

amongst a specific subset of neurons. It is expected to observe correlation between

structural and functional subgraph properties to some extent. Even though this is

the case, the wiring characteristics that can be captured by these two types of

subgraphs differ. For example, a node’s importance in the networks as a ‘broker’

(e.g., r~16 in Fig. 2) can only be captured by structural motifs since functional

motifs consider also the cases that the node appears as roles r~17,18 or 19

(Fig. 2). In these cases, the reference node is not a broker because of the edge

between the two other nodes.

For both structural and functional motifs, we consider four different types of

subgraph frequency derived network properties, as follows:

N Global Metrics: These metrics aim to describe the topology of an entire

network.

- Motif Counts: A network’s topology can be described by the number of

subgraphs that appear in the network. We use the term motif counts to

represent these networks statistics. Different from the original definition of

network motifs [9] (but consistent with usage in [8]), our motif statistics are

independent of any comparison to null-hypothesis network model. For a given

network, the corresponding motif counts form a M dimensional vector, each

value representing the count for one of the M subgraphs.

- Motif-Role Counts: A network’s topology can also be described in terms of the

roles within subgraphs. We use the term motif-role counts to represent the

number of times that a given motif role appears in a network. Motif-role counts

can be directly obtained by scaling the motif counts depending on the number

of times the motif-role appears within the corresponding subgraph. For a given

Black filled circles indicate the nodes in motif m that play motif-role r (see also Fig. 1). The equations shown
for each role, r, are the entries of the functional motif-role fingerprint matrix, FR,(r,1:N), where 0 denotes the

Hadamard product, 1 is an N|1 unit column matrix, I is the N|N identity matrix, and R : ~A0AT is the
matrix of reciprocal edges.

doi:10.1371/journal.pone.0114503.g002
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network, the corresponding motif-role counts form an L dimensional vector,

each value representing the number of times one of the L node roles appears in

the network.

N Node-referenced Metrics: These metrics aim to describe the local topology

around a node in the network.

- Motif Fingerprints: The wiring around a node in a network can be described

by the number of subgraph patterns that it participates in, independent of the

position (i.e., the role) on these subgraphs. Such statistics have been termed

motif fingerprints [8, 22]. For each of the N nodes in a given network, the

corresponding motif fingerprints are M dimensional vectors, each value

corresponding to count of one of the M subgraphs that the node participates in.

- Motif-Role Fingerprints: The wiring around a node in the network can be

described at a finer detail by the number of subgraphs that touches the node at

a specific orientation (i.e., on a node-role within the subgraph). We term such

statistics as motif-role fingerprints. For each of the N nodes in a given network,

the corresponding motif-role fingerprints are L dimensional vectors, each value

corresponding to the number of subgraphs that touches a node at one of the L

node-role positions.

In this study, we explore the relationships between all these different types of

subgraph statistics (see Fig. 3). First, we present efficient ways of calculating the

functional motif-role fingerprints of a given directed network. Second, we show

that structural motif statistics can be derived from functional motif statistics and

vice versa. This transformation enables efficient computation of structural motif-

fingerprints which are computationally more expensive to obtain. Third, we show

that the motif-role fingerprints are the most fundamental and informative of all

the other subgraph metrics. We identify the transformations that derive all other

subgraph statistics (i.e., motif fingerprints, motif-role counts, motif counts) from

the motif-role fingerprints. Fourth, we discuss the relationships between motif-

role fingerprints and directed clustering coefficients and transitivities, and show

how these can be derived from motif-role fingerprints. Finally, we illustrate

applications of these transformations on the neuronal connectome of c. elegans.

Results and Discussion

While exploring the relationships between different subgraph properties, we

assume a directed network with N nodes. The adjacency matrix representation of a

network (A) is an N|N matrix, where A½i,j� is 1 when there exists a directed edge

from node i to node j, and otherwise 0. We label each of the M~13 connected

three-node motifs with the index m~1, . . . ,13 according to the classification

introduced by [9]—see Fig. 1. When structural motifs of a directed network are

considered, there are L~30 different motif-roles, which we label with the index

r~1, . . . ,30, as illustrated in Fig. 1. However, when considering the functional

Motif-Role-Fingerprints in Directed Networks
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motifs, these 30 motif-roles induces on 9 distinct roles—see Fig. 2. The ordering

of our labels is determined by these roles, and hence is non-sequential when

depicted in Fig. 1.

Calculating Functional Motif-Role Fingerprints

We introduce two L|N matrices, SR and FR, where the elements of the i–th

column of these matrices is the transpose of the 1|L vector that denotes the

structural motif-role fingerprints and functional motif-role fingerprints, respec-

tively, in which node i participates. Fig. 2 lists equations that can be used to

efficiently obtain all elements of the matrix FR, in terms of the adjacency matrix,

A. Further explanation on the computation of functional motif-role fingerprints

is provided in the Methods section.

Fig. 3. Dependencies between metrics that count three-node directed subgraphs. Arrows indicate that
metrics can be derived from other metrics and numbers in brackets refer to equations in the text that
mathematically describe these dependencies. The left side of the figure lists metrics that count subgraphs,
while the right side shows metrics that are ratios of subgraph counts. The top half of the figure shows metrics
that are node-referenced subgraph counts, while the bottom half shows metrics that are global subgraph
counts.

doi:10.1371/journal.pone.0114503.g003
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The Relationship Between Structural and Functional Motif-Role

Fingerprints

Structural motifs (as counted for an overall network) can contain multiple

functional motifs as illustrated in Fig. 4. We extend the distinction between

structural and functional motifs, and show that the motif-role fingerprints of

these two types of motifs can be derived from each other.

The mathematical relationship between structural and functional motif-role

fingerprints can be conveniently expressed as

FR~MSR?FR SR, ð1Þ

where MSR?FR is an invertible L|L upper-triangular matrix, in which element

(i,j) indicates how many copies of functional motif-role i are contained in

structural motif-role j (see Equation (27) in Methods).

The fact that this matrix is invertible is important for numerical calculation of

structural motif-role fingerprints. Although expressions for functional motif-role

fingerprints can be efficiently calculated (see above and Fig. 2), it is more difficult

to derive simple expressions for structural motif-role fingerprints. Instead, the

inverse relationship

SR~M{1
SR?FR

FR, ð2Þ

where M{1
SR?FR

is given by Equation (28) in Methods, enables the structural

motif-role fingerprint vector to be obtained without directly using the adjacency

matrix. Moreover, the fact that MSR?FR is invertible means that a unique

structural motif-role fingerprint vector exists for any given functional motif-role

fingerprint vector.

Motif-Fingerprints and Global Motif Counts from Motif-Role

Fingerprints

We now introduce the motif-fingerprint matrices, S and F , each of size M|N ,

where the elements of the i–th column of these matrices denote the total number

of structural motifs and functional motifs respectively in which node i participates

[22]. The entries in the motif-fingerprints matrix can be trivially obtained from

the motif-role fingerprints as follows:

F (m,1:N)~
X

k[Qm

FR,(k,1:N), m~1,::,M, ð3Þ

S(m,1:N)~
X

k[Qm

SR,(k,1:N), m~1,::,M, ð4Þ

where Qm is the set of motif-role indices corresponding to motif index m. These

sets can be readily identified in Fig. 1. The relationship between structural and

functional motif fingerprints can be expressed as

Motif-Role-Fingerprints in Directed Networks
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F~MS?F S, ð5Þ

where MS?F is a 13|13 upper-diagonal invertible matrix in which element (i,j)
indicates how many copies of functional motif i are contained in structural motif j
(see Equation (31) in Methods).

Various methods exist for obtaining motif counts within networks, as reviewed

by [32]. Here, we state how such counts for three-node motifs can be calculated

from motif fingerprints. We introduce the length M vectors S and F, where the

elements of each vector (Sm and Fm,m~1, . . . ,M) denote the total number of

structural motifs and functional motifs, respectively. Obtaining the global motif

counts from the motif fingerprints is a simple matter of summing the fingerprints

for all nodes, and dividing by three, since each global motif appears in the

fingerprint of exactly three nodes:

S>~
1
3
S 1, F>~

1
3
F 1, ð6Þ

where we also have

Fig. 4. Structural motifs and motif-roles decompose into functional motifs and motif-roles. Illustration of
the difference between structural and functional motifs and motif-roles. When counting structural motifs in a
network, the connectivity between each set of three nodes is considered. In this case, if the nodes form motif
m~3, then this counts as one instance of structural motif m~3, and no instances of structural motifs 1 or 2.
However, the same subgraph provides one instance each of functional motifs m~1, m~2, and m~3 (see also
Fig. 1 in [22] for a similar illustration). Consequently, there are no more structural motifs in total than the
number of combinations of three nodes. However, this is not the case for functional motifs, since the same set
of three nodes can contain multiple functional motifs. The same decomposition occurs for motif-roles. In the
example in this figure, a single instance of structural motif-role r~24 decomposes into one instance each of
functional motif-roles r~13, r~16 and r~24.

doi:10.1371/journal.pone.0114503.g004
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F>~MS?F S>: ð7Þ

Similarly to motif-role fingerprints, the existence of an invertible matrix for

converting between functional and structural motifs implies that a unique

structural motif or motif-fingerprint vector exists for any given functional motif

or motif fingerprint vector.

Directed Clustering Coefficients & Transitivities from Motif-Role

Fingerprints

We now consider directed clustering coefficients and directed transitivities, and

demonstrate how they are simple derivatives of motif-role fingerprints. We begin

by defining two length N vectors; the first is the total number of closed directed

triangles in which each node participates,

V~FR,(11,1:N)zFR,(14,1:N)zFR,(17,1:N)zFR,(18,1:N)

~3(F 5,(1:N)zF 9,(1:N)),
ð8Þ

and the second is the total number of potential triangles in which each node may

participate,

T~2(FR,(10,1:N)zFR,(13,1:N)zFR,(16,1:N)): ð9Þ

The total directed clustering coefficient per node as derived by [4] may be

expressed as the 1|N vector

CD~V� T, ð10Þ

where � indicates Hadamard division. In any instance where division by zero

occurs, we set the corresponding term of the result vector to zero. Because V
cannot be written in terms of functional motif fingerprints (since roles are integral

to the definition of the various directed clustering coefficients), it is clear that

finding specific functional motif-roles is a necessary step in finding the directed

clustering coefficient. The global mean directed clustering coefficient is

�CD~CD1=N0 ð11Þ

~(V� T)1=N0, ð12Þ

where N0 is the count of all nodes i for which Ti=0.

The transitivity of an undirected network is defined as the ratio of the total

number of three-node subgraphs with three edges, to one third of the total

number of pairs of edges that share a node [7]. Consequently, transitivity

Motif-Role-Fingerprints in Directed Networks
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measures the fraction of potential closed ‘triangles’ in a network that actually do

form closed triangles.

Generalization to a definition of directed transitivity was given by [8]. This can

be re-expressed in terms of elements from the functional motif-role matrices as

TD~(V1)=(T1), ð13Þ

or, unlike �CD, in terms of functional motif counts as

TD~
3(F5zF9)

2(F1zF2zF4)
: ð14Þ

In addition to the total directed clustering coefficient, [4] also described four sub-

types of directed clustering coefficient, both on a per-node basis and as a global

network average (see also [6]). These arise from the four motif-roles that exist

within the two closed-triangle motifs with no reciprocal edges, i.e. motifs 5 and 9.

In [4] these four types are referred to as ‘in’,‘out’, ‘middleman’ and ‘cycle’. Here

we express these subtype clustering coefficients in terms of motif-role fingerprint

vectors as

C2{sink~0:5FR,(11,1:N) � FR,(10,1:N), ð15Þ

C2{source~0:5FR,(14,1:N) � FR,(13,1:N), ð16Þ

CRelay~FR,(17,1:N) � FR,(16,1:N), ð17Þ

CCycle~FR,(18,1:N) � FR,(16,1:N): ð18Þ

The factors of 0.5 arise from the two possible edges that can be added to motif-

roles 10 and 13 to form closed directed feed-forward triangles.

We note that a comparison of the relative abundance of specific functional

motif-role fingerprints for nodes of a given degree, with those in an in- or out-

degree-preserving null-hypothesis network is equivalent to a comparison between

elements of C vectors in the two networks. This is because a degree-preserving

null-hypothesis network ensures that counts of motif-roles 10, 13 and 16 do not

change. On the other hand, the utility of per-node clustering coefficients is that

normalisation enables comparisons between nodes with different degrees within

the original network. The situation is different for structural motif-roles; a null-

hypothesis network will not have the same counts of structural motif-roles 10, 13

and 16 as the original network, which suggests there is possible utility in defining

directed structural clustering coefficients, as alternatives to those of [4].

This discussion also suggests that additional sub-type directed clustering

coefficients could be of interest. For example, the 3-feedforward clustering

Motif-Role-Fingerprints in Directed Networks

PLOS ONE | DOI:10.1371/journal.pone.0114503 December 8, 2014 12 / 25



coefficient:

C3FF~(V{FR,(18,1:N))� (T{FR,(16,1:N)): ð19Þ

The global mean directed clustering coefficients are trivially obtained in the

same way as the global mean directed clustering coefficient, i.e,

�Csubtype~Csubtype1
�

Nsubtype,0: ð20Þ

The different subtypes of clustering coefficient introduced by [4] suggest

analogous forms of directed transitivity:

T2-sink~0:5FR,(11,1:N)1
�
FR,(10,1:N)1

~0:5F5=F4

ð21Þ

T2{source~0:5FR,(14,1:N)1
�
FR,(13,1:N)1

~0:5F5=F1

ð22Þ

TRelay~FR,(17,1:N)1
�
FR,(16,1:N)1

~F5=F2

ð23Þ

TCycle~FR,(18,1:N)1
�
FR,(16,1:N)1

~3F9=F2

ð24Þ

T3FF~(V{FR,(18,1:N))1
�

(T{FR,(16,1:N))1

~3F5=(2F1zF2z2F4):
ð25Þ

In the first of the two equations for cycle transitivity, we have been able to

arbitrarily choose one of the three roles for motif 2 in the denominator, since

when summed over all N, the results are identical for all three roles. The last

expression, for 3-feedforward transitivity, quantifies the total fraction of possible

non-cyclic directed closed triangles that exist in a network.

Remarks on Undirected Networks

The transitivity of a directed network without regard to the direction of the edges

could potentially be of interest. Given that Si is the number of structural motif

counts of type m~i, let CU~S5zS6zS9zS10zS11zS12zS13. The undirected

transitivity can be written as

Motif-Role-Fingerprints in Directed Networks
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TU~
CU

CUz 1
3 (S1zS2zS3zS4zS7zS8)

, ð26Þ

where CU is the total number of closed triangles in a network written in terms of

structural motifs counts. This result is equivalent to that of the standard definition

of transitivity for an undirected network [7, 33], if the directed adjacency matrix

was converted to undirected.

Examples: Application to analysis of the C. elegans neuronal

connectome

As an example application, we calculated the structural and functional motif-role

fingerprints for the C. elegans hermaphrodite and male neuronal networks. The

results are shown in Table 1, which enumerates the motif role fingerprints for

neuron AVAR in the hermaphrodite.

As mentioned, it is straightforward to derive the global subgraph ratio metrics

(i.e., average directed clustering coefficients and directed transitivities) from

motif-role fingerprints, as indicated in the bottom right part of Fig. 3. As

described above, consideration of motif-role fingerprints led us to define six

directed transitivities and six directed average clustering coefficients.

Fig. 5 compares each of these transitivities and clustering coefficients for the

two C. elegans neuronal networks, with those that result from in and out degree-

preserving randomization of the C. elegans connectivity matrix. In each case, 20

randomized networks were created (we found that this was many more than were

necessary to obtain consistent and significant changes in all metrics), and their

transitivities and average clustering coefficients are plotted. Our value of 0.22 for

the directed clustering coefficient of the source role (C2{source) is consistent with

result published in [17], as is our value for the corresponding randomized

network of 0.076) but none of the other directed clustering coefficients were

mentioned in [17].

We observe that the C. elegans hermaphrodite chemical synapse network is

between 1.2 and 3.3 times more transitive or clustered (depending on the specific

metric) than degree-preserving randomizations of the network (ratios were

calculated with respect to the mean of the statistics for all network randomiza-

tions). This result is consistent with previous evaluations of clustering coefficient

for this network (e.g., [17]). It is also clear, however, that among all the metrics,

cycles have the smallest ratio, for both directed transitivity and average directed

clustering coefficient. This is also consistent with prior analysis, such as that

obtained via standard directed motif analysis — see Figure 7 in [17]. We also

found that the male has higher ratios than the hermaphrodite, ranging from 2.1 to

3.9 times more transitive or clustered than the corresponding null hypothesis

networks.

It is potentially of interest (both for C. elegans, and any other neuronal network

data) to consider whether functional significance can be inferred from this form of
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analysis of directed clustering coefficient and transitivities. We expect, however,

that analysis of motif-role fingerprints will likely be more revealing.

Next, we aim to identify particular network nodes that participate in an

overabundance of some specific role, compared to a randomized network.

A simple example that illustrates the utility of obtaining motif-role-fingerprints

is as follows. For the C. elegans hermaphrodite, we obtained 20 randomized

networks, and identified the individual neuron that participated in the greatest

number of each of the 30 roles, above the mean obtained in the randomized

network. For many of the roles, we observed that the highly ranked neuron

according to this metric had a high in and/or out degree. So next, we scaled by the

Table 1. Example of structural and functional motif-role fingerprints: Neuron AVAR (node id 56) in the C. elegans neuronal network.

Role, i SR(i,56) FR(i,56)

1 127 603

2 157 593

3 36 105

4 57 337

5 39 493

6 18 63

7 54 227

8 124 291

9 3 39

10 561 1176

11 62 254

12 7 31

13 615 1176

14 14 172

15 1 13

16 1258 2388

17 27 285

18 8 90

19 3 39

20 352 624

21 9 71

22 94 156

23 13 35

24 362 624

25 98 148

26 7 57

27 1 23

28 40 78

29 27 49

30 11 11

doi:10.1371/journal.pone.0114503.t001
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total degree (i.e., in plus out degree) of each neuron, and examined the neurons

with the highest ratios.

In this manner, we observed that neuron RIAL participates in 234 separate

instances of functional motif-role 20, whereas in the corresponding randomized

networks, RIAL on average participated in 53.3 instances of functional motif-role

20. This can be explained statistically, since RIAL participates in 9 reciprocal edge

pairs to and from other neurons, and the our randomization algorithm does not

preserve reciprocal degree, only in and out-degree.

A case of a neuron participating in an overabundance of a role that does not

include reciprocal edges is that of neuron FLPR, and role 14. In the C. elegans

network, FLPR participates in 80 instances of functional motif-role 14. The mean

number of participations in the randomized networks, however, is only 14.75.

Since motif-role 14 involves two outward edges from the reference node, and an

edge between the two destination nodes, the motif-role analysis suggests that a

role of neuron FLPR is to influence pairs of nodes that are themselves connected.

These few examples illustrate one of the potential applications for motif-role

fingerprints: to identify interesting or anomalous nodes within a directed network

so that further analysis or experimentation can be carried out on that node or its

neighbors.

Fig. 5. Directed transitivities and average clustering coefficients for two directed C. elegans chemical
synapse networks, and randomisations of those networks. Circles show each of the six directed
transitivities and six directed clustering coefficient values for the C. elegans hermaphrodite and male
networks. Dots show comparison points obtained from each of 20 degree-preserving randomizations of the
two connectivity matrices. Clearly the male exhibits higher transitivity and clustering than the hermaphrodite,
according to all 12 statistics, but both real networks are more transitive/clustered than corresponding null-
hypothesis networks.

doi:10.1371/journal.pone.0114503.g005
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Future Extensions and Applications

In order to account for heterogeneity in network structure and node types, we

have derived mathematical relationships that we expect to be useful when motif

distributions need to be characterised, either structurally or functionally, on a

node-participation basis, rather than relative to the entire network. We have

demonstrated that a hierarchy of relevant metrics exist, with summary metrics

such as transitivity derived from richer and more informative vector statistics. The

dependencies between each metric discussed are summarized in Fig. 3. We now

discuss some anticipated applications and extensions of this work.

Analysis of Neuronal Connectome Data and Synaptic Polarities

Although the neuronal network of the nematode worm, C. elegans, is the only

complete neuronal network obtained to date [17], network analysis will soon be

required for the large neuronal network data sets that result from new

experimental techniques currently under rapid development [28, 34]. Indeed, new

methods have already resulted in a second partial neuronal network for the C.

elegans male [19], and we used resulting network data in this paper.

In previous work on motifs applied to neuronal networks, it was observed that

combining topological data with data on the functional role of neurons in C.

elegans (sensory, motor or interneuron) allows a richer analysis of motif

distributions with greater relevance to understanding than does describing

structural motifs alone [18]. Both the work of [18], and the analysis of motifs in

[16, 17, 22], however, characterized the hermaphrodite C. elegans neuronal

network only in terms of overall abundance of each kind of motif, and did not

study the number of motifs of each kind in which individual neurons participate.

This is also the case for the analysis of the male posterior neuronal network

reported by [19]. One possible direction is to use motif-roles to quantify the

centrality of particular neurons within a network, such as by extending the work

of [35] to take roles into account.

We anticipate that sophisticated analyses of directed complex neuronal network

in future will make use of node-referenced role information, such as that provided

by motif-role fingerprints discussed in this paper. Analysis of topological roles in

neuronal connectome data could also be supplemented by physiological

information, such as the polarity (excitatory or inhibitory) of synapses [30]. This

could be modelled as signed edges, and motif-roles generalised to Signed-motif-

roles.

Subgraphs with More Than Three Nodes

We note that the concept of motif-role fingerprints, either functional or

structural, can be extended to arbitrary numbers of nodes per subgraph. For

motifs with more than three nodes, however, the number of motif-role types

becomes very large, which means that obtaining expressions for each element of

FR is more difficult. For example, it is known that for four-node subgraphs, there

are 199 different connected directed subgraphs. We have not counted how many

unique roles there are within each of these, but obviously there are at most a total
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of 4|199 motif-roles for 4-node subgraphs. Calculation ofMSR?FR would also be

tedious. Still, it need only be carried out once.

Although we leave this calculation for future work, we note that if this matrix

was unknown, but alternative methods for finding both functional and structural

motif-role fingerprint counts were available, then MSR?FR can readily be derived

empirically using data from random directed networks. We have used this method

to obtain the matrixMS?F (and its inverse) for the case of 4-node global motifs.

This was achieved using the Matlab software package known as the Brain

Connectivity Toolbox, made available in association with [8], which provides code

for obtaining global functional and structural motif counts for 4-node connected

subgraphs.

Extension to Weighted Network Edges

The definition of motifs (in the global sense) has previously been extended to

incorporate information about edge weights [36]. The resulting metric was

referred to as subgraph intensity. It is potentially useful to extend this idea to

motif-roles, and perhaps it will be as simple as replacing the binary adjacency

matrix A with a weighted adjacency matrix W in the equations shown in Fig. 2.

However, we leave consideration of this possibility for future work.

Possible use in role detection and detection of similar nodes and similar

networks

There has been recent interest in automatic discovery of network roles, and nodes

that are structurally similar, and algorithms have been developed for achieving

this [37]. The methods described in [37] are flexible in the sense that many

different network statistics can be provided as inputs from which roles are

identified. There is strong potential for including motif-role fingerprints as a

subset of the network statistics used in such algorithms. If, in the future, many

large connectome datasets become available, it may be potentially interesting to

assess the resulting networks for overall similarity, or to search for similar nodes

within or across networks.

Methods

Source code

Matlab code implementing the results of this paper is provided as S1 Matlab File.

Notation for Functional Motif-Role Fingerprints in Fig. 2

For a network with N nodes, we denote the N|N binary directed adjacency

matrix as A (Ai,j[f0,1gVi,j). We assume that diag(A)~0, i.e there are no self-

connections.

In the formulae listed in Fig. 2, we make use of the matrix R : ~A0A>, which

is a binary matrix where each 1 indicates a reciprocal edge between two nodes.
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The symbol 0 denotes the Hadamard (or Schmur) product, which is equivalent to

term by term multiplication of two matrices of the same size.

Although some of the formulae can be rewritten in terms of the diag(:) operator

(e.g. FR,(30,1:N)~diag(R3)), we have aimed to show that all elements of FR can be

obtained with no more than two N|N matrix multiplications and two

Hadamard products, thus avoiding unnecessary multiplications.

Since there are three nodes in each motif, there can be no more than 3 role

types for each motif; there are less in some instances where more than one node

has the same role. Consequently, the figure also shows the number of nodes, dr,

within each motif that play role r, and we have
PL

r~1 dr~3M.

For completeness, we note that in our notation the matrix products A1 and

A>1 provide expressions for the out-degrees and in-degrees of each node, while

R1 provides an expression for the total number of reciprocal edges in which each

node participates. Also, we have AA> as the ‘Co-citation matrix’ [38] and A>A
as the ‘bibliographic coupling matrix’ [38].

Converting structural to functional motif-role fingerprints and vice-
versa

The following 30|30 matrix enables conversion from structural motif-role

fingerprints, SR to functional motif-role fingerprints, FR, as expressed in

Equation (1).

MSR?FR ~ 0:7

1 0 1 0 0 0 1 0 1 0 1 2 0 0 0 0 1 0 1 0 1 1 2 0 1 0 1 0 1 2

0 1 1 0 0 0 0 1 1 0 1 2 0 0 0 0 0 1 1 0 1 1 2 0 0 1 1 0 1 2

0 0 1 0 0 0 0 0 1 0 0 2 0 0 0 0 0 0 1 0 0 0 2 0 0 0 1 0 0 2

0 0 0 1 0 1 1 0 1 0 0 0 0 1 2 0 0 1 1 0 1 0 1 0 1 1 2 0 1 2

0 0 0 0 1 1 0 1 1 0 0 0 0 1 2 0 1 0 1 0 0 1 1 0 1 1 2 0 1 2

0 0 0 0 0 1 0 0 1 0 0 0 0 0 2 0 0 0 1 0 0 0 1 0 0 0 2 0 0 2

0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 2

0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 2

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 2

0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1

0 0 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 1 1 2 0 0 0 0 0 1 2

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 1 1 2 0 1 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 1 0 1 0 1 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 0 1 1 0 1 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 2 2 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 2 2 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

: ð27Þ(27)
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The following matrix is the inverse ofMSR?FR , and can be used to convert from

functional motif-role fingerprints, FR, to structural motif-role fingerprints, SR, as

expressed in Equation (2).

For completeness, as indicated in Fig. 3, we also introduce the motif-role count

vectors SR and FR, each of length L, where the elements of each vector

(SR,r,FR,r,r~1; . . . ,L) denote the total count of each structural motif-role and

functional motif-role respectively, for an entire directed network. Obtaining the

motif-role counts from the motif-role fingerprints is a simple matter of summing

the fingerprints for all nodes, i.e.,

S>R ~SR1, F>R ~FR1, ð29Þ

where 1 is a column vector with all elements equal to unity. It is simple to show

from Equation (1) that we also have

F>R ~MSR?FR S>R : ð30Þ

M{1
SR?FR

~

1 0 {1 0 0 0 {1 0 1 0 {1 2 0 0 0 0 {1 0 1 0 1 1 {2 0 1 0 {1 0 {1 2

0 1 {1 0 0 0 0 {1 1 0 {1 2 0 0 0 0 0 {1 1 0 1 1 {2 0 0 1 {1 0 {1 2

0 0 1 0 0 0 0 0 {1 0 0 {2 0 0 0 0 0 0 {1 0 0 0 2 0 0 0 1 0 0 {2

0 0 0 1 0 {1 {1 0 1 0 0 0 0 {1 2 0 0 {1 1 0 1 0 {1 0 1 1 {2 0 {1 2

0 0 0 0 1 {1 0 {1 1 0 0 0 0 {1 2 0 {1 0 1 0 0 1 {1 0 1 1 {2 0 {1 2

0 0 0 0 0 1 0 0 {1 0 0 0 0 0 {2 0 0 0 {1 0 0 0 1 0 0 0 2 0 0 {2

0 0 0 0 0 0 1 0 {1 0 0 0 0 0 0 0 0 0 0 0 {1 0 1 0 {1 0 1 0 1 {2

0 0 0 0 0 0 0 1 {1 0 0 0 0 0 0 0 0 0 0 0 0 {1 1 0 0 {1 1 0 1 {2

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 {1 0 0 0 {1 0 {0 2

0 0 0 0 0 0 0 0 0 1 {1 1 0 0 0 0 0 0 0 {1 1 1 {1 0 0 0 0 1 {1 1

0 0 0 0 0 0 0 0 0 0 1 {2 0 0 0 0 0 0 0 0 {1 {1 2 0 0 0 0 0 1 {2

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 {1 0 0 0 0 0 {0 1

0 0 0 0 0 0 0 0 0 0 0 0 1 {1 1 0 0 0 0 0 0 0 0 {1 1 1 1 1 {1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 {2 0 0 0 0 0 0 0 0 0 {1 {1 2 0 1 {2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 {1 0 {0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 {1 {1 1 {1 1 1 {1 {1 1 1 {1 2 {2 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 {1 0 0 {1 1 0 {1 0 1 0 1 {2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 {1 0 {1 0 1 0 0 {1 1 0 1 {2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 {1 0 0 0 {1 0 {0 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 {1 {1 1 0 0 0 0 {2 2 {2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 {1 0 0 0 0 0 {1 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 {1 0 0 0 0 0 {1 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 {2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 {1 {1 1 {2 2 {2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 {1 0 {1 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 {1 0 {1 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 {2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 {1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 {2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

(28)
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Converting structural to functional motif fingerprints and vice-
versa

The following matrix enables conversion from structural motif fingerprints, S or

structural motif counts, S to functional motif fingerprints, F or functional motif

counts F, as expressed in Equations (5) and (7) respectively.

MS?F~

1 0 1 0 1 2 0 1 0 1 1 2 3

0 1 1 0 1 2 1 2 3 3 2 4 6

0 0 1 0 0 2 0 2 0 1 0 3 6

0 0 0 1 1 1 1 1 0 1 2 2 3

0 0 0 0 1 2 0 0 0 1 2 3 6

0 0 0 0 0 1 0 0 0 0 0 1 3

0 0 0 0 0 0 1 2 0 1 2 3 6

0 0 0 0 0 0 0 1 0 0 0 1 3

0 0 0 0 0 0 0 0 1 1 0 1 2

0 0 0 0 0 0 0 0 0 1 0 2 6

0 0 0 0 0 0 0 0 0 0 1 1 3

0 0 0 0 0 0 0 0 0 0 0 1 6

0 0 0 0 0 0 0 0 0 0 0 0 1

0
BBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCA

: ð31Þ

The following matrix is the inverse ofMS?F, and can be used to convert from

functional motif fingerprints, F , or functional motif counts, F to structural motif

fingerprints, S or structural motif counts, S.

M{1
S?F~

1 0 {1 0 {1 2 0 1 0 1 1 {2 3

0 1 {1 0 {1 2 {1 2 {3 3 2 {4 6

0 0 1 0 0 {2 0 {2 0 {1 0 3 {6

0 0 0 1 {1 1 {1 1 0 1 2 {2 3

0 0 0 0 1 {2 0 0 0 {1 {2 3 {6

0 0 0 0 0 1 0 0 0 0 0 {1 3

0 0 0 0 0 0 1 {2 0 {1 {2 3 {6

0 0 0 0 0 0 0 1 0 0 0 {1 3

0 0 0 0 0 0 0 0 1 {1 0 1 {2

0 0 0 0 0 0 0 0 0 1 0 {2 6

0 0 0 0 0 0 0 0 0 0 1 {1 3

0 0 0 0 0 0 0 0 0 0 0 1 {6

0 0 0 0 0 0 0 0 0 0 0 0 1

0
BBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCA

: ð32Þ(32)
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Deriving motif counts from motif-role fingerprints

Given that each motif is comprised from three motif-roles, deriving the motif

counts from the motif-role counts, or vice-versa is trivial. To make this

relationship explicit, we introduce the following 13|3 matrix composed from the

elements of FR (denoted as FR,k, k~1, . . . ,30) to explicitly denote which

functional roles are associated with which functional motifs:

FMR~

FR,1 FR,2 0

FR,3 FR,4 FR,5

FR,6 FR,7 FR,8

FR,9 FR,10 0

FR,11 FR,12 FR,13

FR,14 FR,15 0

FR,16 FR,17 FR,18

FR,19 FR,20 0

FR,21 0 0

FR,22 FR,23 FR,24

FR,25 FR,26 0

FR,27 FR,28 FR,29

FR,30 0 0

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCA

ð33Þ

The i–th row in FMR indicates motif i,i~1, . . . ,13. A zero appears for any motif

in which more than one node plays the same role. Where FMR has three non-zero

elements, they all have the same value, which is equal to the total number of

functional motifs corresponding to that row. Where it has two elements, one

element is twice the other, where the element multiplied by 2 is that indicated by

dr~2 in Fig. 2. Similarly, where there is one element, it is multiplied by 3 as

indicated by dr~3 in Fig. 2.

We also introduce SMR to denote the equivalent matrix for structural motifs.

The total count of structural or functional motifs in a network can be trivially

obtained from SMR and FMR respectively by

S>~
1
3
SMR13 ð34Þ

F>~
1
3
FMR13, ð35Þ

where 13 is a unit 3|1 column matrix.

Conversely, the vectors FR and SR can be trivially obtained from F and S

respectively, since we also have
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FMR~

2F1 F1 0

F2 F2 F2

F3 F3 F3

2F4 F4 0

F5 F5 F5

F6 2F6 0

F7 F7 F7

2F8 F8 0

3F9 0 0

F10 F10 F10

F11 2F11 0

F12 F12 F12

3F13 0 0

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCA

: ð36Þ

Network data for C. elegans neuronal connectomes

For the hermaphrodite, we used network adjacency matrix data, based on

chemical synapses, made publicly available in conjunction with [17]. For the male,

we used network adjacency matrix data, based on chemical synapses, made

publicly available in conjunction with [19].

Supporting Information

S1 Matlab File. Matlab code implementing the results of this paper.

doi:10.1371/journal.pone.0114503.s001 (M)
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36. Onnela JP, Saramäki J, Kertész J, Kaski K (2005) Intensity and coherence of motifs in weighted
complex networks. Physical Review E 71: 065103(R).

37. Henderson K, Gallagher B, Eliassi-Rad T, Tong H, Basu S, et al. (2012) RolX: Structural Role
Extraction & Mining in Large Graphs. In: Proceedings of the 18th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, August 12–16, 2012, Beijing, China.

38. Newman MEJ (2010) Networks: An Introduction. Oxford University Press.

Motif-Role-Fingerprints in Directed Networks

PLOS ONE | DOI:10.1371/journal.pone.0114503 December 8, 2014 25 / 25


	Section_1
	Equation equ37
	Figure 1
	Equation equ38
	Equation equ39
	Figure 2
	Equation equ40
	Equation equ41
	Equation equ42
	Equation equ43
	Equation equ53
	Equation equ54
	Equation equ44
	Equation equ45
	Equation equ46
	Equation equ47
	Equation equ48
	Equation equ49
	Equation equ50
	Equation equ51
	Equation equ52
	Section_2
	Equation equ55
	Equation equ56
	Equation equ57
	Equation equ58
	Equation equ59
	Equation equ60
	Equation equ61
	Equation equ62
	Section_3
	Equation equ63
	Equation equ64
	Equation equ65
	Equation equ66
	Equation equ67
	Equation equ68
	Section_4
	Figure 3
	Equation equ1
	Equation equ79
	Equation equ80
	Equation equ81
	Equation equ82
	Equation equ83
	Equation equ2
	Equation equ84
	Equation equ85
	Section_5
	Equation equ86
	Equation equ87
	Equation equ88
	Equation equ3
	Equation equ4
	Equation equ89
	Equation equ5
	Equation equ90
	Equation equ91
	Equation equ92
	Equation equ93
	Equation equ94
	Equation equ95
	Equation equ96
	Equation equ97
	Equation equ6
	Figure 4
	Equation equ69
	Equation equ70
	Equation equ71
	Equation equ72
	Equation equ73
	Equation equ74
	Equation equ75
	Equation equ76
	Equation equ77
	Equation equ78
	Equation equ7
	Section_6
	Equation equ98
	Equation equ8
	Equation equ9
	Equation equ99
	Equation equ10
	Equation equ100
	Equation equ101
	Equation equ11
	Equation equ12
	Equation equ102
	Equation equ103
	Equation equ104
	Equation equ13
	Equation equ105
	Equation equ14
	Equation equ15
	Equation equ16
	Equation equ17
	Equation equ18
	Equation equ19
	Equation equ19
	Equation equ20
	Equation equ21
	Equation equ22
	Equation equ23
	Equation equ24
	Equation equ25
	Section_7
	Equation equ106
	Equation equ107
	Equation equ108
	Equation equ26
	Equation equ109
	Section_8
	Equation equ112
	TABLE_1
	Equation equ110
	Equation equ111
	Section_9
	Figure 5
	Section_10
	Section_11
	Equation equ113
	Equation equ114
	Equation equ114
	Equation equ115
	Equation equ116
	Equation equ117
	Section_12
	Equation equ118
	Equation equ119
	Section_13
	Section_14
	Section_15
	Section_16
	Equation equ120
	Equation equ121
	Equation equ122
	Equation equ123
	Equation equ124
	Equation equ125
	Equation equ126
	Equation equ127
	Equation equ128
	Equation equ129
	Equation equ130
	Equation equ131
	Equation equ132
	Equation equ133
	Equation equ134
	Equation equ135
	Equation equ136
	Equation equ137
	Section_17
	Equation equ138
	Equation equ139
	Equation equ140
	Equation equ27
	Equation equ141
	Equation equ142
	Equation equ143
	Equation equ144
	Equation equ145
	Equation equ146
	Equation equ29
	Equation equ30
	Section_18
	Equation equ28
	Equation equ147
	Equation equ148
	Equation equ31
	Equation equ149
	Equation equ150
	Equation equ151
	Equation equ32
	Section_19
	Equation equ152
	Equation equ153
	Equation equ154
	Equation equ33
	Equation equ155
	Equation equ156
	Equation equ157
	Equation equ158
	Equation equ159
	Equation equ160
	Equation equ161
	Equation equ162
	Equation equ34
	Equation equ35
	Equation equ163
	Equation equ36
	Section_20
	Section_21
	Section_22
	Section_23
	Section_24
	Reference 1
	Reference 2
	Reference 3
	Reference 4
	Reference 5
	Reference 6
	Reference 7
	Reference 8
	Reference 9
	Reference 10
	Reference 11
	Reference 12
	Reference 13
	Reference 14
	Reference 15
	Reference 16
	Reference 17
	Reference 18
	Reference 19
	Reference 20
	Reference 21
	Reference 22
	Reference 23
	Reference 24
	Reference 25
	Reference 26
	Reference 27
	Reference 28
	Reference 29
	Reference 30
	Reference 31
	Reference 32
	Reference 33
	Reference 34
	Reference 35
	Reference 36
	Reference 37
	Reference 38

